1. Solve the following system of linear equations with Gauss elimination!

$$
\begin{array}{rlrl}
x_{1}+3 x_{2}-2 x_{3} & +2 x_{5} & =0 \\
2 x_{1}+6 x_{2}-5 x_{3}-2 x_{4}+4 x_{5}-3 x_{6} & =-1 \\
5 x_{3}+10 x_{4} & +15 x_{6} & =5 \\
2 x_{1}+6 x_{2} & +8 x_{4}+4 x_{5}+18 x_{6} & =6
\end{array}
$$

We arrange the coefficients into a matrix. The matrix uniquely determines the system of linear equations and vice versa.
We will systematically perform three possible manipulations:
a)We can swap two rows
b)We can multiply a row with a nonzero number c) We can add to a row a nonzero multiple of another row
These operations do not change the solution of the system of linear equations.

$$
\begin{aligned}
& \underset{\sim}{\pi+5 \pi} \underset{\sim}{\pi}\left(\begin{array}{cccccc:c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & -1) & -2 & 0 & -3 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\sqrt[6]{6} & 2
\end{array}\right) \\
& \text { limtual main omé }
\end{aligned}
$$

$$
\left(\begin{array}{ccccc:c}
& \begin{array}{c}
11 \\
3
\end{array} & -2 & 0 & 2 & 0
\end{array} 0\right.
$$

The other variables are expressed from bottom to top

$$
\begin{aligned}
& 6 x_{6}=2=1 \quad x_{6}=\frac{1}{3} \\
& -x_{3}-2 x_{4}-3 \cdot x_{6}=-1 \\
& x_{1}+3 x_{2}-2 x_{3}+2 x_{5}=0
\end{aligned}
$$

All solutions in vector form

$$
\left\{\begin{array}{cc}
-30-4 t-2 v \\
0 & \\
-2 t & t \in k \\
t & v \in k \\
v \\
1 & 1
\end{array}\right)
$$

Alternative viewpoints of a system of linear equations

2. Is the collection of the following vectors linearly independent?

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
1 \\
0 \\
5
\end{array}\right]
$$

Solution 1

$$
\lambda_{1}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+\lambda_{2}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)+\lambda_{3}\left(\begin{array}{l}
1 \\
0 \\
5
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

$$
\left(\begin{array}{ccc:c}
{[1]} & 0 & 1 & 0 \\
2 & -1 & 0 & 0 \\
3 & 1 & 5 & 0
\end{array}\right) \sim\left(\begin{array}{ccc:c}
\mathbb{1} & 0 & 1 & 0 \\
0 & \mathbb{1} & -2 & 0 \\
0 & 1 & 2 & 0
\end{array}\right) \sim\left(\begin{array}{cccc:c}
1 & 0 & 1 & 0 \\
0 & -1 & -2 & 0 \\
-0 & 0 & 0 & 0
\end{array}\right)
$$

We know that the constant zero vector solves this equation. The question is whether it is the only solution, i.e., whether the solution is unique

The last variable is free, hence, the equation has infinitely many solutions.
For this reason the vectors are not linearly independent.
2. Is the collection of the following vectors linearly independent?

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
1 \\
0 \\
5
\end{array}\right]
$$

The determinant is 0 . Hence, theoretically there are two possibilities: no solution or infinitely many solutions. The first possibility is not possible in this case (the constant zero vector is a solution). Hence, there exist infinitely many solutions, and hence the vectors are linearly dependent.
3. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, and let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be a basis of \mathbb{R}^{2}.
(a) What are the coordinates of the vector $\mathbf{v}=\left[\begin{array}{c}-\overline{1} \\ 5\end{array}\right]$ in basis B ? (That is, $\left.[\mathbf{v}]_{B}=?\right)$

We are looking for the weights lambda and lambda 2 for which it is true that the

$$
\lambda_{1}\binom{1}{2}+\lambda_{2}\binom{1}{-1}=\binom{-1}{5}
$$ linear combination with these weights of $\mathbf{u} \mathbf{1}$ and $\mathbf{u} \mathbf{2}$ is equal to \mathbf{v}

$$
\left(\begin{array}{rr:c}
1 & 1 & -1 \\
2 & -1 & 5
\end{array}\right) \approx\left(\begin{array}{rr:c}
1 & 1 & -1 \\
0 & -3 & 7
\end{array}\right) \Rightarrow \lambda_{1}+\lambda_{2}=-1=1-3 \lambda_{1}=\frac{4}{3}
$$

Hence $[\underline{U}]_{B}=\binom{\frac{4}{3}}{-\frac{7}{3}}$ Checking: $\frac{4}{3}\left(\frac{1}{2}\right)-\frac{7}{3}\binom{1}{-1} \stackrel{?}{=}\binom{-1}{5}$
3. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, and let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be a basis of \mathbb{R}^{2}.

Solution 2

(a) What are the coordinates of the vector $\mathbf{v}=\left[\begin{array}{c}-1 \\ 5\end{array}\right]$ in basis B ? (That is,

$$
\left.[\mathbf{v}]_{B}=?\right)
$$

NATURAL BASIS $N=\left\{\binom{1}{0}\binom{0}{1}\right\}$

$$
(\underline{V})_{N}=\binom{-1}{5}, \operatorname{sinct}-1 \cdot\binom{1}{0}+\delta \cdot\binom{0}{1}=\binom{-1}{5}
$$

Key observations: the number pair defining v is equal to the coordinate vector of \mathbf{v} in the natural basis

3．Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ ，and let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be a basis of \mathbb{R}^{2} ．
Solution 2
（a）What are the coordinates of the vector $\mathbf{v}=\left[\begin{array}{c}-\overline{1} \\ 5\end{array}\right]$ in basis B ？（That is，

$$
\left.[\mathbf{v}]_{B}=?\right)
$$

$$
\begin{aligned}
& \text { General coordinate change formula from basis } B^{\prime} \text { to basis } B \\
& \text { ~Notatiln: } P_{B_{1}^{\prime} y B} \quad B=\left\{\underline{v_{1}}, v_{2}, \ldots, v_{n}\right\}, B=\left\{\underline{u_{1}}, \underline{u_{2}}, \ldots, u_{n}\right\} \\
& (v)_{B^{\prime}}=\left(\left(\underline{u_{1}}\right)_{\left.\left.B^{\prime},\left(u_{2}\right)_{B^{\prime}}, \cdots,\left(u_{n}\right)_{B^{\prime}}\right) \cdot(\underline{V})_{B}\right)}\right. \\
& (\underline{V})_{B}=\left(\left(v_{1}\right)_{B},\left(v_{2}\right)_{B 1 \ldots,}\left(V_{n}\right)_{B}\right)(L)_{B^{\prime}} \quad!!P_{B \rightarrow B^{\prime}}=\left(P_{B}^{\prime} \rightarrow B\right)_{!!} \\
& \text {HOUSiNg } B^{\prime}=N \quad \text { 比 lei that } \quad(\underline{V})_{B}^{\prime}=\left(P_{N Y B}\right)^{-1}(\underline{V})_{N}
\end{aligned}
$$

3. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, and let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be a basis of \mathbb{R}^{2}.

Solution 2
(a) What are the coordinates of the vector $\mathbf{v}=\left[\begin{array}{c}-1 \\ 5\end{array}\right]$ in basis B ? That is,

$$
\begin{aligned}
& \left.[\mathbf{v}]_{B}=?\right) \\
& (\underline{V})_{B} \approx\left(P_{N y B}\right)^{-1}\left(\underline{)_{N}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& (\underline{V})_{N}=\binom{-1}{5} \\
& (\underline{\underline{u}})_{B}=\left(\begin{array}{rr}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & -1 \\
3
\end{array}\right)\binom{-1}{5}=\left(\begin{array}{c}
\frac{4}{3} \\
-7 \\
3
\end{array}\right)
\end{aligned}
$$

ADDitional ExERLISE 1 consigte in e^{3} ThE LINEAR
transformation a that projects any vector orthogonally onto the plane $x y$. detelemine the matrix OF A in then natural basis!

$$
\underbrace{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \xrightarrow{A}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)}_{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \xrightarrow{A}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)},\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \rightarrow\left(\begin{array}{l}
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{array}\right.
$$

We need to determine the images of the elements of the natural basis in natural basis, and we need to arrange the resulting coordinate vectors into a matrix column-wise.

ADDITIONAL EXERLISE 2 LET A BE The 90° pustiver
ROTATION ON R^{2}. FINO THE MILIA A in THE FOLLOWING
Basis: $B=\left\{\binom{1}{1},\binom{2}{0}\right\} \quad$ indre \sim
SOLviar 1
We need to determine the images of the elements of basis B in basis B, and we need to arrange the resulting coordinate vectors into a matrix column-wise.

$$
\begin{aligned}
& \binom{1}{1} y\binom{-1}{1}=\lambda_{1}\binom{1}{1}+\lambda_{2}\binom{2}{0} \Rightarrow \begin{array}{l}
\lambda_{1}=1 \\
\lambda_{2}=-1
\end{array} \\
& \binom{2}{0}>\binom{0}{2}=\mu_{1}\binom{1}{1}+\mu_{2}\binom{2}{0} \Rightarrow \begin{array}{l}
\mu_{1}=2 \\
\mu_{2}=-1
\end{array}
\end{aligned}
$$

$$
\text { HENCE }(A)_{B}=\left(\begin{array}{ll}
\lambda_{1} & \mu_{1} \\
\lambda_{2} & \mu_{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right)
$$

ADditional Exercise 2 LET a Be the 90° pustiver ROTATION ON R^{2}. FIND THE MTEIX A in THE FOLLOWING Basis: $B=\left\{\binom{1}{1},\binom{2}{0}\right\}$

You will find the explanation of the formula on the following two slides.

$$
\begin{aligned}
& \text { SOLUTION } 2 \text { (} A)_{N}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
& P_{N \backslash B}=\left(\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right), P_{N \rightarrow B}^{-1}=\frac{1}{-2}\left(\begin{array}{cc}
0 & -2 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
1 & -1 \\
2 & 2
\end{array}\right) \\
& (A)_{B}=\left(\begin{array}{cc}
0 & 1 \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right) \\
& \text { Calculation }\left(\begin{array}{cc}
0 & 1 \\
1 & -1 \\
2 & -2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 & -1 \\
2 & -2
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right)
\end{aligned}
$$

3. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, and let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be a basis of \mathbb{R}^{2}.
(b) Find the coordinate transformation $P_{N, B}$ (That is, from the natural basis to B)
(c) Find the matrix of the linear transform $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}2 x_{1}-x_{2} \\ -x_{1}+3 x_{2}\end{array}\right]$ in the basis B !

General basis change formula basis for linear transformations

$$
B^{\prime}=\left\{u_{1}, v_{2}, \cdots, v_{y}\right\}, B=\left\{u_{1}, u_{3}, \ldots u_{n}\right\}
$$

$$
\begin{aligned}
& (A)_{B}=\left(P_{B^{\prime} \rightarrow B}\right)^{-1}(A)_{B}^{\prime} P_{B^{\prime} \neq B} \\
& \text { CHOOSING } B^{\prime}=N \quad W_{E} \text { geT THAT: }(A)_{B}=P_{N \rightarrow B}^{-1}(A)_{N} P_{N \rightarrow B}
\end{aligned}
$$

3. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, and let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be a basis of \mathbb{R}^{2}.
(b) Find the coordinate transformation $P_{N, B}$ (That is, from the natural basis to B)
(c) Find the matrix of the linear transform $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}2 x_{1}-x_{2} \\ -x_{1}+3 x_{2}\end{array}\right]$ in the basis B !

$$
\begin{aligned}
& \left.\begin{array}{ll}
(A)_{B}=P_{N \rightarrow B}^{-1}(A)_{N} P_{N y B} & T\left(\binom{1}{0}\right)=\binom{2}{-1} \\
& \left(\begin{array}{ll}
1 & 1 \\
1
\end{array}\right)=\binom{-1}{3}
\end{array}\right\} \Rightarrow(A)_{N}=\left(\begin{array}{ll}
2 & -1 \\
-1 & 3
\end{array}\right) \\
& (A)_{B}=\left(\begin{array}{rr}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right)\left(\begin{array}{rr}
2 & -1 \\
-1 & 3
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right) \\
& \text { CALOLATiON }\left(\begin{array}{cc}
\frac{1}{3} & 1 \\
2 & 3 \\
3 & -1 \\
3
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{2}{3} \\
3 & 3 \\
\frac{5}{3} & -\frac{5}{3}
\end{array}\right)\left(\begin{array}{cc}
\frac{5}{3} & -\frac{1}{3} \\
-\frac{5}{3} & \frac{10}{3}
\end{array}\right)
\end{aligned}
$$

