Name:.....

Advanced mathematics for civil engineers

I. exam, 21st December 2021, 9:10-10:40

Group A

- 1. (15 points)
 - (a) Find the matrix of the orthogonal projection from \mathbb{R}^2 to the line $y = -\frac{x}{3}$.
 - (b) What is the orthogonal projection of the point P = (1, 2) to this line?
- 2. (15 points) Let

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Find the matrix e^A .

3. (15 points) Let u(x,t) be the function which describes the vibration of the infinite vibrating string, which satisfies the equations $u''_{tt} = 4u''_{xx}$ $(t > 0, x \in \mathbb{R})$,

$$u(x,0) = 0$$
 for $x \in \mathbb{R}$, and $u'_t(x,0) = \begin{cases} 3 & \text{if } 0 \le x \le 10, \\ 0 & \text{otherwise.} \end{cases}$

What is u(-1, 2) = ?

- 4. (15 points) Let $\overrightarrow{F}(x, y, z) = (4x^3y^3z^2 + 2xz, 3x^4y^2z^2, 2x^4y^3z + x^2).$
 - (a) With the Curl-test decide whether \overrightarrow{F} is conservative or not! If it is, determine the potential function!
 - (b) Let γ be straight line from point C = (1, -1, 1) to D = (-1, 2, 2). Calculate $\int_{\gamma} \overrightarrow{F} d\mathbf{r} = ?$
- 5. (15 points) Let $\mathcal{F} = \{(x, y, z) : x^2 + y^2 = \frac{1}{9}, 0 \le z \le 1\}$ be the cylinder wall with orientation pointing away from the z-axis. (Note that \mathcal{F} does not contain the disks on the top and on the bottom!) Let $\overrightarrow{G}(x, y, z) = (xz + e^y \cos(z), yz + \sin(x^3 + z^4), 1 z^2)$. By using Gauss' Theorem, find $\iint_{\mathcal{F}} \overrightarrow{G} d\overrightarrow{A} = ?$
- 6. (15 points) Consider the closed curve γ : $r(\varphi) = 2\sin(\varphi), 0 \le \varphi \le \pi$ on the plane represented in polar coordinates (i.e. $\mathbf{r}(t) = (2\sin(t)\cos(t), 2\sin^2(t)), 0 \le t \le \pi$). By using Green's Theorem, find the area of the domain surrounded by γ . (Hint: use the vectorfield $\overrightarrow{F}(x, y) = (0, x)$.)

Name:.....

Advanced mathematics for civil engineers

I. exam, 21st December 2021, 9:10-10:40

- 1. (15 points)
 - (a) Find the matrix of the orthogonal projection from \mathbb{R}^2 to the line y = 3x.
 - (b) What is the orthogonal projection of the point P = (-2, 1) to this line?
- 2. (15 points) Let

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}.$$

Find the matrix $\cos(A)$.

3. (15 points) Let u(x,t) be the function which describes the vibration of the infinite vibrating string, which satisfies the equations $u''_{tt} = 9u''_{xx}$ $(t > 0, x \in \mathbb{R})$,

$$u(x,0) = 0$$
 for $x \in \mathbb{R}$, and $u'_t(x,0) = \begin{cases} 2 & \text{if } 0 \le x \le 5, \\ 0 & \text{otherwise.} \end{cases}$

What is u(-1, 2) = ?

- 4. (15 points) Let $\overrightarrow{F}(x, y, z) = (3x^2y^4z, 4x^3y^3z + z^2, x^3y^4 + 2yz).$
 - (a) With the Curl-test decide whether \overrightarrow{F} is conservative or not! If it is, determine the potential function!
 - (b) Let γ be straight line from point C = (1, -1, 1) to D = (-1, 2, 0). Calculate $\int_{\gamma} \overrightarrow{F} d\mathbf{r} = ?$
- 5. (15 points) Let $\mathcal{F} = \{(x, y, z) : x^2 + y^2 = \frac{1}{4}, 0 \le z \le 1\}$ be the cylinder wall with orientation pointing away from the z-axis. (Note that \mathcal{F} does not contain the disks on the top and on the bottom!) Let $\overrightarrow{G}(x, y, z) = (xz + e^y \cos(z), yz + \sin(x^3 + z^4), z^2)$. By using Gauss' Theorem, find $\iint_{\mathcal{F}} \overrightarrow{G} d\overrightarrow{A} = ?$
- 6. (15 points) Consider the closed curve γ : $r(\varphi) = 2\cos(\varphi), -\frac{\pi}{2} \leq \varphi \leq \frac{\pi}{2}$ on the plane represented in polar coordinates (i.e. $\mathbf{r}(t) = (2\cos^2(t), 2\cos(t)\sin(t)), -\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$). By using Green's Theorem, find the area of the domain surrounded by γ . (Hint: use the vectorfield $\overrightarrow{F}(x,y) = (0,x)$.)

Group B