10. Let $P=\left[\begin{array}{cc}1 & -1 \\ -3 & 4\end{array}\right]$. Find the eigenvalues and the eigenvectors of P !

In class, we solved a computationally easier exercise. It is important that P is not symmetric; hence, it is not sure that there exist two linearly independent eigenvectors, and if there exist then they are not necessarily orthogonal

TO THE EigenvaluE λ.

$$
P \underline{v}=\lambda \underline{v} \quad \underline{\approx}, \underline{0}=\underline{v}-t \underline{v}=(P-\lambda I) \underline{v} \text { (}
$$

λ is aneisenvalue ir $(*)$ has infinitely many dolutides, ie. if $\operatorname{det}(p-t J)=0$

10．Let $P=\left[\begin{array}{cc}1 & -1 \\ -3 & 4\end{array}\right]$ ．Find the eigenvalues and the eigenvectors of $P!$

$$
\begin{aligned}
& 0=\operatorname{det}(R-\lambda j)=\left|\begin{array}{cc}
1-\lambda & -1 \\
-3 & 4-\lambda
\end{array}\right|=(1-\lambda)(4-\lambda)-3=\lambda^{2}-5 \lambda+1 \\
& \lambda_{1}=\frac{5+\sqrt{21}}{2} \\
& \text { WESULLE }\left(P-d_{1} I \text { UK=0 }\left(\begin{array}{cc:c}
\frac{2}{2}-\frac{5+\sqrt{21}}{2} & -1 & 0 \\
-3 & \frac{8}{2}-\frac{5+\sqrt{2}}{2} & 0
\end{array}\right)=\left(\begin{array}{ccc}
-3-\sqrt{21}-1 & 0 \\
-3 & \frac{3-\sqrt{2}}{2} & 0
\end{array}\right)\right.
\end{aligned}
$$

ADDINy ThE $\frac{2}{3-\sqrt{21}}$ mUETIRLE UF THE JELUND KOG TO ThE FiRJT ROW，THE FIRS，ROW BELOMEX O O：OF LOMSE，WE KNOW in asvancéthatif λ_{1} is an Eigenvalve then we゙mave゙
 CORRELT THEN WE゙LAN DELOTCN A COW wiThOUT TAY CALCVLATION
10. Let $P=\left[\begin{array}{cc}1 & -1 \\ -3 & 4\end{array}\right]$. Find the eigenvalues and the eigenvectors of $P!$

$$
\begin{aligned}
& 0=\operatorname{det}(p-\lambda j)=\left|\begin{array}{cc}
1-\lambda & -1 \\
-3 & 4-\lambda
\end{array}\right|=(1-\lambda)(4-\lambda)-3=\lambda^{2}-5 \lambda+1
\end{aligned}
$$

$$
\begin{aligned}
& v_{2}=t,-3 v_{1}+\frac{3-\sqrt{2}}{2} v_{2}=0 \Rightarrow v_{1}=\frac{3-\sqrt{21}}{6} t \\
& \text { All julviions: }\left\{\left(\frac{\sqrt[{3-\sqrt{2 n}}]{6} t}{t}\right), t \varepsilon k\right\} \text {, chuoding Fun E゙x } \operatorname{sinplc} t=1
\end{aligned}
$$

We get ${ }^{\text {jHAT }}\left(\frac{3-\sqrt{21}}{6}\right)$ is an EigEnVEGUR cuknESponding to λ_{1}
10. Let $P=\left[\begin{array}{cc}1 & -1 \\ -3 & 4\end{array}\right]$. Find the eigenvalues and the eigenvectors of P !

$$
\begin{aligned}
& 0=\operatorname{det}(R-\lambda J)=\left|\begin{array}{cc}
1-\lambda & -1 \\
-3 & 4-\lambda
\end{array}\right|=(1-\lambda)(x-\lambda)-3=\lambda^{2}-5 \lambda+1 \\
& \lambda_{2}=\frac{5-\sqrt{21}}{2}, \frac{(-3+\sqrt{21}}{2}-1 v_{2}=t \\
& -3 v_{1}+\frac{3+\sqrt{2}}{2} v_{2}=0 \\
& \left\{\binom{\frac{3+\sqrt{21}}{6} t}{t},+\varepsilon k\right\} \begin{array}{c}
2 \\
\text { BANIL oN } \\
\text { ThRE ETVENSPACE }
\end{array}\binom{\frac{3+\sqrt{21}}{6}}{1}
\end{aligned}
$$

7. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$. Give a symmetric matrix S and a skew-symmetric matrix G such that $A=S+G$!
8. Let $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}5 & 6 \\ 8 & 9\end{array}\right]$. Find $A: B$!
$(7) \quad S=\frac{1}{2}\left[\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)+\left(\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right)\right]=\left(\begin{array}{lll}1 & 3 & 5 \\ 3 & 5 & 7 \\ 5 & 7 & 9\end{array}\right) \quad F+g=A$
(8) $A: B=5+12+32+45=94$

IMAOEIANT: $(A+B)^{T}=A^{T}+B^{T}$
$(A \cdot B)^{\top}=B^{\top} A^{\top}$
5. Let P be the orthogonal projection to line $y=\frac{\sqrt{3}}{2} x$. Find the matrix of P in the natural basis (i.e. $N=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$).

$P=\frac{1}{\bar{a}^{\tau} \mathbf{a}} \cdot a a^{T}$

$$
\binom{1}{\frac{\sqrt{3}}{2}}\left(\begin{array}{ll}
1 & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{3}{4}
\end{array}\right)
$$

$$
\begin{aligned}
& a=\binom{1}{\frac{\sqrt{3}}{2}} \\
& \sqrt{\sqrt{3}}\left(\begin{array}{c}
1 \\
\sqrt{3} \\
2
\end{array}\right) \\
& a^{\prime} a=|a|^{2} \\
& p=\left(\begin{array}{cc}
4 & 2 \sqrt{3} \\
7 & 7 \\
\frac{2 \sqrt{3}}{7} & \frac{3}{7}
\end{array}\right)
\end{aligned}
$$

9. Give the spectral decomposition of the matrix $M=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$!

If the $n^{*} n$ matrix M is symmetric, then all the eigenvalues are real, there exist n linearly independent eigenvectors, and their can be chosen to form an orthonormal system, i.e., to be perpendicular to each other and have length 1.

$$
0=\left|\begin{array}{cc}
2-\lambda & -1 \\
-1 & 2-\lambda
\end{array}\right|=(2-\lambda)^{2}-1=
$$

$$
M=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{cc}
3 & 0 \\
3 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-\frac{1}{\sqrt{2}} & 1 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

canonilal elcipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

canomilal hyderbolas

$$
\begin{aligned}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} & =1 \\
\frac{-x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} & =1
\end{aligned}
$$

4. Draw the points on the plane, which satisfy the equation $5 x^{2}-4 x y+8 y^{2}=$ 36 !

4. Draw the points on the plane, which satisfy the equation $5 x^{2}-4 x y+8 y^{2}=$ 36 !

TOY EXTANLE

$$
\begin{gathered}
\alpha\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
-3 \\
-3 \\
0
\end{array}\right)\right)=x y \operatorname{PLAN} \\
\alpha\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right)
\end{gathered}
$$

6. Let L be the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
3 \\
7
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{c}
-1 \\
3 \\
2 \\
0
\end{array}\right]
$$

(a) Find a basis of L out of the vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$! Give the coordinates of the remaining vectors, which are not contained in this basis, in the basis you have found!

The calculations show that the first three vectors, i.e., v1,v_2,v_3 constitute a basis since main ones are present in the first three columns

6 . Let L be the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
\downarrow & \downarrow & \downarrow & \\
0 & 1 & 0 & -1 \\
0 & -2 & 1 & 5 \\
0 & 0 & 1 & \vdots \\
0 & 0 & 2 & 16
\end{array}\right) \sim\left(\begin{array}{ccc:c}
1 & 1 & 0 & -1 \\
0 & -2 & 0 & -3 \\
0 & 0 & 1 & p
\end{array}\right) \sim\left(\begin{array}{ccc:c}
1 & 0 & 0 & -5 \\
0 & -2 & 0 & -3 \\
0 & 0 & 1 & 8
\end{array}\right) \sim \\
& \text { ? } \\
& \alpha_{1} \cdot \underline{v_{1}}+\stackrel{\rightharpoonup}{\alpha}_{2} \cdot \underline{v_{2}}+{ }^{?} \alpha_{3} \cdot \underline{v}_{3}=\underline{v}_{4} \quad\left(\begin{array}{lll:l}
1 & 0 & 0 & -\frac{5}{2} \\
0 & 1 & 0 & \frac{3}{2} \\
0 & 0 & 1 & 8
\end{array}\right) \begin{array}{l}
1 \cdot \alpha_{1}=\frac{5}{2} \\
1 \cdot \alpha_{2}=\frac{3}{2} \\
1 \cdot \alpha_{3}=8
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. Sice }
\end{aligned}
$$

$$
l_{1}=v_{1}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right)^{\frac{v_{2}}{l}}, \alpha\left(l_{1}\right)=\alpha\left(v_{1}\right)
$$

 in This Fiors

$$
\begin{aligned}
& \underline{b_{2}}=\alpha \cdot \underline{l_{1}}+\underline{v_{2}} \\
& \xrightarrow[l_{1}]{C l_{y}}
\end{aligned}
$$

$$
\begin{aligned}
& 0=l_{1} \cdot l_{3}=\beta_{1} \cdot l_{1} \cdot l_{1}+l_{1} \cdot l_{3}, B_{1}=-\frac{l_{1} \cdot l_{3}}{l_{1}, l_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 0=l_{3} \cdot b_{y} \Rightarrow A_{2}=-\frac{l_{2} \cdot v_{3}}{\left|l_{2}\right|^{2}}=\frac{30}{311} \quad l_{1}=\left(\begin{array}{l}
1 \\
b_{1} \\
1 \\
1
\end{array}\right), b_{3}=\left(\begin{array}{c}
-2 \\
\frac{2}{1} \\
\frac{1}{13}
\end{array}\right), \\
& l_{3}=\beta_{1} \cdot l_{1}+\beta_{2} \cdot l_{3}+v_{3}, \beta_{1}=\frac{-l_{1} \cdot v_{3}}{\left|l_{1}\right|^{2}}=\frac{-1}{7} v_{3}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

EXAMPLE

Theovecin $\operatorname{dim}(w)+\operatorname{dim}\left(w^{\downarrow}\right)=n$
Plop $\left(w^{+}\right)^{+}=w$
13. Find the matrix in the natural basis of the orthogonal projection to the plane $V=\{(x, y, z): 2 x-y+3 z=0\}$! By using this matrix, decompose the vector $\mathbf{v}=(2,4,-1)$ into perpendicular and paralell components with respect to V !

$$
\begin{aligned}
& \left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right)\right\} \text { Basis in } W \\
& \left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 3 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
2 & 3 \\
0 & 1
\end{array}\right) /\left(\begin{array}{ll}
5 & 6 \\
6 & 10
\end{array}\right)=\operatorname{Min}
\end{aligned}
$$

$\begin{aligned} & \text { PERPNDicular curponedi } \\ & \text { is ithe difielence }\end{aligned}\left(\begin{array}{c}2 \\ 4 \\ -1\end{array}\right)-\left(\begin{array}{c}\frac{17}{4} \\ \frac{53}{14} \\ -\frac{5}{24}\end{array}\right)=\left(\begin{array}{c}-\frac{6}{24} \\ \frac{3}{14} \\ -\frac{1}{4} \\ -\frac{14}{24}\end{array}\right)$

1. Legyen $A=\left[\begin{array}{rrrr}1 & 1 & 0 & -1 \\ 2 & 0 & 1 & 3 \\ 1 & 3 & 0 & 2 \\ 1 & 7 & -1 & 0\end{array}\right]$. Határozzuk meg a következő altereket: $\operatorname{row}(A), \operatorname{col}(A), \operatorname{null}(A), \operatorname{null}\left(A^{T} \cdot A\right)$. Továbbá határozzuk meg $\operatorname{nullity}(A)=$? és és rank $\left(A^{T} \cdot A\right)=$? (Számoljuk ki direktbe és NE az órán tanult tétellel az $A^{T} \cdot A$-ra vonatkozó kérdéseket.)
null ($A^{\top} A$)
null $(A T) \xrightarrow{H}$

$$
=\alpha\left(\left(\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right)\right)
$$

(c) Check that $\operatorname{row}(A)^{\perp}=\operatorname{null}(A)$ and $\operatorname{col}(A)^{\perp}=\operatorname{null}\left(A^{T}\right)$!

$\sin _{\text {ce }} \operatorname{dim}(\operatorname{mull}(A))+\operatorname{dim}(\operatorname{ran}(A))=4$
$\operatorname{null}(A)=\operatorname{rar}(A)^{\perp}$ Follows

