The geometry of coalescing random walks, the Brownian web distance and KPZ universality

Bálint Vető

Budapest University of Technology and Economics

25th July 2023

Bálint Vető (Budapest)

Brownian web distance

25th July 2023 1 / 18

Outline

- Introduction
- Random walk web distance
- Brownian web and Brownian web distance
- Main results: properties of Brownian web distance
- Convergence of random walk web distance to Brownian web distance
- KPZ limit

Introduction

joint work with Bálint Virág (arxiv: 2306.09073)

KPZ class models

Motivation: description of surface growth, e.g.

- boundary evolutions
- paper wetting and burning fronts
- bacterial colonies

Kardar-Parisi-Zhang (KPZ) equation, 1986:

$$\partial_t h = \frac{1}{2} \partial_x^2 h + \frac{1}{2} (\partial_x h)^2 + \xi$$

where ξ is 2D white noise

Universality and scaling

KPZ universality conjecture, 1:2:3 scaling: for a wide class of surface growth models with height function h(t, x),

$$\frac{h(n^{3/3}t, n^{2/3}x) - \mathsf{E}(h(nt, n^{2/3}x))}{n^{1/3}}$$

converges as $n o \infty$

Directed landscape $\mathcal{L}(x, t; y, s)$: universal joint scaling limit of the height difference $h(ns, n^{2/3}y) - h(nt, n^{2/3}x)$ (Dauvergne, Ortmann, Virág, 2018)

Other universality classes: e.g.

- Edwards-Wilkinson: 1:2:4 scaling: additive stochastic heat equation
- Brownian castle (Hairer–Cannizzaro, 2022): 1:1:2 scaling: Brownian motion on the Brownian web

Random walk web

 $\{(i, n) \in \mathbb{Z}^2 : i + n \text{ is even}\}\$ with directed lattice edges from (i, n) to $(i + 1, n \pm 1)$

 Graph of free edges: one of the outgoing lattice edges everywhere with equal probabilities independently, i.e. coalescing random walks to the right

Random walk web

 $\{(i, n) \in \mathbb{Z}^2 : i + n \text{ is even}\}\$ with directed lattice edges from (i, n) to $(i + 1, n \pm 1)$

- Graph of free edges: one of the outgoing lattice edges everywhere with equal probabilities independently, i.e. coalescing random walks to the right
- Edge weights: edges of the graph with weight 0, other lattice edges with weight 1
- Distance D^{RW}(i, n; j, m): weight of the directed path between (i, n) and (j, m) with minimal total weight

Bálint Vető (Budapest)

25th July 2023 6 / 18

Random walk web distance

- Distance D^{RW}(i, n; j, m): weight of the directed path between (i, n) and (j, m) with minimal total weight
- In other words: minimal number of jumps to get from (i, n) to (j, m)

Random walk web distance

- Distance D^{RW}(i, n; j, m): weight of the directed path between (i, n) and (j, m) with minimal total weight
- In other words: minimal number of jumps to get from (i, n) to (j, m)
- Blue, red, green regions: set of starting points with 0, 1 and 2 jumps to the purple target point
- Aim: distance function between remote points, scaling, continuum limit

Brownian web and its dual

Brownian web: coalescing Brownian motions starting at all $(t, x) \in \mathbb{R}^2$ **History**:

- Arratia, 1979, unpublished
- Tóth, Werner, 1998, construction, special points, local time of true self-repelling motion
- Fontes, Isopi, Newman, Ravishankar, 2004, topology, "Brownian web"

Dual: coalescing backward Brownian motions

Forward and backward paths do intersect but they do not cross

Special points of the Brownian web

Special points: point of type $(m_{\rm in}, m_{\rm out})$ has $m_{\rm in}$ incoming and $m_{\rm out}$ outgoing paths

Possible types: (0,1), (0,2), (0,3), (1,1), (1,2), (2,1)

Almost all points of \mathbb{R}^2 are of type (0,1)

Characterization of (1, 2) points (see figure): those hit by a forward and a backward path

Brownian web distance

Brownian web distance $D^{Br}(t, x; s, y)$: minimal number of jumps to get from (t, x) to (s, y) using Brownian web paths and with jumps at (1, 2) points

Basic properties:

- D^{Br} is integer valued
- D^{Br} is non-symmetric
- $D^{\mathrm{Br}}(t,x;t,x) = 0$
- Triangle inequality:

$$D^{\mathrm{Br}}(t,x;s,y) \leq D^{\mathrm{Br}}(t,x;u,z) + D^{\mathrm{Br}}(u,z;s,y)$$

• $D^{\mathrm{Br}}(t,x;s,y) = \infty$ for a typical (s,y) which is not hit by a Brownian web path

Main results

0:1:2 scale invariance (c.f. 1:2:3 scaling in the KPZ class):

Proposition

For all $\alpha > 0$, it holds that

$$D^{\mathrm{Br}}(\alpha^2 t, \alpha x; \alpha^2 s, \alpha y) \stackrel{\mathrm{d}}{=} D^{\mathrm{Br}}(t, x; s, y).$$

Convergence:

Theorem (B. V., B. Virág, 2023)

- The Brownian web distance as a function $D^{\mathrm{Br}} : \mathbb{R}^4 \to \mathbb{R} \cup \{\infty\}$ is almost surely lower semicontinuous.
- There is a coupling of the underlying random walk webs and Brownian web such that

$$D^{\mathrm{RW}}(nt, n^{1/2}x; ns, n^{1/2}y) \rightarrow D^{\mathrm{Br}}(t, x; s, y)$$

as $n \to \infty$ almost surely in the epigraph sense.

KPZ limit after a shear mapping

Brownian web distance:

Theorem (B. V., B. Virág, 2023)

As $m \to \infty$, we have that

$$\frac{tm + 2zm^{2/3} - D^{\mathrm{Br}}(-tm, 2tm + 2zm^{2/3}; 0, \mathbb{R}_{-})}{m^{1/3}} \to \mathcal{L}(0, 0; z, t)$$

where \mathcal{L} is the directed landscape.

Random walk web distance:

Theorem (B. V., B. Virág, 2023)

For any $\eta \in (0,1)$, we have that

$$\frac{c_1(\eta)n - c_2(\eta)zn^{2/3} - D^{\mathrm{RW}}(-n,\eta n + c_3(\eta)zn^{2/3}; 0, \mathbb{Z}_-)}{c_4(\eta)n^{1/3}} \to \mathcal{L}(0,0;z,1)$$

as $n \to \infty$ where $\mathcal{L}(0,0;z,1) = \mathcal{A}(z) - z^2$ is the parabolic Airy process.

Horizontal scaling of random walk web distance

Theorem (B. V., B. Virág, 2023)

There is a c > 1 such that

$$\mathsf{P}\left(1/c \leq rac{D^{\mathrm{RW}}(0,0;n,0)}{\log n} \leq c
ight)
ightarrow 1$$

as $n \to \infty$.

Bálint Vető (Budapest)

Convergence of random walk web distance: regions

Blue, red, green regions: set of starting points with 0, 1 and 2 jumps to the target point on the right

Let r_k^{\pm} and ρ_k^{\pm} be the boundaries of the set of starting points with at most k jumps for D^{RW} and D^{Br} .

Evolution of r_k^+ given r_0^+, \ldots, r_{k-1}^+ : random walk reflected off r_{k-1}^+ in the discrete Skorokhod sense

Evolution of ρ_k^+ given $\rho_0^+, \ldots, \rho_{k-1}^+$: Brownian motion reflected off ρ_{k-1}^+ in the Skorokhod sense

Convergence of region boundaries

Let $\widehat{Y}_{(j,m)}(i)$ for i = j, j - 1, ... denote the backward random walk in the dual random walk web starting at (j, m).

Let $\widehat{B}_{(s,y)}(t)$ for $t \leq s$ denote the backward Brownian motion in the dual Brownian web starting at (s, y).

When the targets are $j \times \mathbb{Z}_{-}$ and $s \times \mathbb{R}_{-}$, then $r_{0}^{+} = \widehat{Y}_{(j,0)}$ and $\rho_{0}^{+} = \widehat{B}_{(s,0)}$. Inductive characterization of region boundaries:

$$r_{k}^{+}(i) = \max_{l \in \{i, \dots, j\}} \widehat{Y}_{(l, r_{k-1}(l+1)+1)}(i),$$

$$\rho_{k}^{+}(t) = \sup_{q \in [t,s]} \widehat{B}_{(q, \rho_{k-1}^{+}(q))}(t).$$

The random walk webs and the Brownian web can be coupled so that any backward random walk path $\widehat{Y}_{(l,r_{k-1}(l+1)+1)}$ converge almost surely to a backward Brownian path starting at some $(q, \rho_{k-1}^+(q))$. Hence almost surely lim $\sup_{n\to\infty} n^{-1/2}r_k^+(nq) \le \rho_k^+(q)$. But $\lim_{n\to\infty} n^{-1/2}r_k^+(nq) = \rho_k^+(q)$ in law. KPZ limit of Brownian web distance after a shear mapping Brownian last passage percolation (BLPP):

$$L(t, n) = \sup_{0=t_{-1} \le t_0 \le \dots \le t_n = t} \sum_{i=0}^n (W_i(t_i) - W_i(t_{i-1}))$$

where W_0, W_1, W_2, \ldots are independent standard Brownian motions. Recursion gives Skorokhod reflection:

$$L(t, n) = W_n(t) - \inf_{s \in [0, t]} (W_n(s) - L(t, n-1)).$$

If the target interval is $\{0\}\times \mathbb{R}_-,$ then for the boundary

$$\rho_{tn+2zn^{2/3}}(-t) \stackrel{\mathrm{d}}{=} L(t, tn+2zn^{2/3}) \stackrel{\mathrm{d}}{=} \frac{1}{\sqrt{n}} L(tn, tn+2zn^{2/3})$$

using the Brownian scaling. The fluctuations of BLPP are known to satisfy

$$\frac{L(tn, tn + 2zn^{2/3}) - 2tn - 2zn^{2/3}}{n^{1/3}} \to \mathcal{L}(0, 0; z, t).$$

The end

Thank you for your attention!

Bálint Vető (Budapest)

Brownian web distance

25th July 2023 18 / 18