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Abstract

Coalescing simple random walks in the plane form an infinite tree. A natural

directed distance on this tree is given by the number of jumps between branches

when one is only allowed to move in one direction. The Brownian web distance is

the scale-invariant limit of this directed metric. It is integer-valued and has scaling

exponents 0 : 1 : 2 as compared to 1 : 2 : 3 in the KPZ world. However, we

show that the shear limit of the Brownian web distance is still given by the Airy

process. We conjecture that our limit theorem can be extended to the full directed

landscape.

1 Introduction

1.1 The discrete web distance

Consider a system of coalescing random walks Y on the even points

Z2
e = {(i, n) ∈ Z2 : i+ n is even} (1.1)

of the planar lattice so that from each (i, n) ∈ Z2
e there are two outgoing directed edges:

to (i + 1, n− 1) and to (i + 1, n + 1). Assign independent random variables (ξ(i,n)) with

P(ξ(i,n) = 1) = P(ξ(i,n) = −1) = 1/2 to the vertices in Z2
e. The random walk web Y is a

family of coalescing random walks starting at each point of Z2
e. For all (i, n) ∈ Z2

e, set

Y(i,n)(i) = n and let

Y(i,n)(j + 1) = Y(i,n)(j) + ξ(j,Y(i,n)(j)) for all j = i, i+ 1, . . . . (1.2)

For any (i, n; j,m) ∈ Z4 we define DRW(i, n; j,m) to be the smallest integer k such

that (j,m) can be reached from (i, n) by following the directed random walk paths in
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the random walk web Y and by performing k jumps between different random walk

paths along all possible directed paths from (i, n) to (j,m) in the graph Z2
e. This defines

a directed metric of positive sign in the sense introduced in [DV21] hence we call the

function DRW as random walk web distance or discrete web distance.

Definition 1.1. For any (i, n; j,m) ∈ Z4 let DRW(i, n; j,m) be the smallest non-negative

integer k such that there are (i1, n1), . . . , (ik, nk) ∈ Z2
e with the following property. There

are random walk paths in Y from (i, n) to (i1, n1), from (il + 1, n1− ξ(il,nl)) to (il+1, nl+1)

for l = 1, . . . , k − 1 and from (ik + 1, nk − ξ(ik,nk)) to (j,m). We set DRW(i, n; j,m) =∞
if there is no such k.

For the function DRW it holds that DRW(i, n; i, n) = 0 for all (i, n) ∈ Z2
e and it satisfies

the triangle inequality: for all (i, n), (k, l), (j,m) ∈ Z2
e

DRW(i, n; j,m) ≤ DRW(i, n; k, l) +DRW(k, l; j,m) (1.3)

holds. Hence DRW is a directed metric of positive sign on Z2
e according to [DV21]. We

mention that DRW(i, n; j,m) can alternatively be defined as a first passage time between

(i, n) and (j,m) where the passage time of an edge is 0 if it is used by some random walk

in Y , and 1 otherwise.

The paths of coalescing random walks in Y form a subset of the geodesics of this first

passage percolation model and those of the discrete web distance DRW.

1.2 The Brownian web distance

As the system of coalescing random walks converge to their Brownian counterparts, the

discrete web distance also has a limit. It turns out that the limiting object can be defined

based on the Brownian web and its dual hence we call it the Brownian web distance.

The Brownian web consists of independent coalescing Brownian motions starting at

each point of the space-time R2. Based on work of Arratia [Arr81], the Brownian web was

first rigorously constructed by Tóth and Werner [TW98]. In their work, the Brownian web

it describes the local time profile for the true self-repelling motion. The term Brownian

web first appeared in [FINR04].

The Brownian web distance can be introduced as an integer valued function as follows.

Definition 1.2. For any (t, x; s, y) ∈ R4 let DBr(t, x; s, y) denote the infimum of those

non-negative integers k for which there exist points (t1, x1), . . . , (tk, xk) ∈ R2 such that

t < t1 < · · · < tk < s and there exists a continuous path π : [t, s] → R so that π

restricted to the intervals [t, t1], [t1, t2], . . . , [tk−1, tk], [tk, s] coincides with trajectories in

the Brownian web B. The infimum is equal to +∞ if there is no such k ∈ N.

In Definition 1.2 we mean that a continuous path π : [t, s] → R restricted to an

interval [t0, s0] ⊂ [t, x] coincides with a trajectory in the Brownian web B if π agrees with

one of the outgoing paths starting at (t0, π(t0)) and that they are equal up to time s0.

We explain some properties of the Brownian web distance which are investigated in

this paper. The scale invariance with exponents 0 : 1 : 2 is an immediate consequence

of Brownian scaling. The value of the exponents is in contrast with the KPZ scaling

exponents 1 : 2 : 3, see for example section 2.1 in [Gan21].
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Proposition 1.3. For any α > 0, we have the equality in distribution(
DBr(α2t, αx;α2s, αy), (t, x; s, y) ∈ R4

) d
=
(
DBr(t, x; s, y), (t, x; s, y) ∈ R4

)
. (1.4)

A model related to the Brownian web distance is the Brownian castle which arises

as the scaling limit of the infinite temperature version of the ballistic deposition model.

It was introduced in [CH23] as a scale-invariant Markov process with scaling exponents

1 : 1 : 2 which is different from the one in the Edwards–Wilkinson class as well as

from the KPZ class. The Brownian castle is constructed based on the Brownian web

and its dual in the following way. To each segment of path in the dual Brownian web

a centered Gaussian random variable is associated with variance equal to the length of

the corresponding time interval and independently for disjoint paths. Then the value of

the process at a space-time point is the sum of the Gaussian variables along the dual

Brownian web path started from the point.

As one may expect the value of the Brownian web distance DBr(t, x; s, y) can change

dramatically by a small perturbation of the starting point (t, x) or by that of the endpoint

(s, y). As we shall see from the description given in Subsection 3.1 the Brownian web

distance is more sensitive to the changes of the endpoint. Hence the Brownian web

distance is not a continuous function of its variables. However the following continuity

still holds.

Theorem 1.4. On an event of probability one the mapping (t, x, s, y) 7→ DBr(t, x; s, y) is

lower semicontinuous.

As a consequence, the Brownian web distance DBr is a random variable with values in

the space of lower semicontinuous functions on R4. Lower semicontinuity of functions is

equivalent with having a closed epigraph. The natural metric is a partially compactified

version of the Hausdorff distance between the epigraphs of the functions where the range

of the functions is mapped to a compact interval. Then the space of lower semicontinuous

functions becomes a separable metric space.

For an integer n and (t, x, s, y) ∈ R4 we define the rescaled discrete web distance as

DRW
n (t, x; s, y) =

{
DRW(nt, n1/2x;ns, n1/2y), if (nt, n1/2x, ns, n1/2y) ∈ Z4,

∞, otherwise.
(1.5)

We prove the convergence of the rescaled discrete web distance to the Brownian web

distance in the epigraph sense which we define below. Let f : R4 → R = R ∪ {∞} be a

lower semicontinuous function. The epigraph of f is the set

ef = {(x, y) ∈ R4 × R : y ≥ f(x)} (1.6)

which is closed by the lower semicontinuity of f . The epigraph of lower semicontinuous

functions are elements of the space E∗, the set of all closed subsets Γ ⊂ R4×R such that

Γ∩ ({x}×R) 6= ∅ for all x ∈ R4. We equip E∗ with the following version of the Hausdorff

topology. Consider the map E : R4 × R→ R4 × [−1, 1] given by

E(r, s) =

(
r,
|u− v|e−|r|s

1 + |s|

)
(1.7)
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Figure 1: Boundaries of left disks with radii 0, 1 and 2 for random walk and Brownian

web distance. The centers of nontrivial left Brownian web disks are atypical points.

for any (r, s) ∈ R4 × R with r = (u, v) ∈ R4 with the convention E(r,±∞) = (r,±|u −
v|e−|r|). For two elements e1, e2 ∈ E∗ we define their distance d∗(e1, e2) to be the Hausdorff

distance of the images E(e1) and E(e2). The space (E∗, d) is compact by Lemma 7.1

of [DV21].

Theorem 1.5. There is a coupling of the Brownian web B and the sequence Yn of random

walk webs such that the epigraphs of the lower semicontinuous functions DRW
n on R4

defined in terms of Yn converge to the epigraph of DBr, that is, eDRW
n → eDBr in E∗

almost surely as n→∞.

The proof Theorem 1.5 is based on understanding the boundaries of regions that are

distance at most k from a spatial half line. These are closely related to boundaries of

disks, see Figure 1.

1.3 KPZ universality

Even though the Brownian web distance is scale-invariant, in certain directions it still

exhibits KPZ universality. This can be described in terms of the directed landscape.

First, consider independent two-sided standard Brownian motions Wi for i ∈ Z, and the

directed metric on R× Z given by Brownian last passage percolation

L(s,m; t, n) = max
s=tm−1≤tm≤···≤tn=t

n∑
i=m

(Wi(ti)−Wi(ti−1)) (1.8)

whenever s ≤ t,m ≤ n, and L = −∞ elsewhere. It was shown in [DOV23] that Brownian

last passage percolation has a distributional scaling limit, which can be taken to be the

definition of the directed landscape

n1/6
(
L(s+ 2xn1/3, bsnc; t+ 2yn1/3, btnc)− 2(t− s)n1/2 − 2(y − x)n1/6

)
→ L(x, s; y, t)

(1.9)

as a function of (x, s, y, t) ∈ R4, in the topology generated by uniform convergence on

compact subsets with s < t. The directed landscape has been shown to be the scaling

limit of several last passage percolation models, as well as the KPZ equation, see [DV21,

QS23,Vir20,Wu23].
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The function x 7→ L(0, 0;x, 1) + x2 is called the stationary Airy process, first intro-

duced in [PS02] as the scaling limit of the interface in the polynuclear growth model. For

s < t the real random variable L(x, s; y, t) + (x− y)2/(t− s) has GUE Tracy–Widom law

scaled by (t− s)1/3.

We prove that the shear limit of the Brownian web distance to a half-line in the first

pair of variables is given in terms of the directed landscape.

Theorem 1.6. As m→∞, the Brownian web distance after a shear mapping satisfies

tm2 + 2zm4/3 −DBr(−t, 2tm+ 2zm1/3; 0,R−)

m2/3
→ L(0, 0; z, t) (1.10)

in law with respect to the topology of uniform convergence on compact sets for (z, t) ∈
R× (0,∞).

Note that by the 0 : 1 : 2 scale invariance, as a process in z, t,

DBr(−t, 2tm+ 2zm1/3; 0,R−)
d
= DBr(−tm2, 2tm2 + 2zm4/3; 0,R−). (1.11)

Thus Theorem 1.6 also gives the more customary scaling limit in the direction (−1, 2)

with the usual scaling exponents. Note also that all directions (−1, η) when η 6= 0 are

equivalent by Brownian scaling.

In the t = 1 case the limit in (1.10) is the parabolic Airy process, A(y) = L(0, 0; 1, y).

We expect that the Airy scaling limit holds in the second space variable as well and the

joint limit should be the Airy sheet, S(x, y) = L(0, x; 1, y).

Conjecture 1.7. The rescaled Brownian web distance has Airy fluctuations in the other

space variable as well, that is,

m2 − 2ym4/3 −DBr(−1, 2m; 0, (−∞, 2ym1/3])

m2/3
→ A(y) (1.12)

as m→∞.

Conjecture 1.8. The fluctuations of the rescaled Brownian web distance are given by

the Airy sheet S, that is

m2 + 2(z − y)m4/3 −DBr(−1, 2m+ 2zm1/3; 0, (−∞, 2ym1/3])

m2/3
→ S(y, z) (1.13)

as m→∞.

We expect that if we replace the half-line (−∞, 2ym1/3] by its endpoint 2ym1/3 in

(1.13), the conjecture holds in the sense of hypograph convergence. In our scaling, the

half-line corresponds to an increasingly steeper half-wedge, and so it converges to a narrow

wedge initial condition.

The next results give information about the limiting fluctuations of the random walk

web distance. In any direction different from horizontal, the random walk web distance

to a vertical half-line has Airy fluctuations.

5



Theorem 1.9. For any η ∈ (0, 1),

(1− η2)1/6

(η/2)2/3
n−1/3

(
1−

√
1− η2

2
n− η1/3(1− η2)1/6

21/3
zn2/3

−DRW(0, 0;n, (−∞,−ηn− 22/3η1/3(1− η2)2/3zn2/3))

)
→ A(z) (1.14)

as n→∞ uniformly in t on compact intervals.

The main term (1−
√

1− η2)n/2 in Theorem 1.9 gives a description of the asymptotic

shape of disks in DRW, see Figure 2. There is not conceptual difficulty in extending

Theorem 1.9 to two-parameter convergence as in Theorem 1.6. However, in [DV21] only

hypograph convergence was shown for the Seppäläinien–Johansson model. The required

uniform convergence extension is straightforward but too technical for the present paper.

Figure 2: The asymptotic disk t−
√
t2 − x2 ≤ 2 for the shift term in Theorem 1.9

The case of horizontal direction is covered by Theorem 1.5. The random walk web

distance of two points along the same horizontal line is surprisingly completely different.

We prove logarithmic upper and lower bounds on the horizontal distance and we expect

it to satisfy a central limit theorem with normal fluctuations.

Theorem 1.10. For some c > 1,

lim
n→∞

P

(
1/c ≤ DRW(0, 0;n, 0)

log n
≤ c

)
= 1. (1.15)

The rest of the paper is organized as follows. We define the Brownian web in the

appropriate metric space with the corresponding topology in Section 2 and we describe

some properties of the Brownian web in particular the convergence of the discrete web to

the Brownian web in Theorem 2.2. Section 3 contains the most important properties we

prove about the Brownian web distance which are used for the proof of our main results.

We prove Theorem 1.5 about the convergence of discrete web distance to Brownian web

distance in Section 4. Theorem 1.6 about the shear limit of Brownian distance and

Theorem 1.9 on the Tracy–Widom fluctuations of the random walk web distance are

proved in Section 5, Theorem 1.10 about the fluctuations in the horizontal direction is

shown in Section 6. The proofs of continuity properties of Brownian web distance are

postponed to Section 7.
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2 The Brownian web and its dual

The Brownian web distance is constructed based on the Brownian web and its dual,

which we introduce next. The most natural construction of the Brownian web is based

on Theorem 2.1 below which can be found as Theorem 2.1 in [FINR04] explicitly and it

follows from the proof of Theorem 2.1 in [TW98].

We first introduce the metric spaces which are used in the definition of the Brownian

web according to [FINR04]. By writing R = R ∪ {−∞,∞}, let Φ : R2 → [−1, 1]2 be

defined as

Φ(t, x) =

(
tanh(t),

tanh(x)

1 + |t|

)
(2.1)

and let ρ be a metric which naturally compactifies R2
given by

ρ((t1, x1), (t2, x2)) = ‖Φ(t1, x1)− Φ(t2, x2)‖1. (2.2)

Then (R2
, ρ) is a compact metric space.

For any t0 ∈ R, let C[t0] be the set of functions f : [t0,∞]→ R for which Φ2(t, f(t))

is continuous. We let

Π =
⋃
t0∈R

{t0} × C[t0] (2.3)

denote the set of paths along with their starting points. For a (t0, f) ∈ Π let f̂ be the

extension of f to R by letting it equal to the constant f(t0) on [−∞, t0]. We define the

distance d on Π by

d((t1, f1), (t2, f2)) = |Φ1(t1, f1(t1))− Φ1(t2, f2(t2))| ∨ sup
t∈R

∣∣∣Φ2(t, f̂1(t))− Φ2(t, f̂2(t))
∣∣∣ .
(2.4)

With this metric, (Π, d) is a complete separable metric space.

Further let (H, dH) denote the metric space which consists of compact collections of

paths in (Π, d) with the Hausdorff metric

dH(K1, K2) = sup
k1∈K1

inf
k2∈K2

d(k1, k2) ∨ sup
k2∈K2

inf
k1∈K1

d(k1, k2). (2.5)

The space (H, dH) is also a complete separable metric space. Let FH be the Borel σ-

algebra generated by the metric dH .

The Brownian web is defined as a random variable taking values in (H,FH).

Theorem 2.1. The Brownian web B is an (H,FH)-valued random variable whose dis-

tribution is uniquely determined by the properties below.

1. For any deterministic point (t, x) ∈ R2, there is almost surely a unique path B(t,x)

starting at (t, x).

2. For any deterministic n and (t1, x1), . . . , (tn, xn) ∈ R2, the joint distribution of

B(t1,x1), . . . , B(tn,xn) is the same as that of coalescing Brownian motions starting at

(t1, x1), . . . , (tn, xn).
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3. For any deterministic countable dense set D in R2, the closure of {B(t,x), (t, x) ∈ D}
in (H, dH) is equal to B almost surely.

Then the Brownian web is constructed as follows. We fix a countable dense subset

D of R2 as in the third property in Theorem 2.1 and we enumerate the points of D as

zi = (ti, xi) for i = 1, 2, . . . . We sample Brownian motions Bzi starting from the points zi
for each i inductively so that they are independent until they hit one of the trajectories

sampled so far and they merge with the trajectory they first hit. More precisely with

an i.i.d. sequence of Brownian motions (B̃i(t), t ≥ 0)∞i=1 and for all i = 1, 2, . . . we let

Bzi(t) = xi + B̃i(t− ti) for t ∈ [ti, τi) where

τi = inf{t ≥ ti : ∃j ∈ {1, 2, . . . , i− 1} : xi + B̃i(t− ti) = Bzj(t)}. (2.6)

If ι(i) = j ∈ {1, 2, . . . , i− 1} as above in (2.6), that is, for which xi + B̃i(t− ti) = Bzj(t),

then we define Bzi(t) = Bzι(i)(t) for t ≥ τi. Note that τ1 =∞ but τi is finite almost surely

for i ≥ 2. The union of the paths (Bzi)i for zi ∈ D excluding the starting points zi is

the skeleton of the Brownian web. Once the skeleton is sampled, the Brownian web B is

determined uniquely by Theorem 2.1. Equivalently the Brownian web B is the closure of

its skeleton in the metric space (H, dH). For any point (t, x) ∈ R2, let B(t,x) denote the

unique Brownian path started from (t, x) in the Brownian web.

The dual of the Brownian web consists of coalescing Brownian paths running back-

wards in time and it is called the backward (dual) Brownian web. It can be constructed

based on the same countable dense subset D of R2 as follows. The skeleton of the back-

ward Brownian web from each point of D is the almost surely unique continuous curve

going backwards in time which does not cross the forward lines. The backward Brownian

web B̂ is the closure of this set of paths in the metric space of backward paths (Ĥ, dH)

with the same dH as in (2.5). By Theorem 2.3 in [TW98], the backward Brownian web

has the same distribution as the time-reversed trajectories of the forward web.

Due to Theorem 2.1 for any deterministic (t, x) ∈ R2, there is almost surely a unique

forward path B(t,x) in B starting at (t, x) and a unique backward path B̂(t,x) in B̂. The

Brownian web and its dual however has random exceptional points where more than

one path are passing through or starting from. They are characterized by their types as

follows.

Any two paths b, b′ ∈ B are said to be equivalent paths entering the point (t, x) if

b|[t−ε,t] = b′|[t−ε,t] for some ε > 0. The number of equivalence classes defines min(t, x).

Also mout(t, x) can be defined similarly as the number of equivalence classes of outgoing

paths. Then the pair (min(t, x),mout(t, x)) is the type of the point (t, x). By Proposition

2.4 in [TW98], almost surely all points of R2 have one of the following six types: (0, 1),

(0, 2), (0, 3), (1, 1), (1, 2), (2, 1). For topological reasons if a point has type (min,mout)

in the forward Brownian web B, then its type in the backward web B̂ is (m̂in, m̂out) =

(mout − 1,min + 1).

The (1, 2) points have a special importance in the construction of the Brownian web

distance. These points can be characterized as follows. A point is of type (1, 2) if and

only if both a forward and a backward path pass through it. The unique incoming path

in a (1, 2) point (t, x) continues along exactly one of the two outgoing paths which is
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B(t,x). Let us introduce the notation B′(t,x) for the other outgoing path starting at the

(1, 2) point (t, x). It is also referred to as the newly born path at (t, x) in the literature,

see e.g. [NRS10]. Let B(t,x)+ and B(t,x)− denote the highest and lowest outgoing paths

starting at (t, x) which coincide with B(t,x) for almost all points (t, x). The backward

paths B̂(t,x)± are defined similarly.

Donsker’s invariance principle implies the convergence of the random walk web to

the Brownian web for any finite collection of paths. The convergence extends to the full

web and its dual as follows. First we introduce the dual backward system of coalescing

random walks Ŷ on the dual lattice

Z2
o = {(i, n) ∈ Z2 : i+ n is odd}. (2.7)

For any (i, n) ∈ Z2
o a path starts at Ŷ(i,n)(i) = n and the paths evolve as

Ŷ(i,n)(j − 1) = Ŷ(i,n)(j)− ξ(j−1,Ŷ(i,n)(j))
(2.8)

for all j = i, i−1, . . . using the same random variables ξ(i,n) as in (1.2). Let Y (n) denote the

rescaled random walk web which is defined as follows. For all t, x with (nt, n1/2x) ∈ Z2
e we

let Y
(n)

(t,x)(s) = n−1/2Y(nt,n1/2x)(ns) if ns ∈ Z and we define Y
(n)

(t,x)(s) by linear interpolation

between these values which yields a continuous function for all s ≥ t. Let Ŷ (n) be the

rescaled backward random walk web defined similarly.

Theorem 2.2. The pair (B, B̂) of forward and backward Brownian webs together with

the rescaled forward and backward random walk webs (Y (n), Ŷ (n)) can be realized on the

same probability space in a way that

(Y (n), Ŷ (n))→ (B, B̂) (2.9)

almost surely in (H, dH)× (Ĥ, dH).

The convergence in distribution in (2.9) is the b = 0 special case of Theorem 5.4

in [SS08]. Since (H, dH) and (Ĥ, dH) are a separable metric spaces Skorokhod’s represen-

tation theorem implies the existence of the coupling and the almost sure convergence in

Theorem 2.2.

3 Properties of Brownian web distance

3.1 Left neighborhoods of an interval

Proposition 3.3 below shows that DBr(t, x; s, y) = ∞ for any (t, x; s, y) ∈ R4 for which

(s, y) is not hit by a Brownian path in the Brownian web B, that is, for almost all (s, y).

Hence we define distances to intervals as follows. Let I ⊂ R be a possibly infinite interval.

For s ∈ R let

DBr(t, x; s, I) = inf
y∈I

DBr(t, x; s, y), Qk(s, I) = {(t, x) : DBr(t, x; s, I) ≤ k}. (3.1)
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These regions are connected subsets of R2 satisfying Qk ⊆ Qk+1. Proposition 3.2 below

describes the boundaries of the regions Qk.

We define below the backward paths ρ±k which according to Proposition 3.2 turn out

to be the boundary curves for the regions Qk. Let ρ+
0 (t) = B̂(s,v)(t) and ρ−0 (t) = B̂(s,u)(t)

for t ≤ s, that is, the backward Brownian web trajectories starting at time s at the two

endpoints of the interval I. Let τ0 = sup{t ≤ s : ρ+
0 (t) = ρ−0 (t)} denote the time when

the two backward trajectories meet. Given the paths ρ±k (t) for t ≤ s and their time of

collision τk, we define

ρ+
k+1(t) = sup

r∈[max(t,τk),s]

B̂(r,ρ+k (r))+, ρ−k+1(t) = inf
r∈[max(t,τk),s]

B̂(r,ρ−k (r))− (3.2)

for all t ≤ s and we let τk+1 = sup{t ≤ s : ρ+
k+1(t) = ρ−k+1(t)} be their time of collision.

The next results show that the curves ρ±k are the boundaries for Qk and that they

arise as Brownian paths reflected off one another in the Skorokhod sense. The proof of

these results are postponed to Subsection 7.1.

Proposition 3.1. Let I = [u, v] ⊂ R and s ∈ R be fixed. Assume that for all j =

0, 1, . . . , k the curves ρ±j (t) are given on t ∈ [τj, s]. Conditionally given these curves the

distributions of ρ±k+1(t) are reflected backward Brownian paths off ρ±k (t) in the Skorokhod

sense on t ∈ [τk, s] and independent Brownian motions until collision at τk+1 on t ∈
[τk+1, τk]. In particular, ρ±k+1(t) are continuous.

Proposition 3.2. Let I = [u, v] ⊂ R and s ∈ R be fixed. The union of the interval s× I
and the curves ρ±k (t) on t ∈ [τk, s] is the boundary of the region Qk given in (3.1).

3.2 Continuity properties of the Brownian web distance

We start this subsection with the characterization that the Brownian web distance be-

tween two space-time points is finite if and only if the target is on the skeleton of the

Brownian web. The statement is proved in Subsection 7.4

Proposition 3.3. Let (t, x) ∈ R2 and let (s, y) be an interior point of the Brownian web

path starting at (t, x), that is, B(t,x)(s) = y with t < s. Then DBr(u, z; s, y) is finite for

any u < s and z ∈ R. If (s, y) is such that it is not the interior point of any Brownian

web path, then DBr(u, z; s, y) is infinite for all (u, z).

Proposition 3.3 enables us to give another natural definition of the Brownian web

distance DBr in the spirit of Definition 5.3 in [DV21] as an induced directed metric with

an extra continuity property. By Proposition 3.5 below which is proved in Subsection 7.5

the new definition gives the same directed metric.

Definition 3.4. Let d denote the restriction of DBr to the skeleton of the Brownian web

B, that is, if (t, x) and (s, y) are both on the skeleton, then let d(t, x; s, y) = DBr(t, x; s, y).

The function d on the skeleton extends naturally to the full R4 as an induced directed

metric D̃Br as follows. Let D̃Br be the supremum of all directed metrics on R4 which are

lower semicontinuous in all of their variables and whose values restricted to the skeleton

of the Brownian web are upper bounded by d.
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Proposition 3.5. The induced directed metric D̃Br exists and it agrees with DBr on R4.

Finally the Brownian web distance is on R4 is determined by its values on a countably

infinite subset. We postpone its proof to Subsection 7.5.

Proposition 3.6. The Brownian web distance DBr(t, x; s, y) for all (t, x; s, y) ∈ R4 are

determined by the values DBr(t, x; s, I) where I = [u, v] and t, x, s, u, v are rational.

3.3 Left neighbourhoods in the discrete web

Similarly to (3.1) we introduce

DRW(i, n; j, I) = inf
m∈I

DRW(i, n; j,m), Rk = {(i, n) : DRW(i, n; j, I) ≤ k} (3.3)

for any interval I for the discrete web distance where Rk is the discrete analogue of the

region Qk in (3.1) which depends on the choice of j and I. The regions are connected

subsets of Z2
e for which Rk ⊆ Rk+1 clearly hold. Next we define the backward paths r±k

which according to Proposition 3.8 turn out to serve as boundary curves for the regions

Rk.

Let j ∈ Z and I = [u, v] ⊂ Z be fixed such that (j, u), (j, v) ∈ Z2
e. We let r+

0 (i) =

Ŷ(j,v+1)(i) and r−0 (i) = Ŷ(j,u−1)(i) for i = j, j − 1, . . . to be equal to the backward discrete

Brownian web trajectories starting from two points of the dual lattice Z2
o at the endpoints

of j×I. Then we let T0 = max{i ≤ j : r+
0 (i) = r−0 (i)} be the time when the two backward

trajectories meet. Given the path r±k (i) for i ∈ [Tk, j] we define

r+
k+1(i) = max

l∈{i,...,j}
Ŷ(l,r+k (l+1)+1)(i), r−k+1(i) = min

l∈{i,...,j}
Ŷ(l,r−k (l+1)−1)(i) (3.4)

for all i ≤ j and we let Tk+1 = max{i ≤ Tk : r+
k+1(i) = r−k+1(i)}.

The next results are the discrete analogues of Propositions 3.1 and 3.2. The statements

are proved in Subsection 7.2.

Proposition 3.7. Conditionally given the curves r±j for all j = 0, 1, . . . , k, the path r+
k+1

evolves as the discrete Skorokhod reflection of a backward random walk off r+
k until time

Tk. More precisely there exists a backward random walk sk+1 such that

r+
k+1(i) = sk+1(i)− min

l∈{i,...,j}

(
sk+1(l)− r+

k (l + 1)− 1
)

(3.5)

holds for all i ∈ [Tk, j] with the convention r+
k (j + 1) = v. Furthermore, there are

backward random walks s0, s1, . . . , sk such that r+
k can be represented as a discrete last

passage percolation as

r+
k (i) = max

i=lk≤lk−1≤···≤l−1=j−k

k∑
m=0

(sm(lm)− sm(lm−1)) + k + v + 1. (3.6)

Proposition 3.8. The paths r±k (i) for i = Tk, Tk+1, . . . , j together with the interval j×I
serve as the boundary of the region Rk for all k = 0, 1, 2, . . . .
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4 Convergence of discrete web distance to Brownian

web distance

This section is devoted to the proof of Theorem 1.5, the main result about the epigraph

convergence of DRW
n to DBr. The convergence is proved to hold in (E∗, d∗) which is a

compact metric space by Lemma 7.1 of [DV21]. We first state the lower semicontinuous

analogue of Lemma 7.3 of [DV21] which provides a sufficient condition for the convergence

in (E∗, d∗) to hold. We postpone its proof to the end of the section.

Lemma 4.1. Let f, fn : R4 → R be lower semicontinuous functions. Assume that for

any convergent sequence xn → x ∈ R4 it holds that

lim inf
n→∞

fn(xn) ≥ f(x). (4.1)

Further assume that for any x ∈ R4 we can find a convergent sequence xn → x such that

lim sup
n→∞

fn(xn) ≤ f(x). (4.2)

holds. Then the epigraphs converge, that is, efn → ef in E∗ as n→∞.

The strategy of the proof of Theorem 1.5 is to understand the level curves of the

distance functions DRW
n and DBr. One could hope that the convergence of these curves

is a deterministic consequence of the random walk web converging to the Brownian web.

We do not have a proof of this. The main difficulty is that the random walk distance uses

microscopic information (two curves being a single edge away from each other) that does

not behave well in the scaling limit (which only sees two curves being less-than-scaling

away from each other). The remedy we use is Skorokhod reflection.

We fix an s ∈ R and an interval I = [u, v] and for all n define the rescaled curves

corresponding to the target time ns and and target interval [n1/2u, n1/2v] as

r±k,n(t) = n−1/2r±k (nt) (4.3)

for all t ≤ s and with linear interpolation between integer values. Then by Donsker’s

invariance principle and by the continuity of Skorokhod reflection it follows that under

the coupling given in Theorem 2.2 the rescaled curves r±k,n converge uniformly to ρ±k on

compact intervals almost surely as n → ∞. The convergence of single curves can be

improved by the following result.

Proposition 4.2. Consider a countable collection of si, Ii where si ∈ R and Ii ⊂ R is a

closed interval for all i. Then almost surely for all i the rescaled boundaries r±k,n of the

regions Rk(si, Ii) defined in (4.3) converge to the boundaries ρ±k of Qk(si, Ii) uniformly

on compact sets and for finitely many k.

Proof of Proposition 4.2. We fix an s ∈ R and an I = [u, v] ⊂ R first and we consider

Qk defined in (3.1). By Proposition 3.2, ρ±k (r) for r ≤ s are boundary curves of Qk. We
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study the convergence to these curves. The definition (3.4) of r+
k+1 can be written in

terms of the rescaled boundary as

r+
k+1,n(t) = sup

r∈[t,s]

Ŷ
(n)

(r,r+k,n(r+1/n)+1/
√
n)

(t). (4.4)

for t ≤ s.

We fix the natural coupling of the random walk web and the Brownian web given in

Theorem 2.2. In particular the rescaled backward random walk web Ŷ (n) converges to B̂

as compact collection of paths in the Hausdorff topology almost surely. Let Γn be the

closure of the set of all paths in Ŷ (n) started from the points (r, r+
k,n(r + 1) + 1/

√
n) for

r ∈ [t, s]. Since Γn is a closed subset of the compact set Ŷ (n) and by the convergence

Ŷ (n) → B̂ in (H, dH), the sets Γn have a limit Γ that is a subset of B̂.

We claim that Γ is a subset of Γ′, the closure of the set of all paths in B̂ started from

(r, ρ+
k (r)). Indeed, let γn ∈ Γn be a convergent sequence. Then the set of starting points

converges, and all starting points in the limit lie on ρ+
k , since r+

k,n → ρ+
k .

This implies that ⋃
γ∈Γn

graph(γ)→
⋃
γ∈Γ

graph(γ) ⊂
⋃
γ∈Γ′

graph(γ) (4.5)

in the Hausdorff topology, and by considering the upper boundaries of these sets, we get

lim sup
n→∞

r+
k,n(r) ≤ ρ+

k (r) (4.6)

for all r almost surely. But note that r+
k,n → ρ+

k in law with respect to uniform convergence

on compact sets (by the Skorokhod reflection representation and Donsker’s theorem).

These two statements imply r+
k,n → ρ+

k almost surely uniformly on compact sets. The

argument works simultaneously for countably many pairs (s, I) and for finitely many k

hence the proof is complete.

Note that the proof above works only for countable collections of pairs (s, I) and not

for all (s, I) because of the convergence in law part.

Proof of Theorem 1.5. We check the two conditions of Lemma 4.1. To see (4.1) for any

sequence xn → x in R4, we use that by Theorem 2.2 the rescaled discrete web Y (n) and

the Brownian web B as (H,FH)-valued random variables can be coupled so that Y (n)

converges to B almost surely in (H, dH) as n→∞.

If the left-hand side of (4.1) is equal to k for DRW
n , then there is a sequence of

convergent starting points (t(n), x(n)) → (t, x) and convergent endpoints (s(n), y(n)) →
(s, y) such that DRW

n (t(n), t(n); s(n), y(n)) = k. This means that for all n there are k + 1

paths π
(n)
0 , . . . , π

(n)
k in Y (n) along the geodesic between (t(n), x(n)) and (s(n), y(n)) with k

jumps. The convergence of Y (n) to B in (H, dH) implies that for all j = 0, 1, . . . , k and

for all n there are paths π̃
(n)
j in B so that d(π

(n)
j , π̃

(n)
j ) → 0 for all j = 0, . . . , k by (2.5).

Since B as an element of H is a compact collection of paths in (Π, d), the sequence π̃
(n)
j

must have a subsequential limit π̃
(∞)
j for all j = 0, . . . , k between (t, x) and (s, y). This

shows that DBr(t, x; s, y) ≤ k proving (4.1).

13



Next, we assume that the claim of Proposition 4.2 holds for rationals s and intervals I

with rational endpoints. To prove the second condition (4.2) in Lemma 4.1, assume that

k := DBr(t, x; s, y) <∞. Then we can find intervals Ij = [uj, vj] with rational endpoints

and rationals sj so that

• the line segment {sj} × Ij intersects the geodesic from (t, x) to (s, y),

• |sj − s|, |uj − y|, |vj − y| ≤ 1/j.

Then DBr(t, x; sj, Ij) ≤ k. To prove (4.2), we construct a sequence of indices nj such that

there are t(nj), x(nj), s(nj), y(nj) ∈ R with (t(nj), x(nj); s(nj), y(nj))→ (t, x; s, y) so that

lim sup
j→∞

DRW
nj

(t(nj), x(nj); s(nj), y(nj)) ≤ k. (4.7)

We define nj inductively. We set n0 = 1, and given nj−1 we let nj ≥ nj−1 so that

the kth rescaled boundaries r±k,nj = n
−1/2
j r±k (nj·) corresponding to sj, Ij are at most 1/j

away from their limits ρ±k uniformly on the interval [t − 1, sj]. This can be achieved by

Proposition 4.2.

Next, we choose a starting point (t(nj), x(nj)) which is at most 1/j away from (t, x) so

that DRW
nj

(t(nj), x(nj); sj, y
(nj)) ≤ k for some y(nj) ∈ [uj, vj]. Then (s(nj), y(nj)) = (sj, y

(nj))

is also at most 2/j far from (s, y) showing the existence of the subsequence nj with the

required properties. This proves (4.2) and the theorem.

Proof of Lemma 4.1. The space E∗ consists of closed subsets of R4 × R. By the lower

semicontinuity of fn the epigraphs efn are closed. Let Γ denote a subsequential limit of

efn in E∗. This exists by the compactness of E∗. Define the function g : R4 → R by

g(x) = inf{z ∈ R : (x, z) ∈ Γ}. (4.8)

Since Γ is a closed subset of R4×R as an element of E∗, the function g is lower semicon-

tinuous and eg = Γ. Next we show that g = f .

On one hand Γ is a subsequential limit of efn in E∗. Hence for any x ∈ R4, the point

(x, g(x)) ∈ Γ can be approximated by points in efn, that is, there is a sequence xn → x

such that

lim inf
n→∞

fn(xn) = g(x). (4.9)

Comparing this with (4.1) which holds for any convergent sequence xn yields that g ≥ f .

On the other hand for any x ∈ R4 there is a convergent sequence xn for which

limn→∞ fn(xn) = f(x) holds by (4.2) and (4.1). Hence the convergence

E(xn, fn(xn))→ E(x, f(x)) (4.10)

is also satisfied. The convergence of a subsequence of the epigraphs efn to Γ in E∗ means

that a subsequence of E(efn) converges to E(Γ) in the Hausdorff distance. This fact

together with the convergence (4.10) implies for the limit on the right-hand side of (4.10)

that E(x, f(x)) ∈ (E(Γ))+ε for all ε > 0. Since E(Γ) is a closed set this means that

E(x, f(x)) ∈ E(Γ) and (x, f(x)) ∈ Γ which yields f ≥ g.
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5 The KPZ limit

This section contains the proofs of Theorem 1.6 and Theorem 1.9. Both proofs are based

on Propositions 3.2 and 3.7 describing the boundary curves of the regions with different

distances. These curves are Brownian motions and random walks reflected off each other

in the Skorokhod sense. The distribution of the reflected paths can be represented as last

passage values.

In the case of Theorem 1.6 about the Brownian web distance we specialize Proposi-

tion 3.2 to the semiinfinite interval I = R− = (−∞, 0]. According to the proposition the

upper boundary of the region with distance at most k

ρ+
k (t) = sup{x ∈ R : DBr(t, x; 0,R−) ≤ k} (5.1)

for t ≤ 0 is a backward Brownian motion reflected off ρ+
k−1 in the Skorokhod sense. The

initial ρ+
0 is a backward Brownian motion. By Lemma 5.1 below the processes ρ+

k (−t)
for k = 0, 1, 2, . . . have the distribution of Brownian last passage percolation.

We introduce the Brownian last passage percolation with general boundary condition

below, see also (1.8). Let f : R+ → R be a continuous function and for a non-negative

integer n and for t ≥ 0 let the Brownian last passage percolation with boundary condition

f be given by

Lf (t, n) = sup
0≤t1

(f(t1) + L(t1, 2; t, n)) = sup
0=t0≤t1≤···≤tn=t

(
f(t1) +

n∑
i=2

(Wi(ti)−Wi(ti−1))

)
(5.2)

where W2(t),W3(t), . . . ,Wn(t) are independent standard Brownian motions.

Lemma 5.1. Let f : R+ → R be a fixed continuous function. For the Brownian last

passage percolation with boundary condition f it holds that Lf (t, 1) = f(t) and for n =

2, 3, . . . , Lf (t, n) can be represented as a Skorokhod reflection as

Lf (t, n) = Wn(t)− inf
s∈[0,t]

(Wn(s)− Lf (s, n− 1)). (5.3)

Proof. For n = 1, (5.3) holds by definition. By taking out the supremum over tn ∈ [0, t]

in (5.2) one gets

Lf (t, n) = sup
tn∈[0,t]

(
Lf (t, n− 1) +Wn(t)−Wn(tn)

)
. (5.4)

This is the recursion (5.3).

The second building block in the proof of Theorem 1.6 is the following convergence

result of Brownian last passage percolation to the directed landscape from [DOV23,DV21],

see also [FN11,For10,Sod14] for single-parameter versions.

Proposition 5.2. The convergence of the rescaled processes

n1/6
(
ρ+
tn+2zn2/3(−t)− 2t

√
n− 2zn1/6

)
→ L(0, 0; z, t) (5.5)

holds as n→∞ in distribution uniformly in z and t > 0 in any compact region.
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Proof of Proposition 5.2. With the notations of Theorem 1.7 and Remark 1.10 in [DV21],

we have n = σ3 and v = (1,−1), e = (0,−1). On the other hand since ‖(x,−y)‖d = 2
√
xy

for the Brownian last passage percolation, the Taylor expansion

‖v + xe‖d = ‖(1,−1− x)‖d = 2
√

1 + x = 2 + x− x2

4
+O(x3) (5.6)

holds as x → 0. Remark 1.9 in [DV21] implies that α = 2, β = 1, χ/τ 2 = 1/4 and

χ = 1 for the Brownian last passage percolation. Then τ = 2 holds as a consequence

and v = (0,−2), so we can choose s = 0, x = 0, y = z and leave t > 0 a parameter. By

(1.6) in Remark 1.10 of [DV21] with α̃ = 2, η̃ = −1 we have γ̃ = 2, χ̃ = ω̃ = 1. Note

that Brownian last passage percolation in [DV21] is obtained by optimizing over down-

right paths whereas our definition (1.8) is the supremum over up-right paths. Hence the

Brownian last passage time between (0, 0) and (tn,−tn − 2zn2/3) in [DV21] translates

into

n−1/3
(
L(0, 0; tn, tn+ 2zn2/3)− 2tn− 2zn2/3

)
→ L(0, 0; z, t). (5.7)

The distributional identity L(0, 0;ns, k)
d
= n1/2L(0, 0; s, k) for the Brownian last passage

percolation follows from Brownian scaling. Using it in (5.7) and writing the convergence

in terms of the boundaries ρ+
k gives (5.5).

Proof of Theorem 1.6. First we fix a compact interval K for z. The convergence in distri-

bution in (5.5) happens in the space of continuous functions. We consider the supremum

distance of continuous functions on K which generates the topology of uniform conver-

gence on K. By Skorokhod’s representation theorem the convergence in distribution in

(5.5) on K can be realized by a coupling of the sequence ρ+
k for k = 0, 1, 2, . . . and the

limit as an almost sure convergence which is uniform on K.

The almost sure convergence which is uniform on K in (5.5) means that for almost

all realizations of the randomness it holds that for every ε > 0 there exists a random k0

such that for all k ≥ k0

2t
√
n+ 2zn1/6 + (L(0, 0; z, t)− ε)n−1/6 ≤ ρ+

tn+2zn2/3(−t)

≤ 2t
√
n+ 2zn1/6 + (L(0, 0; z, t) + ε)n−1/6

(5.8)

holds. The upper and lower bounds on the boundary between the regions with DBr

distance tn+ 2zn2/3 and tn+ 2zn2/3 + 1 imply that

DBr(−t, 2t
√
n+ 2zn1/6 + (L(0, 0; z, t) + ε)n−1/6; 0,R−) ≥ tn+ 2zn2/3 + 1,

DBr(−t, 2t
√
n+ 2zn1/6 + (L(0, 0; z, t)− ε)n−1/6; 0,R−) ≤ tn+ 2zn2/3.

(5.9)

Now let m(n) =
√
n+ L

2t
n−1/6 where L ∈ R is a parameter. Taylor expansion yields

2tm(n) + 2z(m(n))1/3 = 2t
√
n+ 2zn1/6 + Ln−1/6 +O(n−1/2)

t(m(n))2 + 2z(m(n))4/3 − L(m(n))2/3 = tn+ 2zn2/3 +O(1)
(5.10)

as n→∞. Applying (5.10) in (5.9) with L = L(0, 0; z, t)± ε and using the fact that the

inequalities in (5.9) hold for any ε > 0 if n is large enough implies that

DBr(−t, 2tm+ 2zm1/3; 0,R−) = tm2 + 2zm4/3 − L(0, 0; z, t)m2/3 +O(1) (5.11)

as m→∞ which proves (1.10).
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The strategy of the proof of Theorem 1.9 is to rewrite the boundary curve r+
k in terms

of the last passage value in the Seppäläinen–Johansson model, Proposition 3.7. Then we

use the known fluctuation results of the Seppäläinen–Johansson model to conclude Airy

fluctuations of the discrete web distance.

Let T (m,n) denote the last passage time from (0, 0) to (m,n) in the Seppäläinen–

Johansson model with parameter 1/2 where all vertical edges of Z2 have 0 passage time

and the horizontal edges have weight 0 or 1 with probability 1/2 each and all edge weights

are independent random variables. Our notation differs from [Joh01] but the first passage

time from (0, 0) to (m,n) is equal in distribution to m−T (m,n) where T (m,n) is the last

passage time. By [Joh01] for a single z and by Corollary 6.6 of [DV21] for all z uniformly

on compact intervals it holds that if x > y then

T

(
xn+ 2x

(x− y)1/3

(xy)1/3
zn2/3, yn

)
=

(
x−

(
√
x−√y)2

2

)
n+ (x+

√
xy)

(x− y)1/3

(xy)1/3
zn2/3 +

(x− y)2/3

2(xy)1/6
A(z)n1/3 + o(n1/3)

(5.12)

as n → ∞. By the same idea including Skorokhod’s representation as in the proof of

Theorem 1.6 we have that for any ε > 0 the left-hand side of (5.12) can be almost surely

upper and lower bounded by the right-hand side of (5.12) with A(z) replaced by A(z)±ε
uniformly in z on a compact interval.

Proof of Theorem 1.9. Proposition 3.7 gives a representation of the boundary curve r+
k

as a last passage time which can be written in terms of T (m,n) as

r+
k (i) = max

i=lk≤lk−1≤···≤l−1=j−k

k∑
m=0

(sm(lm)− sm(lm−1)) + k + v + 1

d
= 2T (j − k − i, k) + v + 2k + i− j + 1

(5.13)

where the second identity above maps the ±1 weights of horizontal edges into 0 or 1

weights in the last passage percolation.

We specify the target interval to be {0}× (−∞, 0], hence we choose j = 0 and v = 0.

Further we set i = −n and k = κn+czn2/3 +βn1/3 = κñ with κ, c and β to be determined

and with ñ = n+ cz
κ
n2/3 + β

κ
n1/3. We get from (5.12) and (5.13) that

r+
k (−n) = 2T

(
(1− κ)n− czn2/3 − βn1/3, κn+ czn2/3 + βn1/3

)
− n+ 2(κn+ czn2/3 + βn1/3) + 1

= 2T
(

(1− κ)ñ− c

κ
z̃ñ, κñ

)
− n+ 2κñ

(5.14)

where z̃ = z + (− 2c
3κ
z2 + β

c
)n−1/3 + o(n−1/3). Then the right-hand side of (5.14) is of the

form found in (5.12) with x = 1−κ, y = κ, n = ñ, z = z̃ and c = −2κx(x−y)1/3/(xy)1/3.

Then (5.12) yields that

r+
k (−n) = 2

√
κ(1− κ)n+ 2(1− 2κ)4/3(κ(1− κ))1/6zn2/3

+

(
1− 2κ√
κ(1− κ)

β +
(1− 2κ)2/3

(κ(1− κ))1/6
A(z) + o(1)

)
n1/3 (5.15)
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where the o(1) term above is almost surely uniform as z varies in a compact interval. We

choose κ = (1−
√

1− η2)/2 so that (5.15) simplifies to

r+
k (−n) = ηn+22/3η1/3(1−η2)2/3zn2/3+

2
√

1− η2

η

(
β +

η2/3

22/3(1− η2)1/6
A(z) + o(1)

)
n1/3.

(5.16)

This means that with

β = − η2/3

22/3(1− η2)1/6
A(z)− ε (5.17)

for any ε > 0 fixed the right-hand side of (5.16) is at most ηn + 22/3η1/3(1− η2)2/3zn2/3

if n is large enough. This implies that

DRW
(
−n, ηn+ 22/3η1/3(1− η2)2/3zn2/3; 0,R−

)
≥ 1−

√
1− η2

2
n− η1/3(1− η2)1/6

21/3
zn2/3 − η2/3

22/3(1− η2)1/6
A(z)− ε (5.18)

for any ε > 0 if n is large enough. By changing the sign of ε to positive in (5.17) we see

that the right-hand side of (5.16) is at least ηn+ 22/3η1/3(1−η2)2/3zn2/3 which yields the

corresponding upper bound on the random walk web distance in (5.18) with −ε replaced

by +ε. This completes the proof since DRW(−n, ηn+ 22/3η1/3(1− η2)2/3zn2/3; 0,R−) and

DRW(0, 0;n, (−∞,−ηn−22/3η1/3(1−η2)2/3zn2/3)) have the same distribution by the shift

invariance.

6 Discrete web distance in the horizontal direction

This section is devoted to the proof of Theorem 1.10 about the horizontal scaling of the

random walk web distance.

Proof of Theorem 1.10. First we prove the lower bound in (1.15). Since DRW(0, 0;n, 0)

and DRW(−n, 0; 0, 0) have the same distribution we can consider the upper and lower

boundary curves r±k of the regions Rk corresponding to the single point (0, 0) in the place

of the target interval {j} × I. The upper and lower curves r±k meet at time Tk for each

k. We will find a dominating sequence Ek ≥ |Tk| so that the increments of logEk have a

uniform exponential tail decay.

The sequence Ek is chosen so that the region Rk is included in the rectangle [−Ek, 0]×
[−
√
Ek,
√
Ek]. This is done by induction on k as follows. Assume that Ek along with Rk

is given. Then we sample two backward random walks e±k+1 starting at e±k+1(0) = ±
√
Ek

which are reflected off the constant levels ±
√
Ek upwards respectively downwards on the

time interval [−Ek, 0] and the two random walks run beyond −Ek until they collide. We

let the paths e±k+1 follow the steps of the backward random walk web Ŷ when they are

away from the barriers at ±
√
Ek.

Let Ek+1 be the maximum of the absolute value of the collision time and the square of

the largest absolute value that these two random walks ever had until collision. In other

words, Ek+1 is the smallest number for which the full trajectories of the two random

walks e±k+1 are included in the rectangle [−Ek+1, 0]× [−
√
Ek+1,

√
Ek+1].
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Let Fk = σ(E1, . . . Ek). We claim that the tail of the conditional law of logEk+1 −
logEk given Fk decays exponentially uniformly in k. Thus the increments are dominated

by an i.i.d. sequence with finite mean, which then implies the lower bound of the theorem.

First we study the time −S the two processes e±k+1 meet. Until time −Ek these are

random walks which are reflected from the boundaries of the rectangle. Afterwards, their

difference performs a lazy random walk. For lazy walks started at s > 0, the time τ they

hit zero satisfies P(τ > r) ≤ 3s/
√
r, see Corollary 2.28 in [LPW06]. So for our walks

P
(
S > (ex + 1)Ek | Fk, e±k+1(−Ek)

)
≤
e+
k+1(−Ek)− e−k+1(−Ek)

ex/2
√
Ek

(6.1)

if x is large. Taking conditional expectations with respect to Fk we get that

P
(
S > (ex + 1)Ek | Fk

)
≤ c

√
Ek

ex/2
√
Ek

= ce−x/2. (6.2)

The walks e+
k+1 and −e−k+1 are dominated by random walks reflected off the level

√
Ek

upwards all the way until time −S which have the same distribution as the absolute

value of random walks shifted by
√
Ek. This helps us to bound the tail of M =

max−S≤j≤0 max(e+
k+1(j),−e−k+1(j)). Let Xj be a simple random walk on Z independent

of the rest. Then

P
(
M > (ex + 1)

√
Ek, S ≤ (ex + 1)Ek | Fk

)
≤ 2P

(
max

j≤(ex+1)Ek
|Xj| ≥ ex

√
Ek | Fk

)
≤ 8P

(
X(ex+1)Ek ≥ ex

√
Ek | Fk

)
≤ ce−x/2

(6.3)

for large x where Chebyshev’s inequality is used in the last line. So we get

P
(
Ek+1 > e2xEk | Fk

)
≤ P

(
S > (ex + 1)Ek | Fk

)
+ P

(
M > (ex + 1)

√
Ek, S ≤ (ex + 1)Ek | Fk

)
≤ ce−x/2.

(6.4)

This implies the lower bound, since

P
(
DRW(−n, 0; 0, 0) < a log n

)
≤ P (|Ta logn| ≥ n) ≤ P (logEa logn ≥ log n)→ 0 (6.5)

by the law of large numbers, as long as a > 0 is small enough.

For the upper bound it suffices to show that there is an ε > 0 so that |Tk+1|/|Tk| >
1 + ε with a uniformly positive probability as k varies. Since, r±k+1 are reflected walks,

there are independent simple random walks s±k+1(n) on n = 0, 1, . . . , |Tk| so that the

r+
k+1(−n) stochastically dominates s+

k+1(n) and s−k+1(n) stochastically dominates r−k+1(−n)

for all n = 0, 1, . . . , |Tk|. The rescaled distance (r+
k+1(Tk) − r−k+1(Tk))/

√
|Tk| therefore

stochastically dominates (s+
k+1(|Tk|)−s−k+1(|Tk|))/

√
|Tk|. The latter converges to a normal

random variable as |Tk| → ∞. This holds since |Tk| ≥ 2k.

This implies that there is a ε > 0 for which it takes at least ε|Tk| steps beyond Tk for

r±k+1 to collide with probability p > 0 for all k. So log |Tk| dominates log(1 + ε) times a
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Bernoulli random walk with success probability p. For any 0 < ν < p log(1 + ε) by the

law of large numbers,

P
(
|T(logn)/ν | ≤ n

)
→ 0 (6.6)

as n→∞. Assume now that |T(logn)/ν | ≥ n and the point (−n, 0) is not in the set R(logn)/ν

but R(logn)/ν intersects the vertical line {−n} × Z above 0. As a consequence of Propo-

sition 4.2 the sequence DRW(−n, 0; 0,Z+) converges in distribution to DBr(−1, 0; 0,R+)

and in particular DRW(−n, 0; 0,Z+) is tight. Hence there is a path with a tight number of

steps in the forward random walk web from (−n, 0) to {0}×Z+ which must cross R(logn)/ν .

It proves that DRW(−n, 0; 0, 0) is at most a constant times log n with probability tending

to 1 as required for the upper bound in (1.15).

7 Proofs of continuity properties

7.1 Properties of continuous region boundaries

In this subsection we prove Propositions 3.1 and 3.2. First we give in alternative char-

acterization of the boundary curves ρ±k in Proposition 7.2 below which is used in the

proofs of Propositions 3.1 and 3.2. Proposition 3.1 is shown using two different couplings

of the same sequence of processes that approximate the Brownian motion reflected off a

function in the Skorokhod sense. The proof of Proposition 3.2 uses the continuity of the

paths ρ±k which follows from Proposition 3.1.

Next we give an alternative description of the boundary curves ρ±k which we introduce

at ρ̃±k which are shown to be the same in Proposition 7.2. Let ρ̃±0 (t) and τ̃0 to be the

same as ρ±0 (t) and τ0, that is, the backward Brownian web paths B̂(s,v)(t) and B̂(s,u)(t)

and τ̃0 their collision time. Then we proceed by induction on k. We assume that the

paths ρ̃±k (t) and their collision time τ̃k are given and we introduce ρ̃±k+1(t) as follows. We

first define a decreasing sequence of trajectories ρ̃+,n
k+1(t) which converge to ρ̃+

k+1(t). We

start the trajectory ρ̃+,n
k+1(t) at (s, v+ 2−n+1) and follow the backward Brownian web path

started from there until it reaches ρ̃+
k (t) + 2−n when we reset it to ρ̃+

k (t) + 2−n+1. That

is, we set κn0 = s and we let

κnj+1 = sup{t ∈ [τk, κ
n
j ) : B̂(κnj ,ρ̃

+
k (κnj )+2−n+1)(t) ≤ ρ̃+

k (t) + 2−n} (7.1)

where the supremum is meant to be −∞ if there is no such t. Then we let

ρ̃+,n
k+1(t) = B̂(κnj ,ρ̃

+
k (κnj )+2−n+1)(t) (7.2)

on the interval t ∈ (κnj+1, κ
n
j ] for j = 0, 1, 2, . . . until κnj+1 = −∞.

Lemma 7.1. We have that

ρ̃+,n+1
k+1 (t) ≤ ρ̃+,n

k+1(t) (7.3)

for all t ≤ s.

Proof of Lemma 7.1. First observe that

ρ̃+
k (t) + 2−n ≤ ρ̃+,n

k+1(t) (7.4)

20



holds for any t ≤ s by the definition of the stopping times κnj and that of ρ̃+,n
k+1 in (7.1)–

(7.2). Then (7.3) can be shown as follows. It clearly holds for t = s, then the inequality

remains valid until κn+1
1 by the fact that both sides follow the evolution of the backward

Brownian web. At time t = κn+1
j by definition ρ̃+,n+1

k+1 (κn+1
j ) = ρ̃+

k (κn+1
j ) + 2−n which is

still a lower bound for ρ̃+,n
k+1(κn+1

j ) by (7.4) for any j = 1, 2, . . . . This completes the proof

because at κnj the left-hand side of (7.3) changes continuously while the right-hand side

has a jump of size 2−n and at any other time the evolution of the backward Brownian

web does not allow the two paths to cross each other.

Hence the sequence of paths ρ̃+,n
k+1(t) for t ≤ s is non-increasing in n. This allows us

to define

ρ̃+
k+1(t) = lim

n→∞
ρ̃+,n
k+1(t). (7.5)

Very similarly given ρ̃−k (t) for t ≤ s one defines ρ̃−k+1(t) as the limit of a non-decreasing

sequence of paths. By the obvious inequality ρ̃−k+1(t) ≤ ρ̃+
k+1(t) both curves are well-

defined and the limits in (7.5) and in its analogue for ρ̃−k+1 are finite. Then we let

τ̃k+1 = sup{t ≤ s : ρ̃+
k+1(t) = ρ̃−k+1(t)}. (7.6)

Proposition 7.2. For all k = 0, 1, 2, . . . and for all t ≤ s almost surely ρ±k (t) = ρ̃±k (t)

holds.

Proof of Proposition 7.2. All points of ρ̃+
k for all k = 0, 1, 2, . . . have an incoming back-

ward Brownian web path. The statement is true for k = 0 by definition, it holds by

construction for ρ̃+
k+1 if it is away from ρ̃+

k and at the points where they meet the state-

ment follows by induction. Hence all point of ρ̃+
k are of type (1, 1) or (1, 2) in the backward

Brownian web. Note that all (1, 1) points on ρ̃+
k with a single outgoing backward Brow-

nian web path b, we have b ≤ ρ̃+
k at all times that they are defined. These statements

imply that the supremum (3.2) equals the supremum of all backward Brownian web paths

starting at all (1, 2) points along the trajectory of ρ̃+
k (r) for r ∈ [t, s].

Assume now that the ρ+
k (t) = ρ̃+

k (t) holds for k and we prove it for k + 1. We first

show that

ρ+
k+1(t) ≤ ρ̃+

k+1(t) (7.7)

holds for all t ∈ [τk, s]. This follows from the inequalities ρ+
k+1(t) ≤ ρ̃+,n

k+1(t) which hold

for all n and for all t ∈ [τk, s]. They are indeed true because ρ+
k+1(t) > ρ̃+,n

k+1(t) for some

t ≤ s would mean the existence of an r ∈ [t, s] such that B̂(r,ρ+k (r))+(t) > ρ̃+,n
k+1(t), that is,

the backward Brownian web path B̂(r,ρ+k (r))+ would cross ρ̃+,n
k+1 where the latter consists of

backward Brownian web path parts with possible upward jumps between the parts. This

is impossible, hence (7.7).

To prove the reverse inequality we assume that there is a t ∈ [τk, s] such that ρ̃+
k+1(t) >

ρ̃+
k (t) because otherwise the equality in (7.7) holds automatically. In case of ρ̃+

k+1(t) >

ρ̃+
k (t), the path ρ̃+

k+1 coincides with a backward Brownian web trajectory around t, hence

there are at least two different outgoing paths from the point (t, ρ̃+
k+1(t)) in the forward

Brownian web. We consider the lowest forward path B(t,ρ̃+k+1(t))− starting at (t, ρ̃+
k+1(t))

which is below ρ̃+
k+1 locally. By definition, the trajectory ρ̃+

k+1 must always follow a
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backward Brownian web path if it is away from ρ̃+
k . For this reason B(t,ρ̃+k+1(t))− cannot

cross ρ̃+
k+1 as long as ρ̃+

k+1 is away from ρ̃+
k . Take τ = inf{r ∈ [t, s] : ρ̃+

k+1(r) = ρ̃+
k (r)}

which has to exist since ρ̃+
k+1(s) = ρ̃+

k (s).

Since ρ̃+
k+1(r) > ρ̃+

k (r) for r ∈ [t, τ) by the definition of τ , the path ρ̃+
k+1 is equal to a

backward Brownian web path on [t, τ). Hence ρ̃+
k+1 itself on [t, τ) is one of the outgoing

backward paths starting from (τ, ρ̃+
k (τ)) which implies

ρ̃+
k+1(r) ≤ B̂(τ,ρ+k (τ))+(r) ≤ ρ+

k+1(r) (7.8)

for all r ∈ [t, τ) and it completes the proof.

The proof of Proposition 3.1 is based on Proposition 7.3 below. To state it, we

introduce the following notation. Let f, g : R+ → R be a continuous functions with

f(0) = 0. The reflection of g off f in the Skorokhod sense is

gf↑(t) = g(t)− inf
s∈[0,t]

(g(s)− f(s)) . (7.9)

We will apply this concept with g = W , standard Brownian motion.

Next, we keep f general, and will present a sequence of approximations to Wf↑ that

is compatible with the Brownian web. We will use these approximations to understand

the law of the paths ρ±k = ρ̃±k . In these approximations, we will mimic the definition of

ρ̃+
k+1 given ρ̃+

k . That is in the nth step we run W (t) until it approaches f(t) by 2−n and

then we reset it to f(t) + 2−n+1.

First, we fix f and a positive integer n, and describe the marginal law of the ap-

proximation Wf,n. We define Wf,n(t) together with the sequence of stopping times ιnj for

j = 0, 1, 2, . . . as follows. We let ιn0 = 0 and define Wf,n to evolve as a Brownian motion

started at Wf,n(0) = 2−n+1 until time ιn1 defined by

ιnj+1 = inf
{
t > ιnj : Wf,n(t) ≤ f(t) + 2−n

}
. (7.10)

For any j = 1, 2, . . . , we set Wf,n(ιnj ) = f(ιnj ) + 2−n+1 and we let Wf,n evolve further as a

Brownian motion independent of the past of Wf,n. In this way Wf,n(t) is defined on the

intervals t ∈ [ιnj , ι
n
j+1) to run as Brownian motion and with jumps at ιnj for j = 1, 2, . . .

from f(ιnj ) + 2−n to f(ιnj ) + 2−n+1.

Next, we describe a specific coupling of W and the Wf,n, n = 1, 2, . . . which is compat-

ible with the Brownian web. We refer to this as the Brownian web coupling. Under

this coupling, Brownian motion paths follow a coalescing rule. Let us sample W first,

which gives us Wf↑. Then we add the paths Wf,n one by one as follows. The path Wf,1 is

a Brownian motion started at 1 and if it reaches f + 1/2 then it jumps to f + 1. We set

Wf,1 to be a Brownian motion started at 1 which is independent of Wf↑ until the time

when Wf,1 hits Wf↑. Then Wf,1 follows Wf↑ until the next jump of Wf,1. After its jump,

Wf,1 evolves independently of Wf↑ again until they collide.

Suppose that Wf↑ and Wf,1, . . . ,Wf,n are already sampled. The trajectory Wf,n+1

starts above Wf↑ and below Wf,1, . . . ,Wf,n and, as it will be clear from the construction,

this relation is kept for all time under the Brownian web coupling. The path Wf,n+1

runs independently of those sampled so far (Wf↑ and Wf,1, . . . ,Wf,n) as long as it is away
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from them. Note that there are two possible collisions of Wf,n+1 with previously sampled

paths. First, if Wf,n+1 hits Wf,n from below, then Wf,n+1 coalesces with Wf,n and they

run together until the next jump of Wf,n at ιnj for some j when Wf,n jumps up and Wf,n+1

runs further as an independent Brownian motion. Second, if Wf,n+1 hits Wf↑ from above,

then Wf,n+1 coalesces with Wf↑ until the next jump of Wf,n+1 when Wf,n+1 jumps up and

it evolves further as an independent Brownian motion again.

By construction, we have

Wf,n(t) ≥ Wf,n+1(t) ≥ Wf↑(t), for all t ≥ 0. (7.11)

By monotonicity, the limit of Wf,n exists and it satisfies

Wf∗(t) = lim
n→∞

Wf,n(t) ≥ Wf↑(t) for all t ≥ 0. (7.12)

The inequality in (7.12) is an equality according to the next result.

Proposition 7.3. Let f : R+ → R be a continuous function with f(0) = 0. Then

Wf∗(t) = Wf↑(t) (7.13)

holds almost surely for all t.

Proof of Lemma 7.3. We define another coupling of the sequence of processes Wf,n(t)

where each of them are driven by the same Brownian motion W (t). We denote these

processes by W̃f,n(t) under this coupling which we define by

W̃f,n(t) = f(ιnj ) + 2−n+1 +W (t)−W (ιnj ) (7.14)

for t ∈ [ιnj , ι
n
j+1) where ιnj is given by (7.10). Note that for every n, W̃f,n defined in (7.14)

has the same law as Wf,n.

For a given integer n and given t ≥ 0, let j be such that ιnj ≤ t < ιnj+1, that is ιnj is the

last time in [0, t] where Wf,n jumps or time 0 if there is no jump in [0, t]. Next we use the

property of Skorokhod reflection that for any continuous f, g : R+ → R and 0 ≤ s ≤ r

the inequality g(r) − g(s) ≤ gf↑(r) − gf↑(s) holds. For this reason, the increment of W

on the right-hand side of (7.14) can be upper bounded almost surely as

W̃f,n(t) ≤ f(ιnj ) + 2−n+1 +Wf↑(t)−Wf↑(ι
n
j ). (7.15)

Another property of Skorokhod reflection is that Wf↑(ι
n
j ) ≥ f(ιnj ), hence (7.15) can be

further upper bounded as

W̃f,n(t) ≤ 2−n+1 +Wf↑(t) (7.16)

which holds almost surely for all t uniformly. Also, by construction Wf↑ ≤ W̃f,n. This

implies that supt |W̃f,n(t) − Wf↑(t)| → 0, and hence the sequence W̃f,n is tight in the

sup-norm topology. So Wf,n is also tight since it has the same distribution. In particular,

its pointwise limit Wf∗ is continuous. So for every t ≥ 0, almost surely

Wf↑(t)
d
= Wf∗(t) ≥ Wf↑(t), (7.17)

and so Wf↑(t) = Wf∗(t). The continuity of Wf∗ and Wf↑ now implies the claim.
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Proof of Proposition 3.1. By definition (3.2) the curve ρ+
k+1 is independent of the ran-

domness above ρ+
k+1 which implies that the sequence ρ±k (t) on [τk, s] is Markovian in k.

Hence the distribution of ρ+
k+1 only depends on ρ+

k . It remains to show that ρ+
k+1 is a

Skorokhod reflected Brownian motion off ρ+
k on [τk, s], the evolution on [τk+1, τk] is clear.

By Proposition 7.2 it holds that ρ+
k+1 = ρ̃+

k+1. We show next that ρ̃+
k+1 is a Brownian

motion reflected off ρ̃+
k in the Skorokhod sense. Instead of specifying the backward

Brownian motion which is reflected off ρ̃+
k (t) to construct ρ̃+

k+1(t) we use Proposition 7.3

backward in time with the continuous curve f(t) = ρ̃+
k (s− t) for t ≥ 0. Then Wf,n(t) =

ρ̃+,n
k+1(s − t) holds for all integer n and t ≥ 0 under the Brownian web coupling of Wf,n.

Proposition 7.3 yields that the almost sure decreasing limit ρ̃+
k+1 is a Brownian path

reflected off ρ̃+
k in the Skorokhod sense which completes the proof.

Proof of Proposition 3.2. By Proposition 7.2, we have ρ±k = ρ̃±k for all k, hence it is

enough to show that the curves ρ̃±k serve as the boundary of the region Qk. We proceed

by induction on k. The statement clearly holds for k = 0 because the points {(t, x) :

DBr(t, x; s, I) = 0} are exactly those for which B(t,x)(s) ∈ I and these points are the ones

between ρ̃−0 (t) = B̂(s,u)(t) and ρ̃+
0 (t) = B̂(s,v)(t) for t ∈ [τ0, s].

Next we assume that

Qk =
{

(t, x) : t ∈ [τk, s], x ∈ [ρ̃−k (t), ρ̃+
k (t)]

}
(7.18)

holds for some k and we prove it for k+ 1 below. We choose an arbitrary (t, x) 6∈ Qk and

we prove that if the distance DBr(t, x; s, I) is k + 1, then the point (t, x) belongs to the

right-hand side of (7.18) and if the distance is larger than k + 1, then (t, x) is not in the

right-hand side of (7.18).

If the forward Brownian web path B(t,x) hits the boundary of the set Qk, then by

definition DBr(t, x; s, I) = k + 1 and (t, x) ∈ Qk+1. Without loss of generality we can

assume that B(t,x) hits the curve ρ̃+
k at some (t∗, ρ̃+

k (t∗)). We show that the point (t, x) is

below the curve ρ̃+
k+1, that is, x ≤ ρ̃+

k+1(t) which by definition (7.5) means that x ≤ ρ̃+,n
k+1(t)

for all n. This is however true because B(t,x)(r) is a continuous forward trajectory for

r ∈ [t, t∗] starting at B(t,x)(t) = x and ending at B(t,x)(t
∗) = ρ̃+

k (t∗). The backward

trajectory ρ̃+,n
k+1(r) for r ∈ [t, t∗] starts at ρ̃+,n

k+1(t∗) ≥ ρ̃+
k (t∗) + 2−n, that is, above the

endpoint of B(t,x). Furthermore ρ̃+,n
k+1(r) is defined to follow a backward Brownian web

trajectory on the intervals (κnj+1, κ
n
j ] and to jump up by 2−n at every κnj . For this reason

ρ̃+,n
k+1(r) can never cross B(t,x)(r) and it remains above B(t,x)(r) for r ∈ [t, t∗]. In particular

x = B(t,x)(t) ≤ ρ̃+,n
k+1(t) for all n which proves that x ≤ ρ̃+

k+1(t).

If the path B(t,x) avoids the set Qk, then DBr(t, x; s, I) > k + 1 and (t, x) 6∈ Qk+1.

In this case we may assume that B(t,x) passes above the continuous upper boundary

ρ̃+
k (continuity follows from Proposition 3.1). Then B(t,x) has a positive distance from

ρ̃+
k , that is, there is an ε > 0 such that B(t,x)(r) ≥ ρ̃+

k (r) + ε for all r ∈ [t, s]. Let

n ≥ 1− log2 ε which means that 2−n+1 ≤ ε. We show that the point (t, x) is above ρ̃+,n
k+1,

that is, x ≥ ρ̃+,n
k+1(t) ≥ ρ̃+

k+1(t) where the second inequality holds due to the fact that

ρ̃+
k+1 is the decreasing limit of ρ̃+,n

k+1. The inequality x ≥ ρ̃+,n
k+1(t) is true because B(t,x)(r)

is a continuous forward trajectory for r ∈ [t, s] starting at B(t,x)(t) = x and ending at

B(t,x)(s) ≥ v + ε. The backward trajectory ρ̃+,n
k+1(r) for r ∈ [t, s] starts at v + 2−n+1
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which is below the endpoint of B(t,x). As long as ρ̃+,n
k+1 follows a backward Brownian

web path it cannot cross B(t,x). In the points κnj the path ρ̃+,n
k+1 jumps from ρ̃+

k + 2−n to

ρ̃+
k +2−n+1 which is still below ρ̃+

k +ε ≤ B(t,x). Therefore ρ̃+,n
k+1 remains below B(t,x), hence

x ≥ ρ̃+,n
k+1(t) ≥ ρ̃+

k+1(t).

7.2 Properties of discrete region boundaries

This subsection contains the proofs of Propositions 3.7 and 3.8. about the boundaries of

regions with different discrete web distances. First we prove the following discrete ana-

logue of Proposition 7.2 which describes the evolution of the discrete region boundaries.

Heuristically r+
k+1 follows the evolution of a backward discrete Brownian web trajectory

of Ŷ as long as it is away from r+
k , cf. (2.8), and r+

k+1 is forced to jump up if it is equal to

r+
k until time Tk. Beyond Tk, r

+
k+1 follows a backward discrete Brownian web trajectory.

The evolution of r−k+1 given r−k can be given similarly.

Proposition 7.4. For any k = 0, 1, 2, . . . , conditionally given the trajectory of r+
k and

the time Tk when r±k meet, the evolution of r+
k+1 is given by

r+
k+1(i− 1) =

{
r+
k+1(i)− ξ(i−1,r+k+1(i)) if r+

k+1(i) > r+
k (i)

r+
k+1(i) + 1 if r+

k+1(i) = r+
k (i)

(7.19)

for all i = j, j − 1, . . . , Tk + 1. For times i = Tk, Tk − 1, . . . we have that

r+
k+1(i− 1) = r+

k+1(i)− ξ(i−1,r+k+1(i)). (7.20)

Proof of Proposition 7.4. Given the path r+
k up to time Tk let r̃+

k+1 denote the trajectory

given by the evolution rules (7.19)–(7.20). We prove that for any k = 0, 1, 2, . . . given r+
k

it holds that r+
k+1(i) = r̃+

k+1(i) for all i ≤ j by induction backwards on i. The case i = j

is true by definition. We assume that r+
k+1 and r̃+

k+1 agree for i + 1, i + 2, . . . , j. To see

the equality r+
k+1(i) = r̃+

k+1(i) we rewrite (3.4) by separating the l = i term as

r+
k+1(i) = max

(
Ŷ(i,r+k (i+1)+1)(i), max

l∈{i+1,...,j}
Ŷ(l,r+k (l+1)+1)(i)

)
= max

(
r+
k (i+ 1) + 1, r+

k+1(i+ 1)− ξ(i,r+k+1(i+1))

)
.

(7.21)

Since r+
k+1 ≥ r+

k always holds there are two possibilities: either r+
k+1(i+ 1) = r+

k (i+ 1)

or r+
k+1(i + 1) > r+

k (i + 1). If r+
k+1(i + 1) = r+

k (i + 1), then r+
k+1(i) = r+

k (i + 1) + 1

since the first term in the maximum on the right-hand side of (7.21) cannot be smaller

than the other one. Also r̃+
k+1(i) = r+

k+1(i + 1) + 1 = r+
k (i + 1) + 1 by (7.19) hence

r+
k+1(i) = r̃+

k+1(i). If r+
k+1(i + 1) > r+

k (i + 1), then r+
k+1(i + 1) ≥ r+

k (i + 1) + 2, hence

r+
k+1(i) = r+

k+1(i+1)− ξ(i,r+k+1(i+1)) because the second term in the maximum on the right-

hand side of (7.21) cannot be smaller than the first one. On the other hand by (7.19) we

have r̃+
k+1(i) = r+

k+1(i + 1) − ξ(i,r+k+1(i+1)) which means that r+
k+1(i) = r̃+

k+1(i) as required

for i ≥ Tk. The evolution beyond Tk clearly follows that of the backward Brownian web

given in (7.20).
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Proof of Proposition 3.7. To see (3.5) we proceed by induction on k. Given r+
k , the path

r+
k+1 clearly starts at (j, v + 1) as well as the right-hand side of (3.5). Next we check

that the right-hand side of (3.5) satisfies the evolution rule (7.19) by induction on i

backwards. For this we rewrite the right-hand side of (3.5) by separating the l = i case

in the minimum to get that

sk+1(i)− min
l∈{i,...,j}

(
sk+1(l)− r+

k (l + 1)− 1
)

= sk+1(i)−min

(
sk+1(i)− r+

k (i+ 1)− 1, min
l∈{i+1,...,j}

(
sk+1(l)− r+

k (l + 1)− 1
))

= sk+1(i)−min
(
sk+1(i)− r+

k (i+ 1)− 1, sk+1(i+ 1)− r+
k+1(i+ 1)

)
= max

(
r+
k (i+ 1) + 1, sk+1(i)− sk+1(i+ 1) + r+

k+1(i+ 1)
)

(7.22)

where the second equality above follows by the induction hypothesis (3.5) with i replaced

by i+1. The right-hand side of (7.22) means an independent random walk step compared

to r+
k+1(i+ 1) except for the case when r+

k+1(i+ 1) = r+
k (i+ 1) in which case it is a forced

to jump up by one. This corresponds to the evolution of r+
k+1(i) described in (7.19) hence

it proves (3.5).

The proof of (3.6) follows an induction on k. It clearly holds for k = 0 and the

induction step is based on (3.5) which one can write as

r+
k (i) = max

l∈{i,...,j}

(
sk(i)− sk(l) + r+

k−1(l + 1) + 1
)

= max
l∈{i,...,j}

(
sk(i)− sk(l)

+ max
l+1≤lk−1≤···≤l−1=j−k+1

k−1∑
m=0

(sm(lm)− sm(lm−1)) + k + v + 1
) (7.23)

where we used the induction hypothesis (3.6) for r+
k−1(l + 1) in the last equality above.

Then the right-hand side above is equal in distribution to that of (3.6) which can be seen

by shifting all indices lk−1, . . . , l−1 by 1.

Proof of Proposition 3.8. We proceed by induction on k. First we prove the statement for

k = 0. Take any i ∈ [T0, j] and m ∈ Z so that (i,m) ∈ Z2
e. The forward random walk web

path Y(i,m) cannot cross either of the backward paths r+
0 = Ŷ(j,v+1) and r−0 = Ŷ(j,u−1) on

the interval [i, j]. Hence if r−0 (i) < m < r+
0 (i), then Y(i,m)(j) ∈ I and DRW(i,m; j, I) = 0.

If m < r−0 (i) or m > r+
0 (i), then Y(i,m)(j) 6∈ I and DRW(i,m; j, I) > 0. Also if i < T0,

then the forward random walk web path Y(i,m) avoids j × I and DRW(i,m; j, I) > 0.

Assume that the statement is true for k, that is, DRW(i,m; j, I) ≤ k for points (i,m) ∈
Z2

e between r+
k and r−k on (Tk, j] and DRW(i,m; j, I) > k for all other points (i,m) ∈ Z2

e.

Now we prove it for k + 1 by another induction on i backwards in time as follows. The

statement of the proposition clearly holds for k + 1 and i = j. Indeed we have that

DRW(j,m; j, I) = 0 ≤ k + 1 exactly if r−k+1(j) = u− 1 < m < r+
k+1(j) = v + 1, otherwise

DRW(j,m; j, I) =∞ > k + 1.

Next we assume that the statement holds for k+ 1 and i ∈ [Tk, j] and we prove it for

k + 1 and i − 1 in what follows. By assumption around the upper boundary the points

26



(i,m) ∈ Z2
e with r+

k (i) < m < r+
k+1(i) have DRW(i,m; j, I) = k + 1. We have two cases

depending on weather there are such ms or not, that is r+
k (i) < r+

k+1(i) or r+
k (i) = r+

k+1(i).

We deal with the case r+
k (i) < r+

k+1(i) first. Then DRW(i−1,m; j, I) ≤ k+ 1 certainly

holds for all points (i − 1,m) ∈ Z2
e with r+

k (i − 1) < m ≤ r+
k+1(i) − 2 because these

points (i − 1,m) are connected to either of (i,m ± 1) by an edge in the random walk

web Y and DRW(i,m ± 1; j, I) ≤ k + 1 by assumption. If ξ(i−1,r+k+1(i)) = −1, then there

is an edge in Y from (i − 1, r+
k+1(i)) to (i, r+

k+1(i) − 1), hence DRW(i − 1, r+
k+1(i); j, I) =

DRW(i, r+
k+1(i) − 1) = k + 1 and (i − 1, r+

k+1(i)) ∈ Rk+1. If ξ(i−1,r+k+1(i)) = 1, then there

is an edge in Y from (i − 1, r+
k+1(i)) to (i, r+

k+1(i) + 1), hence DRW(i − 1, r+
k+1(i); j, I) =

DRW(i, r+
k+1(i)−1)+1 = k+2 and (i−1, r+

k+1(i)) 6∈ Rk+1. This means that the boundary

of Rk+1 changes by −ξ(i−1,r+k+1(i)) in the step i→ i− 1 which is the same as the evolution

of r+
k+1 in the first case in (7.19).

In the case r+
k (i) = r+

k+1(i) regardless of the value of ξ(i−1,r+k (i)) and whether the edge

from (i− 1, r+
k (i)) to (i, r+

k (i)− 1) is in Y or not, we can bound DRW(i− 1, r+
k (i); j, I) ≤

DRW(i, r+
k (i) − 1; j, I) + 1 ≤ k + 1, hence (i − 1, r+

k (i)) 6∈ Rk+1. This means that the

boundary of Rk+1 increases by 1 in this step and it corresponds to the second case in

(7.19) where r+
k+1(i− 1) = r+

k+1(i) + 1.

For i ≤ Tk, we know by assumption that DRW(i,m; j, I) = k + 1 if (i,m) ∈ Z2
e with

r+
k+1(i) < m < r−k+1(i) and DRW(i,m; j, I) > k + 1 for all other values of m. Hence the

boundary of Rk+1 changes by −ξ(i−1,r±k+1(i)) which means that the boundary follows the

same backward random walk web trajectory as r±k+1, cf. (7.20).

7.3 Lower semicontinuity

The aim of this subsection is to prove the lower semicontinuity of the Brownian web

distance DBr stated in Theorem 1.4. The lower semicontinuity relies on the following

property of the Brownian web.

Proposition 7.5. Fix a compact subset K ⊂ R2 and ε > 0. Almost surely there are

only finitely many disjoint paths of the Brownian web B with length at least ε which are

contained in K.

Proof of Proposition 7.5. Assume that there is a K and ε > 0 such that there are in-

finitely many disjoint paths of B with length ε in K with positive probability. By di-

viding the time axis into subintervals of length ε/2 we see that there are also infinitely

many disjoint paths of B with length ε/2 in K which all start at the same time which we

denote by s. This means that there are infinitely many starting points on the compact

set ({s} × R) ∩K which have disjoint outgoing paths of length ε/2.

Next we show a basic bounds on the Brownian motion W (t) which starts form 0 and

has variance σ2t at time t. For λ > 0,

P

(
sup
t∈[0,T ]

W (t) ≤ λ

)
= 1−P

(
sup
t∈[0,T ]

W (t) ≥ λ

)
= 1− 2P(W (T ) ≥ λ) ≤ 2λ√

2πσ2T
(7.24)
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holds where the second equality follows from the reflection principle and the last inequality

can be seen by upper bounding the density of W (T ) by its value 1/
√

2πσ2T at 0.

We assume that two paths in the Brownian web B start from (s, w) and from (s, w+δ)

for some δ > 0. The probability that the two trajectories B(s,w) and B(s,w+δ) do not meet

until time ε/2 can be written as

P

(
inf

t∈[0,ε/2]

(
B(s,w+δ)(t)−B(s,w)(t)

)
> 0

)
= P

(
sup

t∈[0,ε/2]

(
δ −B(s,w+δ)(t) +B(s,w)(t)

)
< δ

)

≤
√

2

πε
δ

(7.25)

where the last inequality follows from (7.24) with σ2 = 2.

Now assume that there are infinitely many paths starting in ({s} × R) ∩ K which

remain disjoint for time at least ε/2. Then the starting points have an accumulation

point which yields that for any δ > 0 there are two starting points closer to each other

than δ. The two paths emanating from these two starting points also have to be disjoint

which has a probability at most
√

2/(πε)δ by (7.25). This implies that the probability of

infinitely many disjoint paths of length ε/2 in B starting in ({s} ×R) ∩K can be upper

bounded by
√

2/(πε)δ for any δ > 0, that is, this probability is 0 as required.

Lemma 7.6. On an event of probability one the function (s, y) 7→ DBr(t, x; s, y) is lower

semicontinuous.

Proof. Assume that lower semicontinuity fails to hold for some (t, x; s, y) ∈ R4 for which

DBr(t, x; s, y) = k where k = ∞ is also allowed. This means that there is a sequence

(s(n), y(n)) converging to (s, y) in R2 such that DBr(t, x; s(n), y(n)) = l < k. We may

assume that l is minimal. Let (s
(n)
l , y

(n)
l ) denote the point of the lth jump along the

geodesic path from (t, x) to (s(n), y(n)) which verifies that their Brownian web distance

is l. No subsequence of (s
(n)
l , y

(n)
l ) can converge to (s, y) in R2 because then the paths

from (t, x) to (s
(n)
l , y

(n)
l ) would have a subsequence with Brownian web distance l − 1

which would contradict the minimality of l. Hence there is a δ > 0 such that the points

(s
(n)
l , y

(n)
l ) are at least δ apart from (s, y) in R2.

Let εn denote the Euclidean distance between the point (s, y) and the closest point

along the Brownian web path B
(s

(n)
l ,y

(n)
l )

starting at (s
(n)
l , y

(n)
l ) for all n. Note that the

paths B
(s

(n)
l ,y

(n)
l )

do not terminate at (s(n), y(n)) but we consider their continuation. We

have εn → 0 as n → ∞ because the point (s(n), y(n)) is on the path B
(s

(n)
l ,y

(n)
l )

for each

n and (s(n), y(n)) → (s, y). On the other hand εn = 0 is impossible for any n because it

would mean that DBr(t, x; s, y) = l. By the properties of εn there is a subsequence nj
along which εnj is strictly decreasing. The corresponding paths starting at (s

(nj)
l , y

(nj)
l )

have disjoint portions from the boundary of the ball of radius δ around (s, y) to distance

εnj from (s, y). For j large enough the length of these paths are at least δ/2. The

existence of infinitely many disjoint paths of length δ/2 contradicts Proposition 7.5.
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Lemma 7.7. Let f : R → R be a lower semicontinuous function. We extend it to

intervals I ⊂ R as f(I) = infy∈I f(y). Then it holds for any y ∈ R that

f(y) = sup
I⊂R:y∈I

f(I). (7.26)

Proof. Fix y ∈ R. Then f(y) ≥ supI⊂R:y∈I f(I) clearly holds because f(y) ≥ f(I) if

y ∈ I. The strict inequality f(y) > supI⊂R:y∈I f(I) would mean that there is an ε > 0

such that f(I) ≤ f(y)−ε for all I with y ∈ I. By letting yn be an approximate minimizer

of f in the interval In so that y ∈ In and |In| → 0, one would get a sequence for which

lim infyn→y f(yn) ≤ f(y)− ε/2 < f(y) contradicting the lower semicontinuity of f .

Proof of Theorem 1.4. We have seen in Lemma 7.6 that DBr(t, x; s, y) is lower semicon-

tinuous in the second component (s, y). Now we prove that lower semicontinuity also

holds in the first component. For any (t, x; s, y), one has by Lemma 7.7 that

DBr(t, x; s, y) = sup
I⊂R:y∈I

DBr(t, x; s, I) (7.27)

holds. It is clear from the description given in Propositions 3.2 and 3.1 that for any

s ∈ R and I ⊂ R the mapping (t, x) 7→ DBr(t, x; s, I) is lower semicontinuous for any

(t, x). Since the supremum of lower semicontinuous functions is lower semicontinuous

(cf. Definition 2.8 (c) in [Rud87]), (t, x) 7→ DBr(t, x; s, y) is also lower semicontinuous by

(7.27).

Finally we show that (t, x, s, y) 7→ DBr(t, x; s, y) is jointly lower semicontinuous almost

surely. For this we assume that DBr(t, x; s, y) = k with k ∈ N∪{+∞} and that there are

(t(n), x(n))→ (t, x) and (s(n), y(n))→ (s, y) in R2 such thatDBr(t(n), x(n); s(n), y(n)) = l < k

and l is minimal. By the minimality of l, the sequence of the first points of jump (t
(n)
1 , x

(n)
1 )

along the paths between (t(n), x(n)) and (s(n), y(n)) remain at least ε far from (t, x) for

some ε > 0.

For any δ > 0, the Brownian web paths starting at (t(n), x(n)) can exit the ball of radius

δ around (t, x) only in finitely many points by Proposition 7.5. Since the Brownian web

paths cannot cross each other and the starting points converge to (t, x), all Brownian

web paths starting at (t(n), x(n)) exit the ball of radius δ around (t, x) in the same point

zδ ∈ R2 for all n ≥ n0 for some n0 = n0(δ) depending on δ.

Using the above fact with δ = ε/2j for j = 0, 1, 2, . . . , one gets the existence of a

sequence of Brownian web paths between zε/2j and zε such that the path with larger

j extends the previous paths. This implies that there is a Brownian web path B′(t,x)

from (t, x) which passes through all the points zε/2j . This may also coincide with B(t,x).

For all n ≥ n0(ε), the path B(t(n),x(n)) passes through zε. Hence for n ≥ n0(ε), the

paths B(t(n),x(n)) and B′(t,x) collide within the ball of radius ε around (t, x), in particular

B′(t,x) passes through (t
(n)
1 , x

(n)
1 ). Using the Brownian web path B′(t,x) between (t, x) and

(t
(n)
1 , x

(n)
1 ) one gets a sequence of paths between (t, x) and (s(n), y(n)) with DBr distance

l. This contradict the lower semicontinuity of DBr in the second component given in

Lemma 7.6.
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7.4 Finiteness of the Brownian web distance

We prove Proposition 3.3 about the finiteness of the Brownian web distance in this sub-

section. In order to characterize the case when the Brownian distance DBr is infinite

in terms of the second statement in Proposition 3.3, we recall the Brownian last pas-

sage percolation with general boundary condition f defined in (5.2). By Lemma 5.1,

the Brownian last passage percolation with boundary f can be obtained as an iterated

Skorokhod reflection of Brownian paths started from f . Next we show that the Brownian

last passage percolation diverges everywhere.

Lemma 7.8. Let f : R+ → R be a fixed continuous function. For the Brownian last

passage percolation with boundary condition f it holds that for any t > 0 fixed

P
(

lim
n→∞

Lf (t, n) = +∞
)

= 1. (7.28)

Proof. The right-hand side in the definition (5.2) is lower bounded by

sup
0=t0≤t1≤···≤tn=t

(
f(t1) +

n∑
i=2

(Wi(ti)−Wi(ti−1))

)
≥ max

i=2,...,n
(Wi(t)) ≥ max

i=2,...,n
(Wi(t) ∧M)

(7.29)

for any M ∈ R. Let ε > 0 be arbitrary and note that

P( max
i=2,...,n

(Wi(t) ∧M) < M − ε) = P(W2(t) < M − ε)n → 0 (7.30)

as n → ∞, that is maxi=2,...,n(Wi(t) ∧M) converges to M in distribution and in prob-

ability because the limit is a constant. Since the sequence maxi=2,...,n(Wi(t) ∧ M) is

non-decreasing in n, there is an almost sure convergence. This implies by (5.2) that

lim infn→∞ L
f (t, n) ≥M almost surely for any M ∈ R which completes the proof.

Proof of Proposition 3.3. Assume that (s, y) is an interior point of the path B(t,x). Then

the point (s, y) can be of type (1, 1) or (2, 1) in the forward Brownian web B and of type

(0, 2) or (0, 3) in the dual B̂, that is, there are two or three dual paths starting at (s, y).

We consider the regions Q̃k = {(u, z) : DBr(t, x; s, y) ≤ k} for k = 0, 1, 2, . . . which

are the analogues of Qk defined in (3.1) but with the interval s× I replaced by the single

point (s, y). Let ρ̃±k denote the upper and lower boundaries of the regions Q̃k which

can be obtained similarly to ρ±k that are the boundaries for Qk, see Proposition 3.2.

The boundaries ρ̃±0 on the interval [t, s] are B̂(s,y)±, that is, the highest and lowest dual

Brownian web paths starting at (s, y). The boundaries ρ̃±k for k = 1, 2, . . . on [t, s] can

be given inductively and they are Brownian motions reflected off in the Skorokhod sense

upwards and downwards from ρ̃±k−1.

By letting f(v) = ρ̃+
0 (s−v) for v ∈ [0, s−t], Lemma 5.1 implies that the distribution of

(ρ̃+
k (s−v), v ∈ [0, s−t]) is equal to that of Brownian last passage percolation (Lf (v, k), v ∈

[0, s− t]) with boundary condition f . By (7.28) in Lemma 7.8, for any u ∈ [t, s), ρ̃+
k (u)→

∞ as k → ∞ almost surely and very similarly ρ̃−k (u) → −∞. Hence almost surely for

any (u, z) with u ∈ [t, s) and z ∈ R, we have DBr(u, z; s, y) < ∞. If u < t, one simply

follows the Brownian web path B(u,z) until time t to reach a point with finite Brownian

distance to (s, y).
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In the case when (s, y) is not the interior point of any Brownian web path, that is, it is

not on the skeleton of the Brownian web B, then there is no incoming trajectory of B in

this point, hence by Definition 1.2, DBr(t, x; s, y) cannot be finite for any (t, x) ∈ R2.

7.5 Brownian web distance as an induced metric and countable

generating set

Finally we prove Propositions 3.5 and 3.6 in this subsection.

Proof of Proposition 3.5. The function DBr satisfies the triangle inequality and the dis-

tance of any point from itself is 0, hence DBr is a directed metric. Since DBr agrees with

d on the skeleton of the Brownian web B, the induced directed metric D̃Br exists and the

inequality

DBr(t, x; s, y) ≤ D̃Br(t, x; s, y) (7.31)

holds for any (t, x; s, y) ∈ R4 by Definition 3.4. Furthermore, if (t, x) and (s, y) are both

on the skeleton of the Brownian web B, then we also have by definition that

D̃Br(t, x; s, y) ≤ d(t, x; s, y). (7.32)

In order to show that (7.31) holds with an equality, we choose (t, x; s, y) ∈ R4 such

that DBr(t, x; s, y) = k for some finite integer k. By Definition 1.2, there are points

(t1, x1), . . . , (tk, xk) at which the optimal path from (t, x) to (s, y) switches between dif-

ferent Brownian web trajectories. In particular, the path starting at (t, x) passes through

(t1, x1). The point (t1, x1) is a (1, 2) point for B and for its dual B̂. Between the two back-

ward Brownian web path starting at (t1, x1), one can find a sequence of points (t(n), x(n))

on the skeleton of the Brownian web B such that (t(n), x(n)) → (t, x) as n → ∞ and

that B(t(n),x(n))(t1) = x1 for all n. This means that d(t(n), x(n); s, y) ≤ k for all n, hence

also D̃Br(t(n), x(n); s, y) ≤ k holds for all n by (7.32). Since D̃Br is a lower semicontin-

uous directed metric as being the supremum of such directed metrics, it follows that

D̃Br(t, x; s, y) ≤ k proving equality in (7.31).

Proof of Proposition 3.6. We assume that the values of DBr(t, x; s, I) are given for all

rational t, x, s, u, v where I = [u, v]. We show in several steps that it uniquely extends to

R4.

First we prove that the values of DBr(t, x; s, I) are determined for all t, x ∈ R and

for all rational s, u, v. We fix a rational s and an interval I = [u, v] with rational end-

points. By the characterization of regions with distance k from a fixed s and I given in

Proposition 3.2, it holds that for any t ≤ s the set

{x ∈ R : DBr(t, x; s, I) ≤ k} = [ρ−k (t), ρ+
k (t)] (7.33)

is an interval. This implies that knowing the values of DBr(t, x; s, I) for fixed s and I and

for (t, x) from a dense subset of R2 settles the continuous curves ρ±k for all k = 0, 1, . . .

by (7.33). Hence the values of DBr(t, x; s, I) are also determined for all (t, x) ∈ R2.

Second we show that the values of DBr(t, x; s, y) are determined for all t, x, y ∈ R and

for all rational s. By Theorem 1.4, the Brownian distance is lower semicontinuous in all
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its variables. In particular, y 7→ DBr(t, x; s, y) is lower semicontinuous for any t, x, s and

by applying Lemma 7.7 the equality (7.27) holds. The supremum on the right-hand side

of (7.27) does not change if we replace it with the supremum over all intervals I with

rational endpoints which contain y. This proves that DBr(t, x; s, y) for t, x, y ∈ R and s

rational are determined.

Finally we prove that DBr(t, x; s, y) are determined for all (t, x; s, y) ∈ R4. We claim

that for any (t, x; s, y) ∈ R4, DBr(t, x; s, y) ≤ k holds if and only if there is an in-

creasing sequence of rationals sn converging to s and a sequence yn → y such that

DBr(t, x; sn, yn) ≤ k. The claim is seen as follows.

If DBr(t, x; s, y) ≤ k, then there is a last jump between different Brownian web paths

along the geodesic from (t, x) to (s, y) which we call (tk, xk) for simplicity. We choose

any increasing sequence of rationals sn from the interval (tk, s) so that sn → s and we

let yn = B(tk,xk)(sn) to be the value of the Brownian web path along the geodesic at sn.

Then yn → y and DBr(t, x; sn, yn) ≤ k holds. Conversely, if the sequence (sn, yn)→ (s, y)

exists with the desired properties, then the lower semicontinuity of the Brownian distance

(see Theorem 1.4) implies that

DBr(t, x; s, y) ≤ lim inf
n→∞

DBr(t, x; sn, yn) ≤ k (7.34)

which proves the claim. The claim implies that all values of DBr(t, x; s, y) for (t, x; s, y) ∈
R4 can be determined by those for t, x, y ∈ R and s rational. This completes the proof.
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