LIST OF PUBLICATIONS

Tamás Szabados, May 2011

[1] P. Kenedi, T. Szabados, T. Frey. Investigation of ventricular spread of activation in computer model experiment. Cardiologia Hungarica, 2, 1-12, 1973 (in Hungarian).

[2] T. Szabados, P. Kenedi, T. Frey. Study of ventricular spread of activation by computer model. Advances in Cardiology, 19, 165-166, 1977.

[3] I. Kónya, P. Somogyi, T. Szabados. A method of time-table construction by computer. Periodica Polytechnica, Ser. Electrical Engineering, 22, 171-181, 1978.

[4] T. Szabados. A generalization of Kolmogorov statistics to separable metric spaces. PhD thesis, Loránd Eötvös University of Budapest, 1981 (in Hungarian).

[5] I. Kónya, T. Szabados. ESBA2: A subroutine package for solving elliptic boundary value problems by small computers. Journal of Information Processing and Cybernetics, 19, 441-448, 1983. MR 85c:65006.

[6] S. Bíró, T. Szabados. Vector Analysis. Mûszaki Könyvkiadó, Budapest, 1983 (in Hungarian).

[7] T. Szabados. Goodness of fit tests in metric spaces based on balls around the sample. Statistics & Decisions, 5, 381-389, 1987. MR 88k:62080.

[8] I. Kónya, P. Rózsa, T. Szabados. Applications of orthogonal polynomials for improving the accuracy of finite element method. In:Colloquia Mathematica Societas János Bolyai 50. Numerical Methods. Miskolc, 1986, 395-406. North-Holland, Amsterdam, 1988. MR 89c:65121.

[9] T. Szabados, L. Böröczky and K. Fazekas. Analysis of a pel-recursive Wiener-based motion estimation algorithm. Proceedings of the 1989 U.R.S.I. Intern. Symp. on Signals, Systems and Electronics, Erlangen, 318-320, 1989.

[10] L. Böröczky, K. Fazekas and T. Szabados. Convergence analysis of a pel-recursive Wiener-based motion estimation algorithm. In: Time-varying image processing and moving object recognition 2, ed. V. Cappellini, 38-45. Elsevier, Amsterdam, 1990.

[11] T. Szabados. On the Glivenko-Cantelli theorem for balls in metric spaces. Studia Scientiarum Mathematicarum Hungarica, 24, 473-481, 1989. MR 92e:60002.

[12] T. Szabados. A discrete Ito's formula. In: Colloquia Mathematica Societas János Bolyai 57. Limit Theorems in Probability and Statistics, Pécs, 1989, 491-502. North-Holland, Amsterdam, 1990. MR 92i:60105.

[13] L. Böröczky, K. Fazekas and T. Szabados. Analysis of pel-recursive Wiener-based estimation algorithms for general 2D motion. In: Signal Processing V, Theories and Applications, Proceedings of EUSIPCO 90, Barcelona, Spain, 785-788. Elsevier, Amsterdam, 1990.

[14] L. Böröczky, K. Fazekas and T. Szabados. Theoretical and experimental analysis of a pel-recursive Wiener-based motion estimation algorithm. Annales des Télécommunications, 45, No. 9-10, 471-476, 1990.

[15] A.Z. Szendrovits and T. Szabados. Least cost safety inventory for large transfer lines. Omega International Journal of Management Science, 21, No. 4, 471-480, 1993.

[16] T. Szabados. An elementary introduction to the Wiener process and stochastic integrals. Studia Scientiarum Mathematicarum Hungarica, 31, 249-297, 1996. MR 96k:60212. arxiv.org/abs/1008.1510

[17] T. Szabados. Why do we appreciate mathematics? Notices of the American Mathematical Society, 43, 533-534, 1996.

[18] T. Szabados, G.Tusnády, G. Michaletzky, L. Varga and T. Bakács. A simple stochastic model of the immune system. 2nd Congress of the European Mathematical Union, Budapest, 1996.

[19] T. Szabados. A discrete Feynman-Kac formula and the Schrödinger equation. Conference on Stochastic Differential and Difference Equations, Gyõr, 1996.

[20] T. Szabados. Lebesgue-type stochastic integrals. 4th World Congress of the Bernoulli Society, Vienna, 1996.

[21] A.Z. Szendrovits and T. Szabados. On the 'Least cost safety inventory for large transfer lines'. Omega International Journal of Management Science, 25, 483-487, 1997.

[22] T. Szabados, G. Tusnády., L. Varga, T. Bakács. A stochastic model of B cell affinity maturation and a network model of immune memory. Manuscript, 1998. (word .doc file) Figures in excel files: Fig1 Fig2 Fig3 Fig4 Fig5 Fig6 Fig7 Fig8 Fig9 Fig10

[23] T. Szabados. Strong approximation of fractional Brownian motion by moving averages of simple random walks. Stochastic Processes and their Applications, 92, 31-60, 2001. MR 2002b:60070. arxiv.org/abs/1008.1702

[24] T. Bakács, T. Szabados, L. Varga and G. Tusnády. Axioms of mathematical immunology. Studia Scientiarum Mathematicarum Hungarica, 38, 13-43, 2001. MR1877767.

[25] T. Bakács, J. Mehrishi, T. Szabados, L. Varga and G. Tusnády. Some aspects of complementarity in the immune system: A bird's eye view. International Archives of Allergy and Immunology, 126, 23-31, 2001.

[26] B. Székely, T. Szabados. Strong approximation of continuous local martingales and stochastic integrals by simple random walks. Manuscript, 2001. (pdf file)

[27] T. Szabados, B. Székely. An exponential functional of random walks. Journal of Applied Probability, 40, 413-426, 2003. MR 2004c:60099. arxiv.org/abs/1008.1512

[28] B. Székely, T. Szabados. Strong approximation of continuous local martingales by simple random walks. Studia Scientiarum Mathematicarum Hungarica, 41, 101-126, 2004. MR2082065. arxiv.org/abs/1008.1506

[29] T. Szabados, B. Székely. Moments of an exponential functional of random walks and permutations with given descent sets. Periodica Mathematica Hungarica, 49, 131-139, 2004. MR2092788. arxiv.org/abs/1008.1514

[30] T. Szabados, B. Székely. An elementary approach to Brownian local time based on simple, symmetric random walks. Periodica Mathematica Hungarica, 51, 79-98, 2005. MR2180635. arxiv.org/abs/1008.1701

[31] T. Bakács, J.N. Mehrishi, T. Szabados, L. Varga, M. Szabó and G. Tusnády. T cells survey the stability of the self: a testable hypothesis on the homeostatic role of TCR-MHC interactions. International Archives of Allergy and Immunology, 144, 171-182, 2007.

[32] T. Szabados, B. Székely. Stochastic integration based on simple, symmetric random walks. Journal of Theoretical Probability, 22, 203-219, 2009. MR2472013. arxiv.org/abs/0712.3908

[33] B. Kjos-Hanssen, T. Szabados. Kolmogorov complexity and strong approximation of Brownian motion. Proceedings of the American Mathematical Society 139, 3307-3316, 2011. see here.

[34] T. Szabados, T. Bakács. Sufficient to recognize self to attack non-self: Blueprint for a one-signal T cell modell. Journal of Biological Systems, 19, 299-317, 2011. (A preliminary version: arxiv.org/abs/1007.5035)

[35] T. Szabados. Self-intersection local time of planar Brownian motion based on a strong approximation by random walks. Journal of Theoretical Probability. 2012, electronic version: DOI: 10.1007/s10959-011-0351-x, arxiv.org/abs/1008.1006