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Let (X, T, µ) be a dynamical system, i.e. T : X → X is a map preserving
a probability measure µ.

The dynamics is seen as a sequence x0, x1, . . . , xn, . . . of points in X such
that xn = T n(x0).

Alternatively, we may only ‘see’ the values F0, F1, . . . , Fn, . . . of some func-
tion F : X → R, where Fn = F (xn). We call F an observable.

If the sequence {Xn}, or {Fn}, was independent (relative to the mea-
sure µ), then we could easily apply all major results of classical probability
theory... But this is almost never the case in deterministic systems.

So let us assume the simplest situation with dependence: the function
F only takes finitely many values, say {1, 2, . . . , I}, and the sequence {Fn}
is a Markov chain; i.e. Fn depends only on Fn−1 but not on the previous
values Fn−m, m ≥ 2. This Markov chain has a stationary distribution P
with components pi = µ(F0 = i) and its transition probability matrix Π has
components πij = µ(F1 = j/F0 = i).

If πij = pj for all i, j we would have an independent sequence. Suppose

πij ≥ γpj for some γ > 0

and all i, j. Then the n-step transition probabilities π
(n)
ij (the components of

the matrix Πn) converge to the stationary distribution exponentially fast in
the following sense:

(1) Var(Π
(n)
i , P ) ≤ (1− γ)n.

Here Π
(n)
i = (π

(n)
i1 , . . . , π

(n)
iI ) is the ‘image’ of the ith state at time n and

P = (p1, . . . , pI) is the stationary vector; we denote by Var the distance in
variation between probability vectors:

Var(P, Q) =
1

2

∑
|pi − qi|.

The condition πij ≥ γpj may be too rigid and hard to check. A weaker
condition is:

1

2

∑
k

|πik − πjk| ≤ 1− γ
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for some γ > 0 and all i, j. This is known as Doeblin’s condition, or D-
condition, or Dobrushin’s coefficient of ergodicity. Under this condition the
convergence to the stationary vector is exponentially fast in the following
sense:

(2) Var(Π
(n)
i , P ) ≤ (1− γ/2)n,

which is only slightly slower than (1).
Intuitively, Doeblin’s condition means that for any pair of states i and j,

with probability γ the trajectories jump into the same state, and then their
future evolutions become identical. That is, the two trajectories are ‘coupled’
and become indistinguishable in the future.

We note that if, say, 3% of the state i jumps into k and 1% of the state j
jumps into k, then only 1% of each state can be ‘coupled’; on the other hand,
2% of the image of i in k has to move further on, until it can be coupled with
some other images of j.

Coupling method. The dynamical version of this coupling procedure
was developed by Young [Y99], and then modified by Bressaud and Liverani
[BL02], Dolgopyat [CD08], etc. I will describe one of its simplest versions,
assuming that X is a 2D manifold and T : X → X is a hyperbolic map
(possibly, with singularities), and µ is an SRB measure.

Let W1 and W2 be two unstable curves in X which carry smooth prob-
ability measures ν1 and ν2, respectively. Their images T n(W1) and T n(W2)
are longer curves, possibly broken into pieces by singularities. Generally,
T n(W1) and T n(W2) are finite or countable unions of unstable curves.

Now if two pieces V1 ⊂ T n(W1) and V2 ⊂ T n(W2) are close enough to
be connected by some stable manifolds, then the points x ∈ V1 and y ∈
V2 ∩ W s(x) (observe that y is the image of x on V2 under the standard
holonomy map) can be ‘coupled’, because their further trajectories converge
exponentially fast, thus their images become practically indistinguishable.

Note that we need to ‘couple’ the same amount of measure, thus only a
portion of the measure T nν1 carried by V1 can be coupled with a portion of
the measure T nν2 carried by V2.

To make sense of ‘portions’ of measures carried by curves and individ-
ual points, we have to replace each Wi, i = 1, 2, with a direct product
Ŵi = Wi × [0, 1], and the measure νi with ν̂i = νi × m, where m is the
Lebesgue measure on [0, 1].
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Coupling lemma. The coupling lemma precisely says that if W1 and W2

are not too short, then there exists a measure preserving bijection Θ: Ŵ1 →
Ŵ2 (the ‘coupling map’) and a ‘coupling time’ function R : Ŵ1 → N such
that

(i) if Θ(x, t) = (y, s), then the points TR(x) and TR(y), where R = R(x, t),
belong to one stable manifold, i.e. TR(y) ∈ W s

(
TR(x)

)
;

(ii) we have an exponential tail bound: ν̂1(R > A) < CθA for some con-
stants C > 0 and θ < 1, and for all A > 1.

The coupling lemma can be extended to families of unstable curves with
probability measures defined on the entire family (with smooth conditional
densities on individual curves). In this way the coupling lemma also covers
the SRB measure µ, as one an foliate X by smooth unstable manifolds (on
which µ has smooth densities).

The coupling lemma allows us to derive sharp bounds on correlations and
multiple correlations relatively easily [CM06, Chapter 7]. Those bounds are
strong enough to imply the Central Limit Theorem and the ASIP without
any extra properties of the dynamical system. (That is, the CLT and ASIP
are logical consequences of sharp bounds on multiple correlations.)

Young’s tower. A more traditional approach to statistical properties
of hyperbolic maps (with singularities) is Young’s tower [Y98]. It consists of
a hyperbolic structure Ω ⊂ X (‘horseshoe’) which returns onto itself (in a
Markov manner) under the iterations of the map, i.e. for every x ∈ Ω there
is a return time R = R(x) ∈ Ω such that TR(x) ∈ Ω. The Markovness of
returns means that

TR
(
W s(x) ∩ Ω

)
⊂ W s

(
TR(x)

)
∩ Ω

and
TR

(
W u(x) ∩ Ω

)
⊃ W u

(
TR(x)

)
∩ Ω.

(Due to these restrictions, R = R(x) is not necessarily the first return of the
trajectory of the point x to Ω.)

If the return time satisfies an exponential tail bound, i.e.

µ(R > A) < CθA
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for some constants C > 0 and θ < 1, and for all A > 1, then the map has
exponential mixing rates [Y98]. If the return time satisfies a polynomial tail
bound, i.e.

µ(R > A) < CA−a

for some constants C, a > 0, and for all A > 1 then the map has polynomial
mixing rates [Y99].

It is hard to compare the two approaches, the tower and the coupling
method. Both are very powerful and have been successfully used in the re-
cent studies of various hyperbolic models. Arguably, the tower is a more
complicated and ‘rigid’ object, it is rather difficult to construct; the coupling
process is somewhat more flexible and more elementary (if this word can be
applied at all...). But the tower works for systems with either exponential or
polynomial mixing rates. The coupling method currently applies to systems
with exponential rates only.

Flows. Next we describe a modification of the coupling method for hy-
perbolic flows. For simplicity, let Φt be a hyperbolic flow on a 3D manifold X,
so that (strongly) stable and unstable manifolds are one-dimensional curves.

Given two unstable curves W1 and W2, their images Φt(W1) and Φt(W2)
are unions of unstable curves. However the situation is more complicated
than that we have for maps: if two pieces V1 ⊂ T n(W1) and V2 ⊂ T n(W2)
are close enough somewhere, they usually are not close ‘all the way’, as they
are not parallel (they look like skew lines in space). Thus coupling will only
take place in a small neighborhood where those two pieces come close to each
other.

To formalize coupling, let us construct a Markov approximation. First,
we represent Φt by a suspension flow over a 2D cross-section Y . Then we
partition Y into small rectangles (hyperbolic horseshoes). Then over each
rectangle R ⊂ Y we approximate the ceiling function τ by a constant τ̄Y and
divide the resulting cylinder Y × [0, τ̄Y ] into boxes of a small fixed height δ (a
quantum of time). Now the flow Φt is conveniently represented by the time
δ map, T = Φδ, on the space X, and the system is conveniently represented
by a Markov chain.

Now consider two small boxes Bi, Bj ⊂ X that represent two states of
our Markov chain. Their images will consist of long strips that stretch along
unstable manifolds and have a constant height δ. When they can be con-
nected by a stable manifold, that manifold will shrink in the future and its
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images will be entirely in some box Bk. That means parts of the images of
Bi and Bj will come into one box Bk, at which time they are ‘coupled’.

We note that only a small portion of the images of Bi and Bj are actually
coupled. But this is just enough. A direct analysis shows that the transition
probabilities satisfy condition ∑

k

πikπjk

pk

≥ γ

for some γ > 0 and all i, j. Even though this is much weaker than Doeblin’s
condition, it still implies the following control on the convergence to the
stationary distribution:

Var(Π
(n)
i , P ) ≤ (1− γ/2)n/3

√
γ pmin

,

where pmin = mini pi, see [C98]. This is slower than the convergence (2) under
Doeblin’s condition, but it is sufficient, for example, to prove a stretched
exponential bound on correlations for dispersing billiard flows [C07].

It would be interesting to develop a dynamical (rather than Markov-
chain-style) coupling method for hyperbolic flows.

Growth lemmas. While the construction of Young’s tower, and proving
the coupling lemma alike, are fairly complex tasks, they have one key ele-
ment in common: the fast (exponential) growth of small unstable curves (or
unstable manifolds, in high dimensions). All statements that describe such
growth in precise terms are called growth lemmas.

Let W be an unstable manifold in X. Its image T (W ) expands locally but
may be cut into pieces by singularities. In other words, T (W ) may consist of
several unstable manifolds of rather different shapes and sizes. All too often
T (W ) contains small (even arbitrarily small) components. How would we
specify the ‘growth’ of W then?

One way is to assess the ε-neighborhood of the boundary of T (W ), be-
cause it consists of points passing nearby singularities where all the troubles
occur. Let W carry a probability measure ν. Define

Z(W ) = sup
ε>0

ν
(
dist(x, ∂W ) < ε

)
ε

,

see [C99a]. This value characterizes the size and shape of W : higher values
of Z(W ) indicate either a small size or an irregular shape of W (or both).
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Now for n ≥ 0 define

Zn(W ) = sup
ε>0

ν
(
dist

(
T n(x), ∂T n(W )

)
< ε

)
ε

.

This value characterizes the size and shape of the components of T n(W ):
higher values of Zn(W ) indicate either a small size or an irregular shape of
typical components. We would like to see the sequence {Zn(W )} decreasing
fast. Ideally, we would like to have

(3) Zn(W ) ≤ αnZ0(W ) + β

for some constants α ∈ (0, 1) and β > 0. That would mean that Zn(W )
essentially decreases exponentially fast. Such a claim would be a precise
version of ‘exponential growth of unstable manifolds’.

Now consider the action of Tm on a small unstable manifold W : it ex-
pands W by a factor ≥ Λm in all directions, where Λ > 1 is the hyperbolicity
constant. In addition, singularities of Tm cut Tm(W ) into, say, Km pieces.
It is easy to see (cf. [C99a]) that

Zm(W ) ≤ Λ−mKmZ0(W ).

Thus it is important that
Km < Λm,

at least for some m. Such inequalities are called complexity bounds, they
describe the complexity of singularities in the system. If we have a complexity
bound Km < Λm for some m ≥ 1, then

Zm(W ) ≤ α Z0(W ) for α = Λ−mKm < 1.

In addition, we may have to (artificially) divide Tm(W ) into smaller pieces
(for using induction), which increases Zm(W ) by a constant, so we get

Zm(W ) ≤ α Z0(W ) + β

Then, inductively the sequence {Zn(W )} will decrease exponentially fast as
n growth. This is one (simple) version of the growth lemma.

One-step expansion estimate. Unfortunately, things may get worse.
In many hyperbolic systems, such as billiards, an unstable manifold can be
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cut into countably many pieces by a single iteration of T . We examine this
situation for 2D maps, where W is just a curve.

Let W be an unstable curve, divided by singularities of T into pieces
W = ∪iWi, which are then mapped by T into unstable curves Vi = T (Wi).
If we ignore distortions (to simplify the analysis), then each Wi is expanded
by a factor Λi > 1, so that |Vi| = Λi|Wi| for each i ≥ 1. The ε-neighborhood
of the endpoints of Vi is mapped by T−1 back onto the Λ−1ε-neighborhood
of the endpoints of Wi, thus in the previous terms we have

m
(
dist

(
T (x), ∂T (W )

)
< ε

)
'

∑
i

2Λ−1
i ε,

where m denotes the Lebesgue measure on the curve W . On the other hand,

m
(
dist

(
x, ∂W

)
< ε

)
' 2ε.

Thus Z1(W ) < Z0(W ) if and only if∑
i

Λ−1
i < 1.

Let us assume that for all sufficiently short unstable curves

(4)
∑

i

Λ−1
i < 1− γ

for some (small) constant γ > 0. This assumption guarantees exponential
growth of unstable curves under T , because it implies (3), see [CZ05].

The condition (4) holds for many planar billiards, including Sinai’s dis-
persing billiards (with finite and infinite horizon), see [CZ05, CM06]. We call
it a one-step expansion estimate. We will discuss its further implications next.

Linear tail bounds. The condition (4) guarantees that for any short
unstable curve W its images will become long, on the average, after n ∼
− log |W | iterations of T . That is,

Zn(W ) ≤ Const ∀n ≥ Const ·
∣∣log |W |

∣∣.
This is yet another version of the growth lemma. The condition Zn(W ) <
Const means that the ε-neighborhood of the endpoints of the components of
T n(W ) has measure O(ε).
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More generally, if we pick a point x ∈ X at random with respect to
the SRB measure µ, then it lies in the ε-neighborhood of an endpoint of its
unstable manifold W u(x) with probability O(ε), i.e.

(5) µ
(
x : dist(x, ∂W u(x)) < ε

)
< Cε.

The same, of course, remains true for stable manifolds W s(x). We call (5) a
linear tail bound for stable and unstable manifolds.

The linear tail bound also holds in the following ‘local’ sense: given an
unstable curve W , which is long enough (say, of length one), pick a point
x ∈ W with respect to the Lebesgue measure ν on W ; then x lies in the
ε-neighborhood of an endpoint of its stable manifold W s(x) with probability
O(ε), i.e.

(6) ν
(
x : dist(x, ∂W s(x)) < ε

)
< Cε.

This follows from the growth lemmas, see [CM06, Chapter 5].
The linear tail bounds (5)–(6), i.e. in both local and global senses, are

used not only in the studies of statistical properties – they are essential in
the classical (Sinai’s) proof of ergodicity for dispersing billiards [S70], which
was later extended to many other maps with singularities.

Power-law tail bounds. On the other hand, the general Katok-Strelcyn
theory [KS86] of hyperbolic maps with singularities assumes that the ε-
neighborhood of singularities of the map T has measure O(εa) for some
a > 0. This is enough for the existence of stable and unstable manifolds
(and their absolute continuity).

In the Katok-Strelcyn theory, if one picks a point x ∈ X at random, then
it lies in the ε-neighborhood of an endpoint of its stable or unstable manifold
with probability O(εa), i.e.

(7) µ
(
x : dist(x, ∂W u(x)) < ε

)
< Cεa.

We call (7) a power-law tail bound for stable and unstable manifolds. It is
more general than the linear tail bound (5), which corresponds to a = 1.

To summarize, most existing techniques for investigating statistical prop-
erties (or proving ergodicity for that matter) are developed for systems with
linear tail bounds (5)–(6). There are no general methods for hyperbolic maps
with power-law tail bounds... We are trying to design one such method next.
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Improved one-step expansion estimate. First let us better under-
stand the linear tail bound (5). We begin with the 2D case, i.e. dim X = 2.
In that case X can be foliated by unstable manifolds (curves) with smooth
conditional densities on them.

More generally, suppose {Wα} is a (countable or uncountable) family of
unstable curves in X with a probability measure ν on that family, which has
smooth conditional density on each Wα. For each x we denote by W (x) = Wα

the curve in that family that contains x.
A general version of the (global) linear tail bound would say that

(8) ν
(
dist(x, ∂W (x)) < ε

)
≤ Cε.

It clearly implies that the total mass of unstable curves shorter than ε in
that family is O(ε), i.e.

(9) ν
(
|Wα| < ε

)
≤ Cε,

but (8) is stronger than (9). The following simple lemma shows what (8)
really is:

Lemma 1. The linear tail bound (8) is equivalent to∫
1

|Wα|
dν < ∞.

Thus, the average reciprocal length of unstable curves (in the given fam-
ily) plays a crucial role. This motivates the following definitions.

For an unstable curve W ⊂ X with a probability measure ν on it, we put

Z(1)(W ) = Z
(1)
0 (W ) = |W |−1

and

Z(1)
n (W ) =

∫
|Vn(x)|−1 dν(x),

where Vn(x) denotes the component of T n(W ) that contains the point T n(x).
Now it is easy to see that our one-step expansion estimate (4) exactly means
that

Z
(1)
1 (W ) < (1− γ) Z

(1)
0 (W )

for some constant γ > 0 for all sufficiently short unstable curves. Inductively
this implies ∀n ≥ 1

Z(1)
n (W ) < αnZ

(1)
0 (W ) + β
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for some constants α < 1 and β > 0, i.e. again we see an exponential decrease
of Z

(1)
n (W ), which translates into an exponential growth of unstable curves.
Now suppose we want to deal with a family of unstable curves with a

power-law tail bound, i.e. satisfying

(10) ν
(
dist(x, ∂W (x)) < ε

)
≤ Cεa

for some 0 < a < 1. It clearly implies that the total mass of unstable curves
shorter than ε is O(εa), i.e.

(11) ν
(
|Wα| < ε

)
≤ Cεa,

but again (10) is stronger than (11). The following simple lemma clarifies
what (10) really means:

Lemma 2. The power-law tail bound (8) means that for any p < a∫
1

|Wα|p
dν < ∞.

(Note: this is not necessarily true for p = a.)

It is now natural to modify our previous definitions of Z’s as

Z(p)(W ) = Z
(p)
0 (W ) = |W |−p

and

Z(p)
n (W ) =

∫
|Vn(x)|−p dν(x).

Then the one-step expansion estimate can be modified as follows:

Z
(p)
1 (W ) < (1− γ) Z

(p)
0 (W )

for some γ > 0 for all sufficiently short unstable curves W . Again, inductively
this implies ∀n ≥ 1

(12) Z(p)
n (W ) < αnZ

(p)
0 (W ) + β

for some constants 0 < α < 1 and β > 0, i.e. again we see an exponential
growth of unstable curves, but in a new sense, with p < 1 instead of p = 1.
This is our new version of the growth lemma.
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Our new one-step expansion estimate can be also stated in terms of ex-
pansion factors Λi, in a way similar to (4): for every short unstable curve
divided by singularities into pieces Wi ⊂ W , which are then expanded under
the map T by factors Λi > 1, we must have

(13)
∑

i

(Vi/W )1−pΛ−1
i < 1− γ

for some small constant γ > 0. Compare this to (4): the new estimate
involves an extra “weight” factor (Vi/W )1−p which may help reduce the sum
of the series when Vi’s are small, i.e. exactly in ‘troublesome’ situations. We
present an example below.

We emphasize that our new one-step expansion estimate (13) and our
new growth lemma (12) are, on the one hand, consistent with power-law tail
bounds (they do not require linear tail bounds), and, on the other hand, they
still can be used to prove the coupling lemma, to construct Young’s tower
with an exponential tail bound, and ultimately – establish exponential decay
of correlations.

In fact we found two classes of hyperbolic billiards to which the standard
one-step expansion estimate (4) does not apply but the new estimate (13)
applies. These are Bunimovich flowers with arcs greater than semicircle and
a modified stadium with a non-C1 boundary (bounded by two parallel line
segments and two arcs shorter than semicircle), see below.

Higher-dimensional one-step expansion estimate. The above the-
ory, including the estimate (13), can be easily generalized to higher-dimensional
maps. We just redefine our Z-values as follows:

Z(p)(W ) = Z
(p)
0 (W ) =

∫
W

|dist(x, ∂W )|−p dν

and

Z(p)
n (W ) =

∫
|dist(T n(x), ∂Vn(x)|−p dν(x),

where Vn(x) denotes the component of T n(W ) containing the point T n(x).
Then the one-step expansion estimate can be modified as follows:

(14) Z
(p)
1 (W ) < (1− γ) Z

(p)
0 (W )

for some γ > 0 for all sufficiently short unstable manifolds W . The rest of
the theory will not change.
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It would be interesting to find examples of multidimensional hyperbolic
billiards where the linear tail bound fails, but the new one-step expansion
estimate (14) holds. It appears that for the 3D Lorentz gas with finite hori-
zon the linear tail bound still holds [BT08], but even in that case it may be
easier to use (14) instead.

Systems with slow mixing rates. Suppose we have a non-uniformly
hyperbolic map (with singularities). This basically means that for any n ≥ 1
and δ > 0

inf
W : |W |<δ

|T n(W )|
|W |

= 1,

where | · | denotes the length of unstable curves and their images. In mechan-
ical models, it is usually easy to find (and ‘localize’) the spots in the phase
space X where the expansion of unstable curves slows down.

As a first example, consider a pinball machine in a box : a billiard in a
rectangle with an immovable round obstacle inside. This is a semi-dispersing
billiard table, known to be hyperbolic and ergodic. It is easy to see that
collisions with the flat sides of the box (‘polygonal part’ of the boundary)
do not cause expansion of unstable curves, while collisions with the round
obstacle (‘dispersing part’ of the boundary) cause strong expansion. Thus
the collision map T : X → X acting on the entire collision space X is non-
uniformly hyperbolic.

Let X∗ be the reduced collision space consisting of collisions with the
round obstacle only, and T∗ : X∗ → X∗ be the induced first return map. In
fact, T∗ is the collision map for the corresponding dispersing billiard on a
torus (i.e., a Lorentz gas) obtained by a standard unfolding procedure, thus
T∗ has exponential mixing rates.

The analysis of the mixing rates of the original map T : X → X proceeds
in three major steps:

Step 1: Construct Young’s tower Ω ⊂ X∗ with exponential tail bounds
for the reduced, strongly hyperbolic map T∗. At this step a crucial part is to
verify that unstable curves grow exponentially fast.

In our example T∗ is the collision map for the Lorentz gas without horizon.
There, the worst case for a short unstable curve W is to be cut into countably
many pieces Wi which are then expanded by factors Λi ∼ i3/2 where i ≥ i0,
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and i0 depends on |W | so that i0 →∞ as |W | → 0. Thus we have∑
ı≥i0

Λ−1
i =

∑
ı≥i0

i−3/2 ∼ i
−1/2
0

and for sufficiently short unstable curves i
−1/2
0 � 1, and we obtain our one-

step expansion estimate (4).

Step 2: Find a ‘rough’ tail bound for the returns to Ω under the original
map T . Points x ∈ Ω return to Ω slower under T than under T∗ because
they spend some extra time outside X∗.

First we need to find a tail bound for the return times to X∗, which is not
hard as it does not involve the tower Ω. Let S(x) for x ∈ X∗ be the return
time to X∗. For the Lorentz gas example,

(15) µ(S = k) ∼ k−3, hence µ(S > k) ∼ k−2.

Now suppose for x ∈ Ω we have R(x) > n, i.e. its trajectory fails to re-
turn to Ω within n iterations of T . Let m denote the number of times its
trajectory visits X∗ during the first n iterations (of course, 0 ≤ m ≤ n).
Let L1, . . . , Lm+1 denote the intervals between successive returns to X∗ (of
course,

∑
Li = n), and let Lmax = max{L1, . . . , Lm+1} denote the maximal

interval between the returns to X∗.
Now we estimate the measure of such points x. From the exponential

tail bound for the map T∗ we have µ(such x’s) ≤ Cθm. On the other hand,
µ(such x’s) ≤ CnL−2

max from the estimate (15) on S.
The worst case scenario is m ∼ log n and Lmax ∼ n/(log n), which readily

gives the following ‘rough’ estimate:

(16) µ(R > n) ∼ C(log n)2/n.

Due to Young’s general result [Y99] the correlations for the map T are
bounded by C(log n)2/n.

But this is only a crude estimate. In the next step we will get rid of the
logarithmic factor.

Step 3: Refine the tail bound (16) and eliminate the logarithmic factor.
The estimate (16) would be sharp only if all the intervals L1, . . . , Lm+1 had
length of the same order as Lmax, i.e. of order n/(log n). This is however very
unlikely due to the following features of the dynamics.
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If a trajectory spends k iterations of T outside X∗, then after its return
to X∗ it will typically spend ∼

√
k iterations outside X∗, then after the next

return ∼ k1/4 iterations, etc. Thus typical points escape from the process of
long returns to X∗ very fast, we call this feature fast escape.

It is now a technical task to estimate the measure of ‘non-typical’ points
that escape slowly, we omit details, see [CZ08, SV08]. This allows us to
eliminate the logarithmic factor:

(17) µ(R > n) ≤ C/n.

Due to Young’s general result [Y99] the correlations for the map T are
bounded by C/n.

Stadium. The next example is the famous Bunimovich stadium – a
billiard table bounded by two semicircles connected by two parallel line seg-
ments. This domain is convex and has a C1 boundary.

There are two types of trajectories here that cause slow expansion in the
unstable direction. One is trajectories bouncing between the parallel sides,
they are similar to those in the previously discussed pinball machine. The
other is trajectories moving slowly (‘sliding’) along a semicircle.

The reduced space X∗ is made by the first collisions with the semicircles;
i.e. we remove from X all the collisions with the parallel sides, and from each
series of successive collisions with one of the two semicircles we remove all
but the very first one. Next we follow the three major steps described above.

At Step 1 we need to verify the one-step expansion estimate (4) for the
return map T : X → X. It may happen now that an unstable curve W
is cut into pieces Wi which are then expanded by factors Λi ∼ i, which is
slower than i3/2 in the previous example. If there were infinitely many such
pieces, the series

∑
Λ−1

i would diverge and the crucial estimate (4) would fail.
Fortunately, the number of pieces is always finite, and a detailed calculation
(see [M04, CZ05]) shows that∑

Λ−1
i ∼ 3

8
log 9 < 1,

which is just enough for (4) to be true. It seemed like a miracle at the time
when the mixing rates for the stadium were derived first by Markarian [M04],
but we know now that the new estimate (13) would work anyway – it is more
flexible and less sensitive to the details of the particular system, see below.
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Step 2 is rather simple and leads to the same ‘rough’ tail bound as in
(16).

The stadium presents a new difficulty at Step 3. Its trajectories escape
from long returns to X∗ slowly. Precisely, if a trajectory spends k = k1 iter-
ations of T outside X∗, then after its return to X∗ it will spend k2 iterations
outside X∗, where k2 is between k1/3 and 3k1 (that is, k2 is of order k1).
The sequence k1, k2, . . . behaves as a Markov chain, with transition probabil-
ities given by πk1k2 ≈ 3k1

8k2
2
, see [BG06]. In order to eliminate the logarithmic

factor we have to carefully analyze that Markov chain and employ the large
deviation theorem [CZ08].

The resulting estimate for the decay of correlations in the stadium is
∼ 1/n. Bálint and Gouëzel [BG06] proved that this estimate is sharp, i.e.
they showed that correlations for some observable do decay as ∼ 1/n. It
seems like similar results could be obtained for the other billiards with slow
mixing rates described here, but this is yet to be done.

The decay rate ∼ 1/n is too slow for the central limit theorem to hold.
In fact Bálint and Gouëzel [BG06] show that for generic observables the clas-
sical CLT fails; instead they prove a non-classical version of the CLT, with
the scaling factor

√
n log n, instead of

√
n. It would be interesting to obtain

similar results for the other billiards with slow mixing rates described here.

Other models. In a similar way, correlations have been estimated for
several more classes of hyperbolic billiards:

• Dispersing tables with cusps (first introduced by Machta [M83]);

• Skewed stadia (or drivebelt regions, aka squashes);

• Flower-like tables.

This was done in [CZ05, CZ08]. Studies of multidimensional dispersing bil-
liards (Lorentz gases with finite horizon) have been conducted by Bálint and
Toth [BT08].

For two particular models we have to use the new estimate (13). These are
Bunimovich flowers with arcs greater than semicircle and a modified stadium
with a non-C1 boundary (bounded by two parallel line segments and two arcs
shorter than semicircle).

In both cases, a short unstable curve W can be cut into infinitely many
pieces Wi which are then expanded by factors Λi ∼ i. Thus the series

∑
Λ−1

i

diverges, hence the standard one-step expansion estimate (4) fails.
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The new estimate (13) holds because Vi ∼ 1/i hence∑
(Vi/W )1−pΛ−1

i ∼
∑

i−2+p < ∞

because p < 1. A more careful calculation shows that the sum of the above
series is � 1 for short enough unstable curves W , which completes the veri-
fication of (13).
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