Probability Theory 2

I. Midterm test

MT. 1 (10 points) Thanos killed exactly half of the population with his magic ring in a second. Suppose that there were $2 N$ people and exactly N men and N women. The ring choose between people uniformly, that is, it killed every subset of the population with N element with equal probabilities. Let X_{N} the ratio of men in the survivor population. Show that X_{N} converges to $1 / 2$ in probability as $N \rightarrow \infty$.

MT. 2 (10 pont) We put an amoebae into a Petri dish. The amoebaes divide in every minute according to the following rule: at the end of every odd minute an amoebae divides into k many amoebaes with probability $p_{1}(k), k \geq 0$ (so it can die), and at the end of every even minute, an amoebae divides with probability $p_{2}(k)$ to k many amoebaes $(k \geq 0)$. So after $2 n+1$ minutes every amoebaes divides independently with prob. $p_{1}(k)$ into k amoebaes and the same happens independently with probability $p_{2}(k)$ after $2 n$ minutes.
(a) Denote $G_{1}(x)$ and $G_{2}(x)$ the probability generating functions of the distributions p_{1} and p_{2} respectively. Find the prob. generating function of the nth generation! (We put the amoebae into the dish in the 0th minute.)
(b) Let p_{1} be $G E O(1 / 3)$ (i.e. $p_{1}(k)=\frac{1}{3}\left(\frac{2}{3}\right)^{k}$ for $k \geq 0$), and let p_{2} be $\operatorname{GEO}(3 / 4)\left(p_{2}(k)=\frac{3}{4}\left(\frac{1}{4}\right)^{k}\right.$ for $\left.k \geq 0\right)$. Find the probability that the amoebaes eventually die out.

MT. 3 (10 pont) Let X be the uniform random variable on the set $\{0,1, \ldots, n-1\}$. Show that if n is not a prime then there exist independent \mathbb{N}-valued random variables Y, Z such that $Y+Z=X$. (Hint: Decompose with respect to the remaining classes.)

