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Introduction
joint work with Partik L. Ferrari (Bonn)

P. L. Ferrari, B. Vető: Upper tail decay of KPZ models with Brownian
initial conditions, Electron. Commun. Probab. 26 (2021), no. 15, 1–14

Motivation: large scale fluctuations of phy-
sical phenomena describing surface growth

crystallization
interface evolution
wetting and burning fronts

KPZ equation (Kardar, Parisi, Zhang, 1986):

∂th =
1
2
∂2
xh +

1
2
(∂xh)

2 + ξ

where ξ is two-dimensional white noise
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Kardar–Parisi–Zhang universality conjecture

Mathematical surface growth models with
smoothing effect
slope dependent growth speed
independent noise in space-time

belong to the Kardar–Parisi–Zhang (KPZ) universality class

Conjectural behaviour: universal limiting fluctuations of the rescaled height

h(Lt, L2/3x)− E(h(Lt, L2/3x))

L1/3

which depend on the initial condition

Conjecture: open in general, partial answers in specific (integrable) models

Typical model: totally asymmetric simple exclusion process (TASEP) or
corner growth model
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TASEP and its height function

particles correspond to
decreasing segments
holes correspond to
increasing segments
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TASEP and its height function
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TASEP results

Time evolution: each particle jumps to the right by one at unit rate subject
to the exclusion rule (jump is suppressed if target position is occupied)

Step initial condition: negative integer positions are occupied

Theorem (Johansson, 2000)
Let h(t, x) denote the height function corresponding to TASEP with step
initial condition. Then

P
(
h(L, 0)− L/2

L1/3 ≥ −s
)
→ FGUE(s)

as L→∞.

Airy2 process: A2(x)− x2 = − limL→∞
h(L,L2/3x)−L/2

L1/3 scaling limit of the
height as a function of the position; the Airy2 process A2(x) is stationary
with FGUE marginal
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Initial conditions
step

h(0, x) = |x |
periodic

h(0, x) =
{

0 for x even
1 for x odd

stacionary

(h(0, x), x ∈ Z)
two-sided RW

Theorem (Corwin, Liu, Wang, 2016)

Let h0(x) = limL→∞
h(0,L2/3x)

L1/3 be the rescaled initial height for TASEP.
Then

P
(
h(L, 0)− L/2

L1/3 ≥ −s
)
→ P

(
max
y∈R

(
A2(y)− y2 − h0(y)

)
≤ s

)
as L→∞.

hstep
0 (x) =

{
0 if x = 0
∞ if x 6= 0

hper
0 (x) = 0, hstat

0 (x) two-sided BM
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The parametric distribution F (σ)

Let σ ≥ 0 be a parameter. Let B(x) denote a standard two-sided Brownian
motion. We assume that for the initial condition of TASEP
h(0,L2/3x)

L1/3 → σB(x) holds as L→∞. Then

P
(
h(L, 0)− L/2

L1/3 ≥ −s
)
→ F (σ)(s)

where F (σ)(s) = P(maxy∈R(A2(y)− y2 +
√
2σB(y)) ≤ s) (see Chhita,

Ferrari, Spohn, 2018). A2(y) and B(y) are independent.
The σ = 0 case is the periodic initial condition, σ = 1 corresponds to the
stationary initial condition.

Theorem (Ferrari, V, 2021, conjecture: Meerson, Schmidt, 2017)
Let σ ≥ 0 be fixed. Then there are positive real constants C1,C2 such that

C1 s
−3/4e

− 4
3

1√
1+3σ4

s3/2

≤ 1− F (σ)(s) ≤ C2 s
3/4 ln(s) e

− 4
3

1√
1+3σ4

s3/2

as s →∞.
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Tail decay of the distribution F (σ)

Idea: write
A2(y)− y2 +

√
2σB(y) =

(
A2(y)− (1− c)y2)+ (√2σB(y)− cy2)

Known asymptotics:

1− FGUE(s) ' e−
4
3 s

3/2

for any c ∈ (0, 3/4), P(maxy∈R(A2(y)− (1− c)y2) > s) ' e−
4
3 s

3/2

for any c ∈ (0, 1) the density of maxy∈R(
√
2σB(y)− cy2) at s is

' e
− 4

3
√

3

√
c

σ2 s3/2

Theorem (Ferrari, V, 2021)
There is a constant C > 0 such that for all c ∈ (0, 1)

1−FGUE(s) ≤ P
(
max
y∈R

(
A2(y)− (1− c)y2) > s

)
≤ C

ln(s/(1− c))

s3/4
√
1− c

e−
4
3 s

3/2

holds as s →∞.
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Tail decay of the distribution F (σ)

Upper bound: for any c ∈ (0, 1)

P
(
max
y∈R

(A2(y)− y2 +
√
2σB(y)) > s

)
≤ P

(
max
y∈R

(
√
2σB(y)− cy2) + max

y∈R
(A2(y)− (1− c)y2) > s

)
'
∫ 1

0
e
− 4

3
√

3

√
c

σ2 (µs)3/2P
(
max
y∈R

(A2(y)− (1− c)y2) > (1− µ)s
)

dµ

'
∫ 1

0
eg(µ)s

3/2
dµ

where g(µ) = − 4
3
√

3

√
c

σ2 µ
3/2 − 4

3(1− µ)
3/2.

The maximum of g(µ) at µ0 = 3σ4

c+3σ4 is

g(µ0) = −4
3

√
c√

c+3σ4 = −4
3

1√
1+3σ4 + C (1− c) +O((1− c)2) as c → 1. By

choosing 1− c = s−3/2, we have g(µ0)s
3/2 = −4

3
1√

1+3σ4 s
3/2 + C + o(1).

Lower bound: same integral with c = 1 for the argmax of
√
2σB(y)− y2
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The end

Thank you for your attention!
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