1. Consider the equation $u_{t t}=u_{x x}$ that describes the vibration of an infinite string. It is known that $u(x, 0) \equiv 0$ and $u_{t}(x, 0)=\sin x . u(x, t)=$?
2. Let $A=\left[\begin{array}{rrrccc}0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15\end{array}\right]$. Find a base for the $\operatorname{subspace} \operatorname{row}(A)$!
3. Let $B=\left[\begin{array}{ll}9 & 6 \\ 6 & 9\end{array}\right]$. Find a positive definite matrix C such that: $B=C^{2}$.
4. Test whether the following vector field is a gradient vector field and if yes, then determine the potential! $\vec{F}(x, y, z)=(1+4 y+5 z, 2+4 x, 3+5 x)$.
5. Let $\vec{G}(x, y, z)=\left(2 x+y^{2}, y+\sin z, z-x^{3}\right)$, while \mathcal{F} is the surface of the unit sphere about the origin, oriented with an outward pointing normal vector. Use Gauss theorem to evaluate the following surface integral: $\iint_{\mathcal{F}} \vec{G} d \vec{A}=?$
6. Let the vector field $\vec{F}(x, y, z)=\left(z^{2}, x+x^{2}+z^{2}, y^{2}+x\right)$ describe the (stationary) velocity field of a fluid. An infinitesimally small paddle wheel is placed with center located at the point $P=(1,2,3)$. Let \vec{n} denote the normal vector orthogonal to the plane of the paddle wheel. For which choice of \vec{n} can it be achieved that the paddle wheel rotates with the highest possible speed in the counterclockwise direction when it is observed from the direction $-\vec{n}$?
