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Introduction

joint work with Bálint Virág (arxiv: 2306.09073)

KPZ class models
Motivation: description of surface growth,
e.g.

boundary evolutions
paper wetting and burning fronts
bacterial colonies

Kardar–Parisi–Zhang (KPZ) equation, 1986:

∂th =
1
2
∂2
xh +

1
2
(∂xh)

2 + ξ

where ξ is 2D white noise
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Universality and scaling

KPZ universality conjecture, 1:2:3 scaling: for a wide class of surface
growth models with height function h(t, x),

h(n3/3t, n2/3x)− E(h(nt, n2/3x))

n1/3

converges as n→∞
Directed landscape L(x , t; y , s): universal joint scaling limit of the height
difference h(ns, n2/3y)− h(nt, n2/3x) (Dauvergne, Ortmann, Virág, 2018)

Other universality classes: e.g.
Edwards–Wilkinson: 1:2:4 scaling: additive stochastic heat equation
Brownian castle (Hairer–Cannizzaro, 2022): 1:1:2 scaling: Brownian
motion on the Brownian web
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Random walk web
Lattice:
{(i , n) ∈ Z2 : i + n is even}
with directed lattice edges from
(i , n) to (i + 1, n ± 1)
Graph of free edges: one of the
outgoing lattice edges
everywhere with equal
probabilities independently, i.e.
coalescing random walks to the
right
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Random walk web
Lattice:
{(i , n) ∈ Z2 : i + n is even}
with directed lattice edges from
(i , n) to (i + 1, n ± 1)
Graph of free edges: one of the
outgoing lattice edges
everywhere with equal
probabilities independently, i.e.
coalescing random walks to the
right
Edge weights: edges of the
graph with weight 0, other
lattice edges with weight 1
Distance DRW(i , n; j ,m):
weight of the directed path
between (i , n) and (j ,m) with
minimal total weight
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Random walk web distance

Distance DRW(i , n; j ,m):
weight of the directed path
between (i , n) and (j ,m) with
minimal total weight
In other words: minimal number
of jumps to get from (i , n) to
(j ,m)
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Random walk web distance

Distance DRW(i , n; j ,m):
weight of the directed path
between (i , n) and (j ,m) with
minimal total weight
In other words: minimal number
of jumps to get from (i , n) to
(j ,m)

Blue, red, green regions: set of
starting points with 0, 1 and 2
jumps to the purple target point
Aim: distance function between
remote points, scaling,
continuum limit
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Brownian web and its dual
Brownian web: coalescing Brownian
motions starting at all (t, x) ∈ R2

History:
Arratia, 1979, unpublished
Tóth, Werner, 1998,
construction, special points,
local time of true self-repelling
motion
Fontes, Isopi, Newman,
Ravishankar, 2004, topology,
„Brownian web”

Dual: coalescing backward Brownian
motions
Forward and backward paths do inter-
sect but they do not cross
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Special points of the Brownian web

Special points: point of type
(min,mout) has min incoming and
mout outgoing paths

Possible types: (0, 1), (0, 2), (0, 3),
(1, 1), (1, 2), (2, 1)

Almost all points of R2 are of type
(0, 1)

Characterization of (1, 2) points (see
figure): those hit by a forward and a
backward path
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Brownian web distance

Brownian web distance DBr(t, x ; s, y): minimal number of jumps to get
from (t, x) to (s, y) using Brownian web paths and with jumps at (1, 2)
points

Basic properties:
DBr is integer valued
DBr is non-symmetric
DBr(t, x ; t, x) = 0
Triangle inequality:

DBr(t, x ; s, y) ≤ DBr(t, x ; u, z) + DBr(u, z ; s, y)

DBr(t, x ; s, y) =∞ for a typical (s, y) which is not hit by a Brownian
web path
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Main results
0:1:2 scale invariance (c.f. 1:2:3 scaling in the KPZ class):

Proposition
For all α > 0, it holds that

DBr(α2t, αx ;α2s, αy)
d
= DBr(t, x ; s, y).

Convergence:

Theorem (B. V., B. Virág, 2023)

The Brownian web distance as a function DBr : R4 → R ∪ {∞} is
almost surely lower semicontinuous.
There is a coupling of the underlying random walk webs and Brownian
web such that

DRW(nt, n1/2x ; ns, n1/2y)→ DBr(t, x ; s, y)

as n→∞ almost surely in the epigraph sense.
Bálint Vető (Budapest) Brownian web distance 25th July 2023 12 / 18



KPZ limit after a shear mapping
Brownian web distance:

Theorem (B. V., B. Virág, 2023)
As m→∞, we have that

tm + 2zm2/3 − DBr(−tm, 2tm + 2zm2/3; 0,R−)
m1/3 → L(0, 0; z , t)

where L is the directed landscape.

Random walk web distance:

Theorem (B. V., B. Virág, 2023)
For any η ∈ (0, 1), we have that

c1(η)n − c2(η)zn
2/3 − DRW(−n, ηn + c3(η)zn

2/3; 0,Z−)
c4(η)n1/3 → L(0, 0; z , 1)

as n→∞ where L(0, 0; z , 1) = A(z)− z2 is the parabolic Airy process.
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Horizontal scaling of random walk web distance

Theorem (B. V., B. Virág, 2023)
There is a c > 1 such that

P
(
1/c ≤ DRW(0, 0; n, 0)

log n
≤ c

)
→ 1

as n→∞.
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Convergence of random walk web distance: regions
Blue, red, green regions: set
of starting points with 0, 1 and 2
jumps to the target point on the right

Let r±k and ρ±k be the boundaries
of the set of starting points with at
most k jumps for DRW and DBr.

Evolution of r+k given r+0 , . . . , r
+
k−1:

random walk reflected off r+k−1 in the
discrete Skorokhod sense

Evolution of ρ+k given ρ+0 , . . . , ρ
+
k−1:

Brownian motion reflected off ρ+k−1 in
the Skorokhod sense
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Convergence of region boundaries
Let Ŷ(j ,m)(i) for i = j , j − 1, . . . denote the backward random walk in the
dual random walk web starting at (j ,m).
Let B̂(s,y)(t) for t ≤ s denote the backward Brownian motion in the dual
Brownian web starting at (s, y).

When the targets are j ×Z− and s ×R−, then r+0 = Ŷ(j ,0) and ρ
+
0 = B̂(s,0).

Inductive characterization of region boundaries:

r+k (i) = max
l∈{i ,...,j}

Ŷ(l ,rk−1(l+1)+1)(i),

ρ+k (t) = sup
q∈[t,s]

B̂(q,ρ+k−1(q))
(t).

The random walk webs and the Brownian web can be coupled so that any
backward random walk path Ŷ(l ,rk−1(l+1)+1) converge almost surely to a
backward Brownian path starting at some (q, ρ+k−1(q)).
Hence almost surely lim supn→∞ n−1/2r+k (nq) ≤ ρ+k (q).
But limn→∞ n−1/2r+k (nq) = ρ+k (q) in law.
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KPZ limit of Brownian web distance after a shear mapping
Brownian last passage percolation (BLPP):

L(t, n) = sup
0=t−1≤t0≤···≤tn=t

n∑
i=0

(Wi (ti )−Wi (ti−1))

where W0,W1,W2, . . . are independent standard Brownian motions.

Recursion gives Skorokhod reflection:

L(t, n) = Wn(t)− inf
s∈[0,t]

(Wn(s)− L(t, n − 1)).

If the target interval is {0} × R−, then for the boundary

ρtn+2zn2/3(−t) d
= L(t, tn + 2zn2/3)

d
=

1√
n
L(tn, tn + 2zn2/3)

using the Brownian scaling. The fluctuations of BLPP are known to satisfy

L(tn, tn + 2zn2/3)− 2tn − 2zn2/3

n1/3 → L(0, 0; z , t).
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The end

Thank you for your attention!
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