Tilings of the Aztec diamond on restriced domains

Bálint Vető
Budapest University of Technology and Economics (BME)
\section*{Bernoulli-IMS One World Symposium}
August 2020

Tilings of the Aztec diamond

joint work with Patrik L. Ferrari

Tilings of the Aztec diamond domain: one chosen uniformly from all possible tilings with 1×2 or 2×1 dominos

Introduced as a tiling model by Elkies, Kuperbert, Larsen, Propp in 1992

The Aztec diamond domain

Tilings of the Aztec diamond

joint work with Patrik L. Ferrari

We are interested in the boundary fluctuations of the north polar region.

A sample tiling

Arctic circle theorem

joint work with Patrik L. Ferrari

The north polar region

Polar regions: domains with dominos following a completely regular pattern at the corners

Theorem (Jockush, Propp, Shor, 1998, Arctic circle theorem)

The boundary of the polar region converges to a circle as the size of the domain grows to infinity.

Fluctuations of the boundary

Theorem (Johansson, 2005)

Let $X_{n}(t)$ denote the boundary of the north polar region in the Aztec diamond of size n. Then

$$
\frac{X_{n}\left(n^{2 / 3} t\right)-c_{1} n}{c_{2} n^{1 / 3}} \xlongequal{\mathrm{~d}} \mathcal{A}_{2}(t)-t^{2}
$$

as $n \rightarrow \infty$ where \mathcal{A}_{2} is the Airy ${ }_{2}$ process.
Sample tiling of large size

Tilings of a restricted domain

Sample tiling of the restricted Aztec diamond

Cut off the Aztec diamond with a horizontal line at $c_{1} n+R n^{1 / 3}$.

Pick a uniform tiling of the remaining domain.

Equivalently, condition the tiling to consist of only horizontal tiles above the line.

Let $X_{n}^{R}(t)$ denote the boundary of the north polar region in the restricted model.

Limit of the boundary of the north polar region

Theorem (P. Ferrari, B. V., 2019)

As $n \rightarrow \infty$, we have

$$
\frac{X_{n}^{R}\left(n^{2 / 3} t\right)-c_{1} n}{c_{2} n^{1 / 3}} \longrightarrow \mathcal{A}_{2}^{R}(t)
$$

where $\mathcal{A}_{2}^{R}(t)$ is $\mathcal{A}_{2}(t)-t^{2}$ the Airy ${ }_{2}$ process minus a parabola conditioned on staying below R all the time.

Convergence above is meant in terms of continuum statistics and finite dimensional distributions.

Hard-edge tacnode process

Non-intersecting Brownian paths conditioned to stay below a threshold

The limit process $\mathcal{A}_{2}^{R}(t)$ is the top line of the hard-edge tacnode process.

Theorem (P. Ferrari, B. V., 2017)

There exists a process (hard-edge tacnode process) characterized by an explicit correlation kernel which arises as the limit of non-intersecting Brownian paths conditioned to stay below a constant level.

Proof ideas

Rules to map a tiling to a line ensemble:

We represent the line ensemble as nonintersecting random walks.

Non-intersecting lines corresponding to a tiling

The end

Thank you for your attention!

