Probability Theory 2

I. Midterm test

- **MT.1** (10 points) Thanos killed exactly half of the population with his magic ring in a second. Suppose that there were 2N people and exactly N men and N women. The ring choose between people uniformly, that is, it killed every subset of the population with N element with equal probabilities. Let X_N the ratio of men in the survivor population. Show that X_N converges to 1/2 in probability as $N \to \infty$.
- **MT.2** (10 pont) We put an amoebae into a Petri dish. The amoebaes divide in every minute according to the following rule: at the end of every odd minute an amoebae divides into k many amoebaes with probability $p_1(k)$, $k \ge 0$ (so it can die), and at the end of every even minute, an amoebae divides with probability $p_2(k)$ to k many amoebaes ($k \ge 0$). So after 2n + 1 minutes every amoebaes divides independently with prob. $p_1(k)$ into k amoebaes and the same happens independently with probability $p_2(k)$ after 2n minutes.

(a) Denote $G_1(x)$ and $G_2(x)$ the probability generating functions of the distributions p_1 and p_2 respectively. Find the prob. generating function of the *n*th generation! (We put the amoebae into the dish in the 0th minute.)

(b) Let p_1 be GEO(1/3) (i.e. $p_1(k) = \frac{1}{3} \left(\frac{2}{3}\right)^k$ for $k \ge 0$), and let p_2 be GEO(3/4) $(p_2(k) = \frac{3}{4} \left(\frac{1}{4}\right)^k$ for $k \ge 0$). Find the probability that the amoebaes eventually die out.

MT.3 (10 pont) Let X be the uniform random variable on the set $\{0, 1, ..., n-1\}$. Show that if n is not a prime then there exist independent N-valued random variables Y, Z such that Y + Z = X. (Hint: Decompose with respect to the remaining classes.)