1. (15 points) Find the equation of the line, which fits the best (in the sense of least squares) to the points $(-4,4),(-2,2),(0,1),(1,-1)$ and $(5,-7)$! What is the square error?
2. (15 points) Draw the points on the plane, which satisfy the equation $37 x^{2}+18 x y+13 y^{2}=40$.
3. (15 points) Consider the following heat transport equation!

$$
\begin{cases}u_{t}^{\prime}=4 u_{x x}^{\prime \prime} & 0 \leq x \leq 3, t \geq 0 \\ u(0, t)=u(3, t)=0 & t \geq 0 ; \\ u(x, 0)=\sin (\pi x)+\cos \left(\frac{\pi}{3} x\right) \sin \left(\frac{2 \pi}{3} x\right) & 0 \leq x \leq 3\end{cases}
$$

Determine the function $u(x, t)$!
4. (15 points) Consider the planar vectorfield $\vec{F}(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)$.
(a) With the planar Curl-test decide whether \vec{F} is conservative or not! If the answer is positive, determine the potential function!
(b) Let $\gamma: \mathbf{r}(t)=(\cos t, \sin t) ; 0 \leq t \leq 2 \pi$ be the closed unit circle centered at the origin. Calculate $\int_{\gamma} \vec{F} d \mathbf{r}=$?
5. (15 points) Denote \mathcal{F} the triangle formed by the points $A(2,-1,5), B(5,-1,5)$ and $C(2,1,5)$ with orientation pointing upwards. Moreover, let $\vec{F}=(1,4,-3)$ be a constant vectorfield. Find $\iint_{\mathcal{F}} \vec{F} d \vec{A}=$?
6. (15 points) Determine the line integral of the planar vectorfield $\vec{G}(\mathbf{r})=\vec{G}(x, y)=(2 y, 3 x)$ over the closed curve $(x-1)^{2}+(y-4)^{2}=16$! (Hint: You might use the definition but with Green's Theorem it has a simpler solution.)

