Midterm test, 30 October 2017, 10:15-11:00

1. (15 points) Let

$$
A=\left[\begin{array}{cccc}
1 & 0 & -2 & 3 \\
2 & 1 & 1 & -4 \\
3 & 2 & 4 & -11
\end{array}\right]
$$

a) Determine $\operatorname{rank}(A), \operatorname{rank}\left(A^{T} A\right), \operatorname{nullity}(A)$ !
b) Find a basis of $\operatorname{col}(A)$ formed by the column vectors of $A$ !
2. (15 points) Find the equation of the line, which fits the best (in the sense of smallest squares) to the points $(1,2),(3,-1),(0,2),(-1,4)$ !
3. (15 points) Let

$$
B=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]
$$

Find the singular value decomposition of $B$ !
4. (15 points) The vibration of a string with length 6 is determined by the equation $u_{t t}^{\prime \prime}=4 u_{x x}^{\prime \prime}$. We hit on the left-hand side from below, and on the right-hand side from above with a hammer of length 3 with unit velocity. (That is, $u(0, x)=0$ and

$$
u_{t}^{\prime}(0, x)= \begin{cases}1 & \text { if } x \in[0,3] \\ -1 & \text { if } x \in(3,6] .)\end{cases}
$$

Describe the vibration of the string!

Advanced mathematics for civil engineers
Midterm test, 30 October 2017, 10:15-11:00

1. (15 points) Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
2 & 1 & 0 \\
0 & 1 & 4 \\
3 & 2 & 2
\end{array}\right]
$$

a) Determine $\operatorname{rank}(A), \operatorname{rank}\left(A^{T} A\right), \operatorname{nullity}(A)$ !
b) Find a basis of $\operatorname{row}(A)$ formed by the row vectors of $A$ !
2. (15 points) Find the equation of the line, which fits the best (in the sense of smallest squares) to the points $(4,1),(-4,0),(0,3),(1,1)$ !
3. (15 points) Let

$$
B=\left[\begin{array}{ll}
2 & 2 \\
2 & 5
\end{array}\right] .
$$

Find a matrix $C$ such that $C^{2}=B$ !
4. (15 points) The vibration of a string with length 6 is determined by the equation $u_{t t}^{\prime \prime}=u_{x x}^{\prime \prime}$. We hit on the left-hand side from below, and on the right-hand side from above with a hammer of length 3 with unit velocity. (That is, $u(0, x)=0$ and

$$
u_{t}^{\prime}(0, x)= \begin{cases}1 & \text { if } x \in[0,3] \\ -1 & \text { if } x \in(3,6] .)\end{cases}
$$

Describe the vibration of the string!

Advanced mathematics for civil engineers
Midterm test, 30 October 2017, 11:15-12:00

1. (15 points) Let

$$
A=\left[\begin{array}{ccccc}
1 & 0 & -2 & 3 & 0 \\
2 & 1 & 1 & -4 & 0 \\
3 & 2 & 4 & -11 & 2 \\
3 & 1 & -1 & -1 & 2
\end{array}\right] .
$$

a) Determine $\operatorname{rank}(A), \operatorname{rank}\left(A^{T} A\right), \operatorname{nullity}(A)$ !
b) Find a basis of $\operatorname{col}(A)$ formed by the column vectors of $A$ !
2. (15 points) Find the equation of the line, which fits the best (in the sense of smallest squares) to the points $(1,0),(2,1),(-2,0),(-3,2)$ !
3. (15 points) Let

$$
B=\left[\begin{array}{ll}
2 & 0 \\
3 & 2
\end{array}\right] \text {. }
$$

Find the singular value decomposition of $B$ !
4. (15 points) The vibration of a string with length 4 is determined by the equation $u_{t t}^{\prime \prime}=4 u_{x x}^{\prime \prime}$. We hit on the left-hand side from below, and on the right-hand side from above with a hammer of length 2 with unit velocity. (That is, $u(0, x)=0$ and

$$
u_{t}^{\prime}(0, x)= \begin{cases}1 & \text { if } x \in[0,2] \\ -1 & \text { if } x \in(2,4] .)\end{cases}
$$

Describe the vibration of the string!

Advanced mathematics for civil engineers
Midterm test, 30 October 2017, 11:15-12:00

1. (15 points) Let

$$
A=\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
2 & 1 & 0 & 3 \\
0 & 1 & 4 & 3 \\
3 & 2 & 2 & 6
\end{array}\right]
$$

a) Determine $\operatorname{rank}(A), \operatorname{rank}\left(A^{T} A\right), \operatorname{nullity}(A)$ !
b) Find a basis of $\operatorname{row}(A)$ formed by the row vectors of $A$ !
2. (15 points) Find the equation of the line, which fits the best (in the sense of smallest squares) to the points $(0,2),(0,3),(-2,1),(1,1)$ !
3. (15 points) Let

$$
B=\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right] \text {. }
$$

Find a matrix $C$ such that $C^{2}=B$ !
4. (15 points) The vibration of a string with length 8 is determined by the equation $u_{t t}^{\prime \prime}=9 u_{x x}^{\prime \prime}$. We hit on the left-hand side from below, and on the right-hand side from above with a hammer of length 4 with unit velocity. (That is, $u(0, x)=0$ and

$$
u_{t}^{\prime}(0, x)= \begin{cases}1 & \text { if } x \in[0,4] \\ -1 & \text { if } x \in(4,8] .)\end{cases}
$$

Describe the vibration of the string!

