Advanced mathematics for civil engineers

Exercises in Partial differential equations

1. Describe the sine Fourier series on the interval $[0,2 \pi]$ of the function

$$
h(x)= \begin{cases}1 & \text { if } x \in[0, \pi) \\ 0 & \text { if } x \pi\end{cases}
$$

(Hint: $h(x)=\frac{4}{\pi}\left(\sin (x)+\frac{\sin (3 x)}{3}+\frac{\sin (5 x)}{5}+\cdots\right)$ if $0 \leq x<\pi$.) DO NOT

USE THE CHEATING SHEET!

2. Using the cheating sheet below, give the sine Fourier series of the function

$$
G(x)= \begin{cases}x & \text { if } 0 \leq x \leq 1, \\ 2-x & \text { if } 1 \leq x \leq 2\end{cases}
$$

3. Using the cheating sheet below, give the sine Fourier series of the function $\Phi(x)=x(2-x)$ on the interval $[0,2]$.
4. Using the previous exercises, solve the following problems:
(a)

$$
\begin{cases}u_{t t}^{\prime \prime}=3.1^{2} u_{x x}^{\prime \prime} & 0<t, 0 \leq x \leq 2 \\ u(x, 0)=\frac{1}{40}(1-|x-1|) & 0 \leq x \leq 2 \\ u_{t}^{\prime}(x, 0)=\frac{1}{80} x(2-x) & 0 \leq x \leq 2 \\ u(0, t)=u(2, t)=0 & 0<t\end{cases}
$$

(b)

$$
\left\{\begin{array}{ll}
u_{t}^{\prime}=u_{x x}^{\prime \prime} & 0<t, 0 \leq x \leq 2 \\
u(x, 0)=f(x) & 0 \leq x \leq 2 \\
u(0, t)=u(2, t)=0 & 0<t
\end{array} \quad \text { where } f(x)= \begin{cases}x & \text { if } 0 \leq x \leq 1 \\
2-x & \text { if } 1 \leq x \leq 2\end{cases}\right.
$$

5 . On the interval $[0,2]$, there is a string. The initial form is given by $f \equiv 0$ function and the movement is described by the equation $u_{t t}^{\prime \prime}=u_{x x}^{\prime \prime}$. We hit this string with a hammer on the interval $[1 / 2,3 / 2]$ from below with
velocity 1 . Give the shape of the string at time $t=3.5$ with the method of D'Alambert.
(Hint: the general formula $u(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\tau) d \tau$, where $u_{t t}^{\prime \prime}=c^{2} u_{x x}^{\prime \prime}, u(x, 0)=f(x), u_{t}^{\prime}(x, 0)=g(x)$.)
6. Let us consider a string with infinite length. Hold down on the points $(-1,0),(-1 / 2,1),(1 / 2,1)$ and $(1,0)$ and release it. The movement of the string is described by the equation $u_{t t}^{\prime \prime}=u_{x x}^{\prime \prime}$. Describe the shape of the string at time $t=20$!

Cheating sheet (which you are allowed to use on the exam)

1. The sine Fourier series of the function $f:[0, L] \mapsto \mathbb{R}, \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi}{L} x\right)$, where $b_{n}=\frac{2}{L} \int_{0}^{L} \sin \left(\frac{n \pi}{L} t\right) d t$.
2. $\int x \sin (a x) d x=\frac{\sin (a x)-a x \cos (a x)}{a^{2}}+C$ and
$\int x^{2} \sin (a x) d x=-\frac{a^{2} x^{2} \cos (a x)-2 \cos (a x)-2 a x \sin (a x)}{a^{3}}+C$.
3. Wibrating string:

$$
\begin{cases}u_{t t}^{\prime \prime}=c^{2} u_{x x}^{\prime \prime} & 0<t, 0 \leq x \leq L \\ u(x, 0)=f(x) & 0 \leq x \leq L \\ u_{t}^{\prime}(x, 0)=g(x) & 0 \leq x \leq L \\ u(0, t)=u(L, t)=0 & 0<t\end{cases}
$$

Solution: $u(x, t)=\sum_{k=1}^{\infty} \sin \left(\frac{k \pi}{L} x\right)\left(A_{k} \cos \left(\frac{k c \pi}{L} t\right)+B_{k} \sin \left(\frac{k c \pi}{L} t\right)\right)$, where $\left\{A_{k}\right\}$ are the coefficients of the sine Fourier series of $f(x)$ and $\left\{B_{k}\right\}$ are the coefficients of the sine Fourier series of $g(x)$.
4. Heat conduction in a finite rod:

$$
\begin{cases}u_{t}^{\prime}=\alpha^{2} u_{x x}^{\prime \prime} & 0<t, 0 \leq x \leq L \\ u(x, 0)=f(x) & 0 \leq x \leq L \\ u(0, t)=u(2, t)=0 & 0<t\end{cases}
$$

Solution: $u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{\left(\frac{n \pi}{L}\right)^{2} \alpha^{2} t} \sin \left(\frac{n \pi}{L} x\right)$, where $\left\{A_{n}\right\}$ are the coefficients of the Fourier sine series of $f(x)$.
5. The sine Fourier series of some functions:
(a) $f(x)=x$ if $0 \leq x<\pi: f(x)=2\left(\sin (x)-\frac{\sin (2 x)}{2}+\frac{\sin (3 x)}{3}-\frac{\sin (4 x)}{4}+\cdots\right)$ for $0 \leq x<\pi$
(b) $g(x)=\left\{\begin{array}{ll}x & 0 \leq x \leq \pi / 2 \\ \pi-x & \pi / 2 \leq x \leq \pi\end{array}: g(x)=\frac{4}{\pi}\left(\sin (x)-\frac{\sin (3 x)}{3^{2}}+\frac{\sin (5 x)}{5^{2}}-\frac{\sin (7 x)}{7^{2}}+\cdots\right.\right.$ for $0 \leq x \leq \pi$.
(c) $h(x)=\left\{\begin{array}{ll}1 & 0<x<\pi \\ 0 & x=0, \pi\end{array}: h(x)=\frac{4}{\pi}\left(\sin (x)+\frac{\sin (3 x)}{3}+\frac{\sin (5 x)}{5}+\frac{\sin (7 x)}{7}+\cdots\right)\right.$ for $0 \leq x \leq \pi$
(d) $\varphi(x)=x(\pi-x): \varphi(x)=\frac{8}{\pi}\left(\sin (x)+\frac{\sin (3 x)}{3^{3}}+\frac{\sin (5 x)}{5^{3}}+\frac{\sin (7 x)}{7^{3}}+\cdots\right)$ for $0 \leq x \leq \pi$

