Advanced mathematics for civil engineers
I. exam, 21st December 2021, 9:10-10:40

1. (15 points)
(a) Find the matrix of the orthogonal projection from \mathbb{R}^{2} to the line $y=-\frac{x}{3}$.
(b) What is the orthogonal projection of the point $P=(1,2)$ to this line?
2. (15 points) Let

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Find the matrix e^{A}.
3. (15 points) Let $u(x, t)$ be the function which describes the vibration of the infinite vibrating string, which satisfies the equations $u_{t t}^{\prime \prime}=4 u_{x x}^{\prime \prime}(t>0, x \in \mathbb{R})$,

$$
u(x, 0)=0 \text { for } x \in \mathbb{R}, \text { and } u_{t}^{\prime}(x, 0)= \begin{cases}3 & \text { if } 0 \leq x \leq 10 \\ 0 & \text { otherwise }\end{cases}
$$

What is $u(-1,2)=$?
4. (15 points) Let $\vec{F}(x, y, z)=\left(4 x^{3} y^{3} z^{2}+2 x z, 3 x^{4} y^{2} z^{2}, 2 x^{4} y^{3} z+x^{2}\right)$.
(a) With the Curl-test decide whether \vec{F} is conservative or not! If it is, determine the potential function!
(b) Let γ be straight line from point $C=(1,-1,1)$ to $D=(-1,2,2)$. Calculate $\int_{\gamma} \vec{F} d \mathbf{r}=$?
5. (15 points) Let $\mathcal{F}=\left\{(x, y, z): x^{2}+y^{2}=\frac{1}{9}, 0 \leq z \leq 1\right\}$ be the cylinder wall with orientation pointing away from the z-axis. (Note that \mathcal{F} does not contain the disks on the top and on the bottom!) Let $\vec{G}(x, y, z)=\left(x z+e^{y} \cos (z), y z+\sin \left(x^{3}+z^{4}\right), 1-z^{2}\right)$. By using Gauss' Theorem, find $\iint_{\mathcal{F}} \vec{G} d \vec{A}=$?
6. (15 points) Consider the closed curve $\gamma: r(\varphi)=2 \sin (\varphi), 0 \leq \varphi \leq \pi$ on the plane represented in polar coordinates (i.e. $\left.\mathbf{r}(t)=\left(2 \sin (t) \cos (t), 2 \sin ^{2}(t)\right), 0 \leq t \leq \pi\right)$. By using Green's Theorem, find the area of the domain surrounded by γ. (Hint: use the vectorfield $\vec{F}(x, y)=$ $(0, x)$.)

Advanced mathematics for civil engineers
I. exam, 21st December 2021, 9:10-10:40

1. (15 points)
(a) Find the matrix of the orthogonal projection from \mathbb{R}^{2} to the line $y=3 x$.
(b) What is the orthogonal projection of the point $P=(-2,1)$ to this line?
2. (15 points) Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
$$

Find the matrix $\cos (A)$.
3. (15 points) Let $u(x, t)$ be the function which describes the vibration of the infinite vibrating string, which satisfies the equations $u_{t t}^{\prime \prime}=9 u_{x x}^{\prime \prime}(t>0, x \in \mathbb{R})$,

$$
u(x, 0)=0 \text { for } x \in \mathbb{R}, \text { and } u_{t}^{\prime}(x, 0)= \begin{cases}2 & \text { if } 0 \leq x \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

What is $u(-1,2)=$?
4. (15 points) Let $\vec{F}(x, y, z)=\left(3 x^{2} y^{4} z, 4 x^{3} y^{3} z+z^{2}, x^{3} y^{4}+2 y z\right)$.
(a) With the Curl-test decide whether \vec{F} is conservative or not! If it is, determine the potential function!
(b) Let γ be straight line from point $C=(1,-1,1)$ to $D=(-1,2,0)$. Calculate $\int_{\gamma} \vec{F} d \mathbf{r}=$?
5. (15 points) Let $\mathcal{F}=\left\{(x, y, z): x^{2}+y^{2}=\frac{1}{4}, 0 \leq z \leq 1\right\}$ be the cylinder wall with orientation pointing away from the z-axis. (Note that \mathcal{F} does not contain the disks on the top and on the bottom!) Let $\vec{G}(x, y, z)=\left(x z+e^{y} \cos (z), y z+\sin \left(x^{3}+z^{4}\right), z^{2}\right)$. By using Gauss' Theorem, find $\iint_{\mathcal{F}} \vec{G} d \vec{A}=$?
6. (15 points) Consider the closed curve $\gamma: r(\varphi)=2 \cos (\varphi),-\frac{\pi}{2} \leq \varphi \leq \frac{\pi}{2}$ on the plane represented in polar coordinates (i.e. $\left.\mathbf{r}(t)=\left(2 \cos ^{2}(t), 2 \cos (t) \sin (t)\right),-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}\right)$. By using Green's Theorem, find the area of the domain surrounded by γ. (Hint: use the vectorfield $\vec{F}(x, y)=(0, x)$.)

