
 Budapest University of Technology and Economics Institute of Mathematics
 Lachyn Jumakova
 The Prime Number Theorem

 BACHELOR THESIS

 BACHELOR THESIS

 Supervisor: Sándor Kiss

 Supervisor: Sándor Kiss}

Let $\pi(x)$ be the number of primes less than or equal to x, for every $x \in \mathbb{R}^{+}$. The Prime Number Theorem states that $\pi(x) \sim \frac{x}{\log (x)}$ as $x \rightarrow \infty$. That is, $\lim _{x \rightarrow \infty} \frac{\pi(x) \log (x)}{x}=1$. This theorem was independently proved by Jacques Hadamard and Charles Jean de la Vallée-Poussin in 1896 using ideas introduced by Bernhard Riemann.

The Riemann zeta function is defined for real $s>1$ by the convergent series $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$. $\zeta(s)$ has no zeros on the line $\Re(s)=1$. Upper bounds on $|\zeta(s)|,\left|\zeta^{\prime}(s)\right|, \frac{1}{|\zeta(s)|}$ for every $\epsilon>0$:
$|\zeta(s)| \leq c_{\epsilon}|t|^{1-\sigma_{0}+\epsilon}$, if $\sigma_{0} \leq \sigma$ and $|t| \geq 1$.
$\left|\zeta^{\prime}(s)\right| \leq c_{\epsilon}|t|^{\epsilon}$, if $1 \leq \sigma_{0}$; and $|t| \geq 1$.
$1 /|\zeta(s)| \leq c_{\epsilon}|t|^{\epsilon}$ if $\sigma \geq 1$ and $|t| \geq 1$.
The von Mangoldt function is defined as $\Lambda(n)=\log p$ if $n=p^{m}$ for some prime p and $m \geq 1$, and $\Lambda(n)=0$ otherwise. The Tchebyceff ψ-function is defined as: $\psi(x)=\sum_{n \leq x} \Lambda(n)$. The Tchebycheff ψ_{1}-function is defined as: $\psi_{1}(x)=\int_{0}^{x} \psi(t) d t$. Now we state the connection between Tchebycheff ψ_{1}-function and Riemann zeta function: $\psi_{1}(x)=-\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s+1}}{s(s+1)} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s$, where the path of integration is the straight line $\sigma=c>1$ and $x>0$.

As $x \rightarrow \infty$, we have: $\psi_{1}(x) \sim \frac{1}{2} x^{2} \Longleftrightarrow \psi(x) \sim x \Longleftrightarrow \pi(x) \sim \frac{x}{\log (x)}$. Hence, to prove the Prime Number Theorem, it is sufficient to prove $\psi_{1}(x) \sim \frac{1}{2} x^{2}$ as $x \rightarrow \infty$. The main factors in the argument are: the formula connecting ψ_{1} to $\zeta, \zeta(s)$ has no zeros on the line $\Re(s)=1$, and the estimates for ζ near the line.

