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Cryptography plays a crucial role in our everyday lives, ensuring the security of our digital communi-
cations and information. However, the rise of quantum computing poses a potential threat to current
encryption methods like the RSA or ECC, which can be broken using Shor’s algorithm. Hence, it is
essential to explore some alternatives. In light of this, the thesis explores code-based cryptography,
focusing primarily on the McEliece cryptosystem as a candidate for post-quantum cryptography.
Firstly, we delve into the fundamentals of coding theory and highlight the significance of Goppa codes
in the McEliece system. We say C is a code over an arbitrary set A if C ⊆ A∗. Controling errors
in data being transmitted over a noisy channel is achieved by using error-correcting codes. During
transmission, some of the coordinates of a message m ∈ Ak might get corrupted. To deal with this,
we add some redundancies to the message m 7→ c ∈ An for n > k. The redundancies help the receiver
of y = c + e to detect if any errors e have occurred in order to recover the original message. If a code
C is a k-dimensional linear subspace of Fn

q , then we call it an [n, k] linear code. For a linear code we
can define a matrix G whose rows give a basis of the code and call it a generator matrix. We can also
define a parity-check matrix H of which C is the kernel. To encode a message m using linear codes,
we just calculate c = mG.
In its original construction, the McElliece system uses irreducible binary Goppa codes, a type of linear
codes based on algebraic curves. We denote a Goppa code by Γ(g, L) where g(x) ∈ F2m [x] is a degree
t polynomial for some fixed m and L = {α1, ..., αn} ⊆ F2m is a set of points which are not roots
of the polynomial. Knowing the generator polynomial g for such a code is necessary and sufficient
for efficient error correction and this fact will be used to construct the McElliece system. Practical
examples are provided to illustrate the importance of both coding theory and algebra in understanding
this cryptosystem. In particular, we calculate the parity-check matrix of a Goppa code with parameters
L = F23 and g(x) = x2 + x + α3 and then, with the help of MATLAB, we get the generator matrix
of Γ. We also take a look at Patterson’s algorithm for decoding Goppa codes and how to apply it in
practice.
To construct the McEliece cryptosystem, we start with fixed parameters n, t ∈ N, t << n, then choose
an [n, k] binary Goppa code and random matrices S and P having some additional properties. The
public key is (Gpub, t) where Gpub := SGP and the private key is (S, D, P ), where D is an efficient
decoding algorithm for Γ. After applying matrices S and P in the Mceliece key generation, the
structure of the Goppa code is seemingly lost, that is, an attacker has to decode random-looking
code which is NP-hard. The encryption is then done by transforming the message m into ciphertext
y = mGpub + e, which is then decrypted by calculating yP −1 = mGpubP

−1 + eP −1 = mSG + eP −1

which can then, with the help of Patterson’s algorithm, be decoded to get back m. Again, we give a
practical example in MATLAB of McEliece key generation, encryption and decryption.
Security of the cryptosystem is a priority when selecting parameters and implementing the McEliece
system. The originally suggested parameters (n, k, t) = (1024, 524, 50) are no longer secure, and recent
research suggests new and improved parameter choices, for (2960, 2288, 56) which achieve 128-bit
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security, pointing out that the optimal rate is R ≈ 0.8. We conclude that it is crucial to select the
right parameters, keep key components secret, and use an IND-CCA2 secure variant of the McEliece
system to avoid private-key or message-resend attacks and ensure security. While various ciphertext
only attacks on the McEliece system have been studied, the Information-Set Decoding (ISD) attack
emerges as the most effective. Still, all known ciphertext only attacks requires exponential time to be
executed.
When it comes to practical use, the primary limitation of the McEliece system lies in its large key size.
For example, to achieve the same security level, an instance of the McEliece can have a ≈ 192 KB size
key, while an ECC one a 242 bit key, making the McEliece key more than 6353 times larger. Some
efforts have been made to deal with this issue by replacing Goppa codes in the McElliece system with
other code families, but most of these attempts have been shown to be insecure. The most promising
solution currently seems to be using Goppa codes over larger fields. Going from binary Goppa codes to
codes of the form Γ31(L, g) significantly reduces the key size while preserving the same security level.
An additional suggestion is to use so-called wild Goppa codes Γq(L, gq−1).
Upon comparing the McEliece system with other encryption methods (IKKR, Niederreiter, RSA,
ECC), we can confirm that its key size is a notable challenge. However, it has a big advantage in
terms of encryption and decryption speed, making it a good choice for certain practical applications
where memory constraints are not a concern, but speed is important.
As we approach the era of quantum computing, the McEliece system deserves further exploration and
consideration for its potential as a post-quantum encryption solution.
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