The geometry of coalescing random walks, the Brownian web distance and KPZ universality

Bálint Vető
Budapest University of Technology and Economics

25th July 2023

Outline

- Introduction
- Random walk web distance
- Brownian web and Brownian web distance
- Main results: properties of Brownian web distance
- Convergence of random walk web distance to Brownian web distance
- KPZ limit

Introduction

joint work with Bálint Virág (arxiv: 2306.09073)

KPZ class models

Motivation: description of surface growth, e.g.

- boundary evolutions
- paper wetting and burning fronts
- bacterial colonies

Kardar-Parisi-Zhang (KPZ) equation, 1986:

$$
\partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left(\partial_{x} h\right)^{2}+\xi
$$

where ξ is 2 D white noise

Universality and scaling

KPZ universality conjecture, 1:2:3 scaling: for a wide class of surface growth models with height function $h(t, x)$,

$$
\frac{h\left(n^{3 / 3} t, n^{2 / 3} x\right)-\mathrm{E}\left(h\left(n t, n^{2 / 3} x\right)\right)}{n^{1 / 3}}
$$

converges as $n \rightarrow \infty$
Directed landscape $\mathcal{L}(x, t ; y, s)$: universal joint scaling limit of the height difference $h\left(n s, n^{2 / 3} y\right)-h\left(n t, n^{2 / 3} x\right)$ (Dauvergne, Ortmann, Virág, 2018)
Other universality classes: e.g.

- Edwards-Wilkinson: 1:2:4 scaling: additive stochastic heat equation
- Brownian castle (Hairer-Cannizzaro, 2022): 1:1:2 scaling: Brownian motion on the Brownian web

Random walk web

- Lattice:
$\left\{(i, n) \in \mathbb{Z}^{2}: i+n\right.$ is even $\}$
with directed lattice edges from (i, n) to ($i+1, n \pm 1$)
- Graph of free edges: one of the outgoing lattice edges everywhere with equal probabilities independently, i.e. coalescing random walks to the right

Random walk web

- Lattice:
$\left\{(i, n) \in \mathbb{Z}^{2}: i+n\right.$ is even $\}$
with directed lattice edges from (i, n) to $(i+1, n \pm 1)$
- Graph of free edges: one of the outgoing lattice edges everywhere with equal probabilities independently, i.e. coalescing random walks to the right
- Edge weights: edges of the graph with weight 0 , other
 lattice edges with weight 1
- Distance $D^{\mathrm{RW}}(i, n ; j, m)$:
weight of the directed path between (i, n) and (j, m) with minimal total weight

Random walk web distance

- Distance $D^{\mathrm{RW}}(i, n ; j, m)$:
weight of the directed path between (i, n) and (j, m) with minimal total weight
- In other words: minimal number of jumps to get from (i, n) to (j,m)

Random walk web distance

- Distance $D^{\mathrm{RW}}(i, n ; j, m)$:
weight of the directed path between (i, n) and (j, m) with minimal total weight
- In other words: minimal number of jumps to get from (i, n) to (j, m)
- Blue, red, green regions: set of starting points with 0,1 and 2 jumps to the purple target point

- Aim: distance function between remote points, scaling, continuum limit

Brownian web and its dual

Brownian web: coalescing Brownian motions starting at all $(t, x) \in \mathbb{R}^{2}$ History:

- Arratia, 1979, unpublished
- Tóth, Werner, 1998, construction, special points, local time of true self-repelling motion
- Fontes, Isopi, Newman, Ravishankar, 2004, topology, „Brownian web"
Dual: coalescing backward Brownian motions
Forward and backward paths do intersect but they do not cross

Special points of the Brownian web

Special points: point of type ($m_{\text {in }}, m_{\text {out }}$) has $m_{\text {in }}$ incoming and $m_{\text {out }}$ outgoing paths

Possible types: $(0,1),(0,2),(0,3)$, $(1,1),(1,2),(2,1)$

Almost all points of \mathbb{R}^{2} are of type $(0,1)$

Characterization of $(1,2)$ points (see
 figure): those hit by a forward and a backward path

Brownian web distance

Brownian web distance $D^{\mathrm{Br}}(t, x ; s, y)$: minimal number of jumps to get from (t, x) to (s, y) using Brownian web paths and with jumps at $(1,2)$ points

Basic properties:

- D^{Br} is integer valued
- D^{Br} is non-symmetric
- $D^{\mathrm{Br}}(t, x ; t, x)=0$
- Triangle inequality:

$$
D^{\mathrm{Br}}(t, x ; s, y) \leq D^{\mathrm{Br}}(t, x ; u, z)+D^{\mathrm{Br}}(u, z ; s, y)
$$

- $D^{\mathrm{Br}}(t, x ; s, y)=\infty$ for a typical (s, y) which is not hit by a Brownian web path

Main results

0:1:2 scale invariance (c.f. 1:2:3 scaling in the KPZ class):

Proposition

For all $\alpha>0$, it holds that

$$
D^{\mathrm{Br}}\left(\alpha^{2} t, \alpha x ; \alpha^{2} s, \alpha y\right) \stackrel{\mathrm{d}}{=} D^{\mathrm{Br}}(t, x ; s, y)
$$

Convergence:
Theorem (B. V., B. Virág, 2023)

- The Brownian web distance as a function $D^{\mathrm{Br}}: \mathbb{R}^{4} \rightarrow \mathbb{R} \cup\{\infty\}$ is almost surely lower semicontinuous.
- There is a coupling of the underlying random walk webs and Brownian web such that

$$
D^{\mathrm{RW}}\left(n t, n^{1 / 2} x ; n s, n^{1 / 2} y\right) \rightarrow D^{\mathrm{Br}}(t, x ; s, y)
$$

as $n \rightarrow \infty$ almost surely in the epigraph sense.

KPZ limit after a shear mapping

Brownian web distance:
Theorem (B. V., B. Virág, 2023)
As $m \rightarrow \infty$, we have that

$$
\frac{t m+2 z m^{2 / 3}-D^{\mathrm{Br}}\left(-t m, 2 t m+2 z m^{2 / 3} ; 0, \mathbb{R}_{-}\right)}{m^{1 / 3}} \rightarrow \mathcal{L}(0,0 ; z, t)
$$

where \mathcal{L} is the directed landscape.
Random walk web distance:
Theorem (B. V., B. Virág, 2023)
For any $\eta \in(0,1)$, we have that

$$
\frac{c_{1}(\eta) n-c_{2}(\eta) z n^{2 / 3}-D^{\mathrm{RW}}\left(-n, \eta n+c_{3}(\eta) z n^{2 / 3} ; 0, \mathbb{Z}_{-}\right)}{c_{4}(\eta) n^{1 / 3}} \rightarrow \mathcal{L}(0,0 ; z, 1)
$$

as $n \rightarrow \infty$ where $\mathcal{L}(0,0 ; z, 1)=\mathcal{A}(z)-z^{2}$ is the parabolic Airy process.

Horizontal scaling of random walk web distance

Theorem (B. V., B. Virág, 2023)
There is a $c>1$ such that

$$
\mathrm{P}\left(1 / c \leq \frac{D^{\mathrm{RW}}(0,0 ; n, 0)}{\log n} \leq c\right) \rightarrow 1
$$

as $n \rightarrow \infty$.

Convergence of random walk web distance: regions Blue, red, green regions: set of starting points with 0,1 and 2 jumps to the target point on the right

Let $r_{k}^{ \pm}$and $\rho_{k}^{ \pm}$be the boundaries of the set of starting points with at most k jumps for D^{RW} and D^{Br}.

Evolution of r_{k}^{+}given $r_{0}^{+}, \ldots, r_{k-1}^{+}$: random walk reflected off r_{k-1}^{+}in the discrete Skorokhod sense

Evolution of ρ_{k}^{+}given $\rho_{0}^{+}, \ldots, \rho_{k-1}^{+}$: Brownian motion reflected off ρ_{k-1}^{+}in the Skorokhod sense

Convergence of region boundaries

Let $\widehat{Y}_{(j, m)}(i)$ for $i=j, j-1, \ldots$ denote the backward random walk in the dual random walk web starting at (j, m).
Let $\widehat{B}_{(s, y)}(t)$ for $t \leq s$ denote the backward Brownian motion in the dual Brownian web starting at (s, y).
When the targets are $j \times \mathbb{Z}_{-}$and $s \times \mathbb{R}_{-}$, then $r_{0}^{+}=\widehat{Y}_{(j, 0)}$ and $\rho_{0}^{+}=\widehat{B}_{(s, 0)}$. Inductive characterization of region boundaries:

$$
\begin{aligned}
r_{k}^{+}(i) & =\max _{I \in\{i, \ldots, j\}} \widehat{Y}_{\left(I, r_{k-1}(I+1)+1\right)}(i), \\
\rho_{k}^{+}(t) & =\sup _{q \in[t, s]} \widehat{B}_{\left(q, \rho_{k-1}^{+}(q)\right)}(t) .
\end{aligned}
$$

The random walk webs and the Brownian web can be coupled so that any backward random walk path $\widehat{Y}_{\left(1, r_{k-1}(I+1)+1\right)}$ converge almost surely to a backward Brownian path starting at some $\left(q, \rho_{k-1}^{+}(q)\right)$. Hence almost surely $\lim \sup _{n \rightarrow \infty} n^{-1 / 2} r_{k}^{+}(n q) \leq \rho_{k}^{+}(q)$. But $\lim _{n \rightarrow \infty} n^{-1 / 2} r_{k}^{+}(n q)=\rho_{k}^{+}(q)$ in law.

KPZ limit of Brownian web distance after a shear mapping Brownian last passage percolation (BLPP):

$$
L(t, n)=\sup _{0=t_{-1} \leq t_{0} \leq \cdots \leq t_{n}=t} \sum_{i=0}^{n}\left(W_{i}\left(t_{i}\right)-W_{i}\left(t_{i-1}\right)\right)
$$

where $W_{0}, W_{1}, W_{2}, \ldots$ are independent standard Brownian motions.
Recursion gives Skorokhod reflection:

$$
L(t, n)=W_{n}(t)-\inf _{s \in[0, t]}\left(W_{n}(s)-L(t, n-1)\right)
$$

If the target interval is $\{0\} \times \mathbb{R}_{-}$, then for the boundary

$$
\rho_{t n+2 z n^{2 / 3}}(-t) \stackrel{\mathrm{d}}{=} L\left(t, t n+2 z n^{2 / 3}\right) \stackrel{\mathrm{d}}{=} \frac{1}{\sqrt{n}} L\left(t n, t n+2 z n^{2 / 3}\right)
$$

using the Brownian scaling. The fluctuations of BLPP are known to satisfy

$$
\frac{L\left(t n, t n+2 z n^{2 / 3}\right)-2 t n-2 z n^{2 / 3}}{n^{1 / 3}} \rightarrow \mathcal{L}(0,0 ; z, t)
$$

The end

Thank you for your attention!

