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1 Introduction

We say that a set system F ⊆ 2[n] shatters a given set S ⊆ [n] if 2S =

{F ∩ S : F ∈ F}. In general, a set system F shatters at least |F| sets. This

inequality was proved by various authors (Aharoni and Holzman [10], Pajor

[11], Sauer [12], Shelah [13]), and studied by many others. We concentrate on

the case of equality. A set system is called S-extremal if it shatters exactly |F|
sets. Our aim is to characterize these combinatorial objects and to study their

properties. In contrast to earlier studies, which used mostly combinatorial

methods, we take a different approach and develop algebraic methods based

on the algebraic interpretation of shatteringm, introduced by Anstee, Rónyai

and Sali in [1]. When considering a set system as a set of characteristic

vectors, one can define the corresponding vanishing ideal of polynomials.

We study the standard monomials and Gröbner bases of these ideals. Of

course, later the precise definitions will be given, for the present we say that

a Gröbner basis of an ideal of polynomials is a special generating system,

possessing good properties, and the standard monomials of an ideal form

a basis - also possessing good properties - of the corresponding quotient

structure. They both will be useful to characterize S-extremal set systems.

After the introduction, as a preparation, we first present general results

concerning the topic. In Section 2 we investigate the notion of standard

monomials and Gröbner bases. We present some well known results, all of

them can be found in [7], [9] and in Hungarian in [8]. In Section 3 we study

the special case of vanishing ideals. We present the lex game, introduced by

Felszeghy, Ráth and Rónyai, which gives a good description of the standard

monomials of vanishing ideals. We investigate some results from [2], among

others a fast, linear time, algorithm for computing the lexicographic standard

monomials.

In the second part of our study we deal with the special case of ideals

vanishing on 0 − 1 vectors, i.e. with the case of set systems. In Section 4

we introduce the already mentioned notion of shattering and extramality.

First we present our preliminary results concerning shattered sets and one of

our main results, a characterization of extremal set systems using Gröbner
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bases. After this we give an efficient algorithm that determines whether a

set system F ⊆ 2[n] is extremal or not. The running time of the algorithm is

O(n2|F|), which is an improvement over the previous bound of Greco in [6].

In Section 5 we deal with different set system operations and their relation

to extremality. The most common operation, the downshift operation, is

discussed in Section 6. Downshifting compresses the set system toward zero

in a specific coordinate. It was already studied by various authors, among

others by Bollobás and Radcliffe in [3]. After presenting their results we prove

several propositions necessary for our own results concerning downshifts and

standard monomials.

There is a straightforward graph theoretical interpretation of the topic.

Our study in Section 7 is mainly based on the the work of Greco in [6].

We discuss the properties of isometrically and strongly isometrically embed-

ded set systems, give a novel proof for one statement proposed by Greco

and develop own results as well. The main result of the section uses no-

tions from both, [3] and [6]. In Section 8 we make some remarks on the

Vapnik-Chervonenkis dimension, to present a widely known and used notion

in mathematics which is in close connection with the notion of shattering. We

give a new algorithm using standard monomials for computing the Vapnik-

Chervonenkis dimension of a set system with the same time bound like in

[15].

The last part of our study deals with the generalization of our results

to the case when the vectors are not necessarily binary. We generalize the

notion of shattering like Shinohara in [22] and the downshift operation like

it was introduced by Bollobás, Leader and Radcliffe in [5]. Several of our

results can be generalized, among others one of our main results concerning

the standard monomials of a vanishing ideal.
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2 Standard monomials and Gröbner bases

Before getting started with the main definitions, we introduce some nota-

tions. Throughout the study F will stand for an ordinary field, and n will be

a positive integer. The set {1, 2, . . . , n} will be referred to shortly as [n], the

power set of it as 2[n], the family of subsets of size k as [n]k and for the ring of

polynomials in n variables over F we will use the usual notation F[x1, . . . , xn].

A monomial is a polynomial in F[x1, . . . , xn] of the form xw1
1 xw2

2 . . . xwn
n .

The ring of polynomials F[x1, . . . , xn] can be considered as a vector space

over F with a natural basis that consists of the monomials.

For vectors we use boldface letters, and we denote their coordinates by the

same letter indexed by respective numbers, e.g. w = (w1, . . . , wn). Similarly,

we will note by f(x) the polynomial f(x1, x2, . . . , xn) ∈ F[x1, . . . , xn] and by

xw the monomial xw1
1 xw2

2 . . . xwn
n .

2.1 Term orders

Definition 2.1 The relation ≺ is a term order on the monomials if it is a

linear order with 1 as minimal element and it is monotone with respect to

multiplication.

We will always talk about standard monomials with respect to a fixed

≺ term order. For different term orders the standard monomials may differ.

This fact will be essential in some of our future results.

An example of a term order is the lexicographic ordering of monomials.

We say that xw is smaller than or equal to xu according to the lexicographic

order if for the first index i such that wi 6= ui, we have wi < ui. This is

clearly a term order.

For example for n = 2 the lexicographic ordering of the first some mono-

mials is the following

1 ≺ x2 ≺ x22 ≺ x32 · · · ≺ x1 ≺ x1x2 ≺ x1x
2
2 ≺ . . . x21 ≺ x21x2 ≺ x21x

2
2 ≺ . . .
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By reordering the variables, we can get another lexicographic order, so

we will talk about a lexicographic term order based on some permutation of

the variables x1, x2, . . . , xn.

Generally we can say that term orders are in close connection with the

divisibility of monomials:

Proposition 2.1 (Dickson’s lemma, see [7, p.21].) Every ≺ term order is

the refinement of the divisibility between monomials and is a well-ordering.

Proof: For the first part, let us suppose that xu|xv. Then xv

xu is a monomial

as well, so 1 � xv

xu . And then when multiplying by xu we get the desired

inequality.

For the proof of the second part see [7, p.21]. �

2.2 Standard and leading monomials

Let us fix a ≺ term order. The leading monomial of a nonzero polynomial

f(x) ∈ F [x] is the greatest monomial according to ≺ appearing in f(x) with

nonzero coefficient, and is denoted by lm(f(x)). For an ideal of polynomials

I we denote by Lm(I) the set of leading monomials of the polynomials in I:

Lm(I) = {lm(f(x)) : f(x) ∈ I, f 6= 0}.

A monomial which is not a leading monomial of any polynomial in I is

called a standard monomial. The set of standard monomials is denoted by

Sm(I):

Sm(I) = {xw ∈ F [x]}\Lm(I) = {xw : @f(x) ∈ I, for which lm(f) = xw}.

The standard monomials of an ideal will be henceforth of great impor-

tance. Now we will discuss some general and well known properties of stan-

dard monomials.

Definition 2.2 A set S ⊆ {xw ∈ F [x]} is downward (upward) closed with

respect to divisibility or shortly a down-set (up-set) if xw ∈ S and xu|xw

(xw|xu) imply that xu ∈ S.
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Proposition 2.2 Sm(I) is a down-set and Lm(I) is an up-set.

Proof: If xv|xu and xv ∈ Lm(I), then there exists a polynomial p(x) in I

with xv as its leading monomial. Since I is an ideal, and xu

xv is a monomial,

q(x) = xu

xv p(x) ∈ I. However, because of the properties of a term order, the

leading monomial of q(x) is xu, and so xu ∈ Lm(I). The other part of the

statement follows from the fact that the complementary of an up-set is a

down-set. �

Proposition 2.3 The canonical image of Sm(I) is a basis of F(x)/I as an

F vector space.

Proof: Clearly there are no two elements of Sm(I) belonging to the same

coset, otherwise there would be xu1 ,xu2 ∈ Sm(I) for which f(x) = xu1 −
xu2 ∈ I, but none of these two monomials is a leading monomial of a polyno-

mial in I. Similarly, we can see that the cosets represented by the elements

of Sm(I) are linearly independent.

Now let us take an arbitrary coset from the quotient ring represented by f(x).

There are two possibilities. If lm(f(x)) is a standard monomial, then we can

continue with f(x) − b1lm(f(x)), where b1 is the coefficient of lm(f(x)).

If this is not the case, then there exists a polynomial g1(x) ∈ I such that

lm(g1(x)) = lm(f(x)). Now we can continue with f1(x) = f(x) − b1
c1
g(x),

where c1 is the coefficient of lm(f(x)) in g1(x). For this we have lm(f1(x)) ≺
lm(f(x). Since there is no infinite downward chain of monomials starting

with lm(f(x)) according to the ≺ term order, this process terminates in

finitely many steps with f(x) = s(x) + g(x), where s(x) contains just stan-

dard monomials and g(x) ∈ I. So the coset represented by f(x) is the sum

of the cosets represented by the monomials in s(x) in the quotient ring,

that is, Sm(I) generates F(x)/I as an F vector space. Together with linear

independence, this means that Sm(I) is a basis of it as well. �

2.3 Gröbner bases

Definition 2.3 Let I be an ideal of F[x]. For a fixed term order, a finite

subset G ⊆ I is a Gröbner basis of I if for every f ∈ I there exists a g ∈ G
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such that lm(g) divides lm(f).

Gröbner bases are of great importance not only in connection with ex-

tremal set systems. They were introduced in 1965 by Austrian mathemati-

cian Bruno Buchberger in his Ph.D. thesis. He was motivated by questions

from commutative algebra and algebraic geometry, but since then Gröbner

bases have been applied in various fields of mathematics e.g. code theory,

symbolic computation, automatic theorem proving, integer programming,

statistics, partial differential equations and numerical computations. A good

survey is provided by [7], [9] or in Hungarian by [8].

Now we discuss some useful facts about Gröbner bases.

Proposition 2.4 A Gröbner basis of an ideal is a generating system of it as

well.

Proof: Let G be a Gröbner basis of the ideal I, and 0 6= f(x) ∈ I an

arbitrary element. Since G is a Gröbner basis, there exists a polynomial

g1(x) ∈ G such that lm(g1(x))|lm(f(x)). With r1(x) = lm(f(x))
lm(g1(x))

and f1(x) =

f(x)− b1r1(x)g1(x), where b1 is the coefficient of lm(f(x)) in f(x), we have

lm(f1(x)) ≺ lm(f(x)), and we can continue this with f1(x). Since there

cannot be an infinite downward chain of monomials starting with lm(f(x))

according to the ≺ term order, this process terminates in finitely many steps

giving an expression

f(x) = b1r1(x)g1(x) + b2r2(x)g2(x) + · · ·+ bmrm(x)gm(x),

where gi(x) ∈ G. So G is indeed a generating system of I. �

The question arises, whether every nonzero ideal has a Gröbner basis.

The answer is fortunately yes, but for this we need the notion of reduction.

Reduction

Let f, g ∈ F [x], and suppose that there is one monomial xw in f with

nonzero coefficient cf that is divisible by lm(g). Let the coefficient of lm(g)

in g be cg and let
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f̂(x) = f(x)− cf ·xw

cg ·lm(g)
g(x).

Since the leading monomial of xw

lm(g)
g(x) is xw, in f̂ it is replaced by a

monomial strictly less then xw. This operation is called reduction.

If G is a finite set of polynomials and f(x) ∈ F [x] is an arbitrary polyno-

mial, we say that f is reduced with respect to G if there is no monomial in f

with nonzero coefficient that is divisible by lm(g) for some g ∈ G. Now take

an arbitrary f and reduce it with the elements of G, every time replacing

the greatest monomial with smaller ones, until we get a reduced polynomial

with respect to G. Since there is no infinite downward chain of monomials

starting with lm(f), this process terminates in finitely many steps ending up

with a factorization

f(x) =
m∑
i=1

gi(x)hi(x) + f̂(x),

where G = {g1, . . . , gm}, h1, . . . , hm ∈ F [x], f̂ is reduced to G and

lm(gihi) � lm(f) for every index i. We say that f̂ is the reduced version of

f if such polynomials h1, h2, . . . , hm exist.

Example 2.1 Let g1(x1, x2) = x21x
2
2 + x1, g2(x1, x2) = x21x

2
2 + x2, G =

{g1, g2}, f(x1, x2) = x21x
2
2 and ≺ the standard lexicographic order. If we

reduce f with g1 we get −x1, if with g2 we get −x2. It is easy to see that

both, −x1 and −x2 are reduced with respect to G.

This example shows that the reduced version of a polynomial f(x) is not

necessary unique with respect to a fixed set of polynomials G. However, if

G is a Gröbner basis of the ideal I, this cannot happen. As a corollary of

Proposition 2.3 one can prove the following:

Proposition 2.5 If G is a Gröbner basis of the ideal I, then the reduced

version of a polynomial f(x) ∈ F [x] with respect to G is unique, and f ∈ I
if and only if the reduced version is 0. Specially 〈G〉 = I holds.
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Proof: See [7, p.32-34]. �

Moreover, this statement can be reversed:

Proposition 2.6 If G ⊆ I is finite, and every polynomial f ∈ I can be

reduced to 0 by G, then G is a Gröbner basis of I.

If G ⊆ I is finite, and every polynomial f ∈ F [x] has a unique reduced

version with respect to G, then G is a Gröbner basis of I.

Proof: See [7, p.32-34]. �

As a consequence of these propositions, one can conclude the following,

very important statement:

Proposition 2.7 Every nonzero ideal I has a Gröbner basis.

Proof: See [7, p.34]. �

Obviously the Gröbner basis of a nonzero ideal I is not unique. For

example by adding finitely many polynomials from I to G, the resulting set

of polynomials will be henceforward a Gröbner basis of I. For uniqueness we

need some more notions.

Reduced Gröbner basis

Definition 2.4 If G is a Gröbner basis of some nonzero ideal I, and every

polynomial g ∈ G has leading coefficient 1 and is reduced with respect to

G\{g}, then G is called a reduced Gröbner basis.

Reformulating this, we get that a Gröbner basis G is reduced if and

only if every polynomial g ∈ G apart from lm(g) consists only of standard

monomials and has 1 as leading coefficient.

Proposition 2.8 Every nonzero ideal I has a unique reduced Gröner basis

with respect to a fixed term order.

Proof: See [7, p.48]. �
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3 Standard monomials of vanishing ideals

In this section we introduce a special ideal of polynomials, and study its

properties.

Let V ⊆ Fn be a finite set of vectors, and denote by I(V ) the set of

polynomials vanishing on V , i.e.:

I(V ) = {f(x) ∈ F [x] : f(y) = 0 for all y ∈ V }.

It is easy to see that I(V ) is an ideal in F [x].

Proposition 3.1 dimFF(x)/I(V ) = |V |

Proof: Since V is finite, by interpolation we get that F(x)/I(V ) is isomor-

phic to the space of functions from V to F. But the space of these functions

has dimension |V |. �

This, together with Proposition 2.3 imply that |Sm(I(V ))| = |V |. This

equality will be essential in some of our further results.

From now on we deal just with this case, thus with vanishing ideals.

3.1 Lex game

Now we present the lex game, introduced by Felszeghy, Ráth and Rónyai

in [2]. This twosome game can be used to calculate the standard monomials

of the vanishing ideal I(V ) for a fixed lexicographic term order.

Without loss of generality we can suppose that ≺ is the standard lexico-

graphic term order, i.e. x1 � x2 � · · · � xn.

The game is defined for a fixed, nonempty, finite set V ⊆ Fn and a

vector w = (w1, . . . , wn) ∈ Nn, and for these fixed parameters is denoted by

Lex(V ; w).

At first, one of the players, Stan, thinks of an element y = (y1, . . . , yn) of

V . The task of the other player, Lea, is to find out one coordinate of y. The

game goes on as follows. First Lea tries to find out yn by guessing at most

wn times. If she succeeds, she wins, if not, then yn is revealed to her by Stan.
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In the next turn Lea continues by guessing for yn−1 at most wn−1 times, etc..

The game ends if Lea finds out yi for some index i, and so she wins, or if

Stan reveals y1 (in this case Stan is the winner). Both of the players know

the parameters V and w.

It is useful to extend the game for the case V = ∅. Later we will see that

the reasonable choice in this case is to define Lea as the winner of the lex

game Lex(∅; w) for all w ∈ Nn.

Now, for better understanding, we introduce some useful notations. For

fixed β ∈ F let Vβ be the elements of V ending in β, i.e.

Vβ = {(v1, . . . , vn−1) ∈ Fn−1 : (v1, . . . , vn−1, β) ∈ V }.

It is clear that if in the lex game Lex(V ; (w1, . . . , wn−1, wn)) Lea did not

find out yn, then the game continues just like if they were starting a lex game

Lex(Vyn ; (w1, . . . , wn−1)). Generally for βi, βi+1, . . . , βn ∈ F let

Vβn,βn−1,...,βi = {(v1, . . . , vi−1) ∈ Fi−1 : (v1, . . . , vi−1, βi, . . . , βn) ∈ V },

and if Lea did not find out none of yn, yn−1, . . . , yi, then they continue by

playing a lex game Lex(Vyn,yn−1,...,yi ; (w1, . . . , wi−1)).

Let {α1, . . . , αk} ⊆ F the set of all field elements which occur in any

of the elements in V . (Since V is finite, such a finite set exists.) Clearly

V ⊆ {α1, . . . , αk}n and we can suppose that all guesses of Lea are from the

set {α1, . . . , αk}. The complementary of V in {α1, . . . , αk}n will be denoted

by V c.

Winning strategies

Now we will study, what kind of winning strategies may Stan and Lea

have. At first sight it is just Lea, who is playing, however, with a small

modification, one can introduce a winning strategy for Stan as well. For this

we allow him a bit of cheating. More precisely, we suppose that he actually

does not think of a fixed y ∈ V , he just answers NO for all guesses of Lea

until there remains an element y ∈ V , which is consistent with all of his

answers. In this sense we can talk about a winning strategy for Stan as well.
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Proposition 3.2 If n > 1, then Stan has a winning strategy in the lex

game Lex(V ; (w1, . . . , wn−1, wn)) if and only if there exist at least wn + 1

elements β ∈ {α1, . . . , αk} such that he has a winning strategy for the lex

game Lex(Vβ; (w1, . . . , wn−1)). Similarly, for n > 1, Lea has no winning

strategy for the lex game Lex(V ; (w1, . . . , wn−1, wn)) if and only if there ex-

ist at least wn + 1 elements β ∈ {α1, . . . , αk} such that she has no winning

strategy for the lex game Lex(Vβ; (w1, . . . , wn−1)).

Proof: See [2]. �

One can prove that Stan has a winning strategy if and only if Lea does

not have one. This means that for all parameters either Lea or Stan has a

winning strategy, i.e. the parameters of the game determine who wins the

game, as long as both players are playing the best possible. Thus instead

of talking about winning strategies, we can talk about the winner of the lex

game Lex(V ; w).

Who wins the lex game?

In the following we will establish a connection between the lex game and

the lexicographic standard and leading monomials.

Theorem 3.1 Let V ⊆ Fn a finite set of points and w ∈ Nn. Lea wins the

lex game Lex(V ; w) if and only if xw ∈ Lm(I(V )).

This theorem implies immediately another:

Theorem 3.2 Let V ⊆ Fn a finite set of points and w ∈ Nn. Stan wins the

lex game Lex(V ; w) if and only if xw ∈ Sm(I(V )).

The proof of them can be found in [2].
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Properties of the lexicographic standard monomials of vanishing

ideals

Now we present some important combinatoric properties of the lexico-

graphic standard monomials of vanishing ideals. All of them can be found in

[2].

If we analyze the lex game, we can notice that it is independent from F
and from the berth of V in it. It is depending only on the equality of points

in some coordinates. From this we can conclude the following statement:

Proposition 3.3 Let F̂ be an arbitrary field, and suppose that we are given

a set of injective functions ϕj : {α1, . . . , αk} → F̂, j = 1, 2, . . . , n. Let V̂ be

the image of V , i.e.

V̂ = {(ϕ1(v1), . . . , ϕn(vn)) : (v1, . . . , vn) ∈ V }.

Now the lex standard monomials of V are the same in F [x] as those of V̂ in

F̂[x]. �

Specially if V ⊆ {0, 1}n, then Sm(I(V )) is the same for all fields F.

Proposition 3.3 also means that without loss of generality we can suppose

that for example F = R and V ⊆ {0, 1, . . . , k − 1}.
Theorems 3.1 and 3.2 together with Proposition 3.2 imply another very

important property of lexicographic standard monomials of vanishing ideals.

We will refer to it as the recursive property.

Proposition 3.4

(i) For n > 1 we have xw ∈ Sm(I(V )) if and only if there are at least

wn + 1 elements β ∈ {α1, . . . , αk} such that xw1
1 . . . x

wn−1

n−1 ∈ Sm(I(Vβ)).

(ii) For n > 1 we have xw ∈ Lm(I(V )) if and only if there are at least

k−wn elements β ∈ {α1, . . . , αk} such that xw1
1 . . . x

wn−1

n−1 ∈ Lm(I(Vβ)).

From this one can easily see that the degree of any variable in a lexico-

graphic standard monomial can be at most k − 1, i.e.

Sm(I(V )) ⊆ {xw : w ∈ {0, 1, . . . , k − 1}n}.
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Given the lexicographic standard and leading monomials of a vanishing

ideal I(V ) one can compute them for I(V c) as well using the following propo-

sition.

Proposition 3.5 For every monomial xw we have xw1
1 . . . xwn

n ∈ Sm(I(V ))

if and only if xk−1−w1
1 . . . xk−1−wn

n ∈ Sm(I(V c)).

Proof: The proof is based on the lex game. See [2]. �

A fast algorithm

Based on Proposition 3.4, we can construct a very fast algorithm for com-

puting the standard monomials for a given set of points V ⊆ {α1, . . . , αk}n

(V ⊆ {0, 1, . . . , k− 1}n). First let us build up a prefix tree, also called a trie,

from the elements of V . (For the precise definitions see [19] or in Hungarian

[20].) If we take a vertex v from the ith level (a vertex at distance i from

the root) and take the subtree rooted at v, then it will be the prefix tree

of some set Vβn,βn−1,...,βn+1−k
. Let us notice that on the (n − 1)th level there

will be one dimensional sets, corresponding to the case n = 1. For this case

Proposition 3.4 gives that xl ∈ Sm(I(V )) if and only if l < |V |. Thus we

can easily compute the standard monomials for the sets on the (n − 1)th

level, and using the recursive property, the standard monomials of the sets

on higher levels. At the end we get Sm(I(V )).

Felszeghy, Ráth and Rónyai showed in [2] that with a more appropriate

data structure one can do this in linear time.

Theorem 3.3 Let k be the maximal degree of the trie and |V | = m. There

is an algorithm, which computes Sm(I(V )) in O(nmk) time. If we assume

that there exists an ordering on the coordinate set of V , which can be tested

in constant time then the algorithm makes O(nm log k) steps.

Proof: See [2]. �

Notice that in our case the size of the input is also nm log k, so the

algorithm is really linear.
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4 Shattering

In this section we first introduce the central notion of our study, shattering.

Definition 4.1 A set system F ⊆ 2[n] shatters a given set S ⊆ [n] if 2S =

{F ∩ S : F ∈ F}. The family of subsets of [n] shattered by F is denoted by

Sh(F).

The size of Sh(F) will play a key role in this paper. The following propo-

sition gives a very surprising lower bound:

Proposition 4.1 (See [1].) |Sh(F)| ≥ |F|.

Proof: We will prove this statement by induction on n. For n = 1 the

statement is trivial. Now suppose that n > 1. We construct 2 new set

systems analogously to the previous section:

F0 = {F : F ∈ F ;n /∈ F},
F1 = {F\{n} : F ∈ F ;n ∈ F}.

Clearly |F| = |F0| + |F2|, and by induction we have |Sh(F0)| ≥ |F0| and

|Sh(F1)| ≥ |F1|. It is obvious that Sh(F0) ∪ Sh(F1) ⊆ Sh(F). However, if

S ∈ Sh(F0)∩Sh(F1), then according to the definition of F0 and F1 we have

S ∪ {n} ∈ Sh(F). So altogether we have

|Sh(F)| ≥ |Sh(F0)|+ |Sh(F1)| ≥ |F0|+ |F1| = |F|. �

Thus every set system F shatters at least |F| sets. This inequality was

proved by various authors (Aharoni and Holzman [10], Pajor [11], Sauer [12],

Shelah [13]), and studied by many others. We are interested in the case of

equality, when a set system shatters exactly |F| sets:

Definition 4.2 The set system F is called S-extremal if |Sh(F)| = |F|.

From now on S-extremal set systems will be referred to as extremal. A

good survey on extremal set theory is provided by [4]. When considering this
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definitionm, one can make a useful observation in connection with Proposi-

tion 4.1. In its proof we have seen a decomposition of F and a recursion-like

inequality for the sizes of the families of sets shattered by them. From this

inequality we can conclude the following corollary:

Corollary 4.1.1 If F is extremal, then so is F0 and F1.

Our aim is to characterize somehow extremal set systems. Before getting

started with this, we first present some interesting results in connection with

shattering.

We start with an immediate consequence of Proposition 4.1, also known

as Sauer’s lemma, which has found applications in a variety of contexts,

including applied probability.

Proposition 4.2 (See [12], [13], [14].) Let F be a family of subsets of [n]

with no shattered set of size k. Then

|F| ≤

(
n

k − 1

)
+

(
n

k − 2

)
+ · · ·+

(
n

0

)
,

and this inequality is best possible.

Proof: Clearly Sh(F) is a down-set, and since there is no shattered set of

size k, we have

Sh(F) ⊆ [n]k−1 ∪ [n]k−2 ∪ · · · ∪ [n]0,

thus

|Sh(F)| ≤

(
n

k − 1

)
+

(
n

k − 2

)
+ · · ·+

(
n

0

)
.

Combining this with Proposition 4.1 we get the desired inequality, where

with F = [n]k−1 ∪ [n]k−2 ∪ · · · ∪ [n]0 equality is possible. �

For uniform families Frankl and Pach in [18] prooved the following:
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Proposition 4.3 Let F be a uniform family of subsets of [n], i.e. F ⊆ [n]l
for some l, with no shattered set of size k. Then

|F| ≤

(
n

k − 1

)
.

Proof: See [18]. �

To finish with, we present a version of shattering, introduced by Anstee,

Rónyai and Sali in [1] that does always result in equality in a version of

Proposition 4.1. We define the concept of order shattered in an inductive

way.

Definition 4.3 We say that the set S = {s1, s2, . . . , sd} ⊆ [n] is order shat-

tered by a given family F ⊆ 2[n] if the following holds: in the case S = ∅
the family F has to contain a set; when |S| > 0 and s1 < s2 < · · · < sd,

then there are 2d sets in F that can be divided into two families F0 and

F1 such that sd /∈ F0 for all F0 ∈ F0, sd ∈ F1 for all F1 ∈ F1, and both

F0,F1 order shatter the set S\{sd}, furthermore T ∩ F0 = T ∩ F1 holds for

T = {sd + 1, sd + 2, . . . , n} and for all F0 ∈ F0, F1 ∈ F1.

Let osh(F) be the family of sets order shattered by F . It is easy to see

that osh(F) is a down-set for every F ⊆ 2[n]. For the size of osh(F) Anstee,

Rónyai and Sali proved in [1] the following:

Proposition 4.4 Let F be a family of subsets of [n]. Then

|osh(F)| = |F|.

Proof: See [1]. �

For further definitions and the algebraic interpretation of osh(F) see [1]

and as an example of its applications see [16].
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4.1 Algebraic approach

There are many algebraic methods that play an important role in com-

binatorics. For such methods see [21]. When studying extremal set systems

it turned out that standard monomials can be of great help. In the fol-

lowing sections we deal with the standard monomials of vanishing ideals for

the case k = 2, thus we are given a set V ⊆ {0, 1}n, and we are interested

in Sm(I(V )). If we consider the elements of V as characteristic vectors of

subsets of [n], then V can be viewed as a set system of 2[n].

For a subset H ⊆ [n] denote by xH the monomial
∏

i∈H xi; in particular,

x∅ = 1. Using this notation, a set system V ⊆ 2[n] can be viewed as a set of

monomials.

According to these correspondences, from now on, it will depend on the

context, whether we are considering a set of vectors, sets or monomials, and

all corresponding definitions are naturally extended to all three cases.

Previously we have already discussed the properties of standard mono-

mials in the general case. Now let us recall some of them for the case of

vanishing ideals and k = 2. For F ⊆ {0, 1}n (F ⊆ 2[n]) we have:

• |Sm(I(F))| = |F|

• Sm(I(F)) ⊆ {xw : w ∈ {0, 1}n} = {xH , H ⊆ [n]} (Sm(I(F)) ⊆ 2[n])

• Sm(I(F)) = Sm(I(F0)) ∪ Sm(I(F1)) ∪ {D ∪ {n} : D ∈ Sm(I(F0)) ∩
Sm(I(F1))} (recursive property - Proposition 3.4)

• Sm(I(F)) can be computed in O(n|F|) time (Theorem 3.3)

Now we present some statements as a preparation to our main results. We

investigate the connection between the standard monomials and the family

of shattered sets. For extremal families this connection clearly must be inde-

pendent in some sense of the term order, since the shattered sets themselves

do not depend on the term order either.

Proposition 4.5 If xH ∈ Sm(I(F)) for some term order, then H ∈ Sh(F).
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Proof: Suppose that H is not shattered by F . This means that there exists

a G ⊆ H for which there is no F ∈ F such that G = H ∩ F . Consider the

polynomial f(x) = xG(
∏

j∈H\G(xj − 1)). Denote the characteristic vector of

the set F by vF . Now f(vF ) 6= 0 only if H ∩ F = G. According to our

assumption, there is no such set F ∈ F , so f(x) vanishes on F , and so it is

in I(F). This implies that xH ∈ Lm(I(F)) for all term orders, and so we

got a contradiction. �

This means that Sm(I(F)) ⊆ Sh(F) for every term order. We now

investigate the other direction:

Proposition 4.6 If H ∈ Sh(F), then there is a lexicographic term order for

which we have xH ∈ Sm(I(F)).

Proof: We prove that a lexicographic order where the variables of xH are

the smallest satisfies the condition. Suppose the contrary, namely that xH ∈
Lm(I(F)) for this term order. Then there is a polynomial f(x) vanishing

on F with leading monomial xH . Since the variables in xH are the smallest

according to this term order, there cannot appear any other variable in f(x).

So f(x) has the form
∑

G⊆H αGxG. Take a subset G0 ⊆ H which appears

with a nonzero coefficient in f(x), and is minimal. F shatters H, so there

exists a set F0 ∈ F such that G0 = F0 ∩H. For this we have xG0(vF0) = 1,

and since G0 was minimal, xG(vF0) = 0 for every other set G. So∑
G⊆H

αGxG(vF0) = αG0 6= 0.

But on the other hand, since f(x) ∈ I(F), f(vF0) = 0. This contradiction

proves the statement. �

Combining the last two results we have

Sh(F) =
⋃

lex orders

Sm(I(F)).
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Even though Sm(F) can be computed fast for every term order according

to Theorem 3.3, this formula does not give an efficient way for computing

Sh(F), because the number of lexicographic term orders is n!. However for

extremal set systems we obtain the following very important corollary:

Corollary 4.6.1 F is extremal if and only if Sm(I(F)) is the same for all

lexicographic term orders.

Proof: Suppose that F is extremal, i.e. |F| = |Sh(F)|. Since Sh(F) =⋃
lex orders Sm(I(F)) and for every term order |Sm(I(F))| = |F|, there can-

not be two lexicographic term orders for which the set of standard monomials

differ, otherwise the first equality could not hold. The other direction can be

proved in a similar way. �

From this corollary we can make another useful observation. Suppose that

F ⊆ 2[n] is a down-set. From the definition of shattering one can easily see

that F shatters all of its elements and no other set, that is Sh(F) = F and so

F is extremal. From this one can conclude that in this case Sm(I(F)) = F
holds as well. In particular, for a down-set F , the standard monomials, the

family of sets shattered by F and F coincide.

4.2 Result on shattering

For a pair of sets G ⊆ H ⊆ [n] define the following polynomial

fH,G = (
∏
j∈G

xj)(
∏

i∈H\G

(xi − 1)).

Proposition 4.7 If S /∈ Sh(F), then there exists a set H ⊆ S such that

fS,H(vF ) = 0, ∀ F ∈ F , i.e. fS,H ∈ I(F).

Proof: The statement was already proved in Proposition 4.5. �

Proposition 4.8 If the set S in the previous proposition is minimal (in the

sense that all proper subsets S ′ of S are in Sh(F)) and F is extremal, then

the corresponding H is unique.
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Proof: Suppose that there are two different sets H1, H2 ⊆ S for which

fS,Hi
∈ I(F) for i = 1, 2. Then g = fS,H1 − fS,H2 ∈ I(F). Let us fix a term

order. For this term order lm(g) = xS′ with a set S ′  S. F is extremal, so

Sm(I(F)) = Sh(F). But xS′ is not a standard monomial and therefore it

is not shattered by F . This contradicts with the minimality of S, hence the

corresponding H is unique. �

When reversing this statement one can get another characterization of

extremal set systems:

Proposition 4.9 If for all but |F| sets S ⊆ [n] there exists a set H ⊆ S for

which fS,H ∈ I(F), then F is extremal.

Proof: fS,H ∈ I(F) and lm(fS,H) = xS holds for all term orders. So for

all but |F| sets S ∈ Lm(I(F)) for all term orders. Fix a term order, and

consider the set X of standard monomials with respect to this term order.

Then X must be Sm(I(F)) for all term orders, from which it follows by

Corollary 4.6.1 that F is extremal. �

Now we have made all necessary preparations to present our first result

together with its proof. We have characterized extremal set system using

Gröbner bases. To our knowledge, this is the first time that Gröbner bases

are used for characterizing extremal set systems.

Theorem 4.1 F ⊆ 2[n] is extremal if and only if there are polynomials of

the form fS,H , which together with {x2i − xi, i ∈ [n]} form a Gröbner basis of

I(F) for all term orders.

Proof: For the first part, suppose that F is extremal. Consider all minimal

sets S ⊆ [n], S /∈ Sh(F) with the corresponding unique polynomials fS,H .

Denote the set of these sets by S and fix a term order. We prove that these

polynomials, together with {x2i − xi, i ∈ [n]}, form a Gröbner basis of I(F).

In order to show this we have to prove that for all monomials m ∈ Lm(I(F)),

there is a monomial in {xS, S ∈ S} ∪ {x2i , i ∈ [n]} that divides m. If there
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is a variable in m with degree higher then 1, then this is trivial. Since

F is extremal, we have Sm(I(F)) = Sh(F), and this, together with the

minimality of the sets in S, proves the statement in the case when m is of

the form xM .

For the other direction, suppose that there is a common Gröbner basis G for

all term orders of the desired form. Denote the collection of the sets S in

the polynomials of the form fS,H in G by S. Since the leading monomial of

fS,H is xS for all term orders, Lm(G) = {xS, S ∈ S} ∪ {x2i , i ∈ [n]}. This

fact, together with the properties of a Gröbner basis, imply that Sm(F) =

{xF , F ⊆ [n],@S ∈ S such that S ⊆ F} for all term orders. So Sm(I(F))

is the same for all term orders, which means by Corollary 4.6.1 that F is

extremal. �

4.3 Testing extremality

The importance of any good characterization, in addition to its mathe-

matical beauty, is the possibility of an efficient algorithm. Along this line of

thinking we propose two algorithms for deciding the extremality of a set sys-

tem. To our best knowledge neither of them have been presented so far. The

first one is a straightforward implementation of Theorem 4.1. The second

one is simple as well, moreover it has a very good running time.

Test #1

Let F be a set system, and let us fix a lexicographic term order ≺. For a

lexicographic term order Sm(F) can be computed fast (see [2]). Suppose that

F is extremal. In this case, according to Corollary 4.6.1, Sm(I(F)) is the

same for all term orders, so for ≺ in particular, we have Sm(I(F)) = Sh(F).

From Theorem 4.1 we know that there is a Gröbner basis of a special form,

and we can construct it from Sh(F). Take the minimal sets, S for which xS
is not in Sm(I(F)), and denote their set by S. For every S ∈ S there must

be a (unique) set H ⊆ S such that fH,S ∈ I(F). Now these polynomials,

together with {x2i − xi : i ∈ [n]}, form a Gröbner basis of I(F). According

to this, the test runs as follows:
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• Compute Sm(I(F)) for an arbitrary lexicographic term order, e.g. stan-

dard lex.

• Compute the set family S.

• Construct the corresponding fH,S polynomials.

• Verify if these polynomialsm, together with the polynomials {x2i − xi},
form a Gröbner basis of the ideal I(F).

F is extremal if and only if we get a Gröbner basis with this process.

This is straightforward from Proposition 4.1. There are many ways to verify

whether a system of polynomials is a Gröbner basis or not. For such methods

see [8]. I have not analyzed the time requirement of this method yet, however,

it does not seem to be sufficiently efficient.

Test #2

According to the lex game [2] we know that for a fixed lexicographic

term order Sm(I(F)) can be computed essentially in linear time. (Note that

the size of the input is nm, where m is the size of F .) This forms the base

of another extremality test. F is extremal if and only if for every lex term

order Sm(I(F)) is the same. Our aim is to find a family of lexicographic

term orders with the property that if F is not extremal, then we can find

two term orders in this family for which the standard monomials differ. This

can be done with a family of size n:

Theorem 4.2 Take n orders of the variables such that for every index i

there is one in which xi is the greatest element, and take the corresponding

lexicographic term orders. If F is not extremal, then among these we can

find two term orders for which the standard monomials of I(F) differ.

Proof: Let us fix one of the above mentioned term orders. F is not ex-

tremal, hence there is a set H ∈ F shattered by F for which xH is not a

standard monomial but a leading one. Sm(I(F)) is a basis of the vector

space F[x]/I(F), and since all functions from F to F are polynomials, every
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leading monomial can be written uniquely as the sum of standard monomials,

as a function on F . This holds for xH as well:

xH =
∑
αGxG,

as functions on F . Suppose that for all sets G in the above sum we have

G ⊆ H. Take a minimal G0 with a nonzero coefficient. Since H is shattered

by F , there is an F ∈ F such that G0 = F ∩H. For this xG0(vF ) = 1. From

the minimality of G0 we have that xG′(vF ) = 0 for every other G′. So∑
αGxG(vF ) = αG0 .

On the other hand xH(vF ) = 0, since H ∩ F = G0, but H 6= G because xH
is a leading monomial, and xG is a standard monomial, and this is a contra-

diction. Therefore in the above sum there is a set G with nonzero coefficient

such that G\H 6= ∅. Now let us fix an index i ∈ G\H. For the term order

where xi is the greatest variable, xH cannot be the leading monomial of the

polynomial xH−
∑
αGxG. Then the leading monomial is another xG′ , which,

for the original term order was a standard monomial. So we have found two

term orders for which the standard monomials differ. �

According to this theorem it is enough to calculate the standard mono-

mials e.g. for a lexicographic term order and it’s cyclic permutations, and

to check, whether they differ or not. Since the standard monomials can be

calculated in O(n|F|) time for one lexicographic term order, and we need n

term orders, the total running time of the algorithm is O(n2|F|).

Corollary 4.2.1 Given a set family F ⊆ 2[n], |F| = m by a list of char-

acteristic vectors, we can decide in O(n2m) time whether F is extremal or

not.

This improves the algorithm given in [6] by G. Greco, where the time

bound is O(nm3).

Open question 1 Can extremality be tested in linear time (i.e. in O(nm))?
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5 Set system operations

Sh(F) is a down-set, and it is evident that if F is a down-set, then

Sh(F) = F , i.e. F is extremal. So the question presents itself: can every

extremal set system be obtained from down-sets by some natural operations?

For this we have studied different set system operations.

Bit flip

For vectors (v1, . . . , vn) ∈ {0, 1}n we denote by ϕi the ith bit flip:

ϕi(v1, . . . , vi−1, vi, vi+1, . . . , vn) := (v1, . . . , vi−1, 1− vi, vi+1, . . . , vn).

It is easy to verify that extremality is invariant with respect to this opera-

tion. However this operation does not have the desired property, not every

extremal set system can be obtained from down-sets using only this opera-

tion:

Example 5.1 For the set system F = {∅, {1}, {2}, {1, 3}}

Sh(F) = {∅, {1}, {2}, {3}},

hence it is extremal. However, this cannot be obtained by bit flips from a

down-set. We can verify this by applying bit flips to it in different order. We

cannot transform it to a down-set, so it cannot be obtained from a down-set.

Translation

Let v be a fixed 0 − 1 vector of length n. Then in the translation by

v we add up to all characteristic vectors v modulo 2. This corresponds

to the compositions of several bit flips, hence this operation also preserves

extremality. We denote the translation by the vector v by ϕv.

Sum

The set system considered in Example 5.1 cannot be obtained from a

down-set using the previous operations. To fix this problem, we introduce a

new operation, the sum of two set systems.
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Definition 5.1 Let F1 and F2 be two set systems with disjoint supports

(there is no i ∈ [n] for which ∃ F1 ∈ F1 and F2 ∈ F2 such that i ∈ F1 ∩ F2)

and ∅ ∈ F1 ∩ F2. We define the sum of these set systems as

F = F1 + F2 := F1 ∪ F2.

Proposition 5.1 F is extremal if and only if F1 and F2 are both extremal.

Proof: F1 and F2 have disjoint supports, hence Sh(F) = Sh(F1) ∪ Sh(F2)

and Sh(F1) ∩ Sh(F2) = {∅}, which means that

|Sh(F)| = |Sh(F1)|+ |Sh(F2)| − 1. (1)

On the other hand F1 ∩ F2 = {∅}, hence

|F| = |F1|+ |F2| − 1. (2)

The statement follows directly from (1) and (2). �

Let us go back to Example 5.1. This extremal family can be obtained

from down-sets as follows:

F = {∅, {2}}+ ϕ1({∅, {1}, {3}})

Open question 2 Can every extremal family F be obtained from downward

families by translations and sums?
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6 Downshifts

In this section we study one of the most frequently used set operations in

this field. Let us denote by Di the downshift by the element i. If F ⊆ 2[n]

then:

Definition 6.1 Di(F) := {F ∈ F|i /∈ F} ∪ {F ∈ F|i ∈ F, F\{i} ∈ F} ∪
{F\{i}|F ∈ F , i ∈ F, F\{i} /∈ F}.

From the definition it is clear that |F| = |Di(F)| and if F is a down-set,

then a downshift has no effect on F . When studying the structure of Di(F)

we can observe that v ∈ Di(F) if and only if there are vi + 1 vectors in F
equal to v in all but the ith coordinate.

It is easily seen that downshifts and bit flips commute:

ϕi(Dj(F)) = Dj(ϕi(F))

holds for any set family F and 1 ≤ i, j ≤ n. (Here Dj is assumed to act on

the set of characteristic vectors {vF : F ∈ F} ⊆ {0, 1}n.) Now we look at

some properties of the downshift operation.

Proposition 6.1 (See [3].) For every i ∈ [n] we have Sh(Di(F)) ⊆ Sh(F).

Proof: Let S ∈ Sh(Di(F)). If i /∈ S, then clearly we have S ∈ Sh(F). Now

suppose that i ∈ S. Since S is shattered by Di(F), for every set H ⊆ S there

is a set FH ∈ Di(F) such that FH ∩ S = H. For any set H ⊆ S let us define

the set GH to be FH if i ∈ H and FH∪{i}\{i} if i /∈ H. With this definition

we have GH ∈ F (since if i ∈ G ∈ Di(F) then G,G\{i} ∈ F must hold) and

GH ∩ S = H for every set H ⊆ S. The family {GH : H ⊆ S} shows that

S ∈ Sh(F). �

Corollary 6.1.1 If F ⊆ 2[n] is extremal, then Di(F) is extremal for every

i ∈ [n].

Proof: From the extremality of F and from the previous proposition, for

every i ∈ [n] we have:
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|F| = |Sh(F)| ≥ |Sh(Di(F))| ≥ |Di(F)|.

Since |F| = |Di(F)|, there must be equality everywhere, giving that Di(F)

is extremal. �

Let F ⊆ 2[n]. For the indices i1, i2, . . . , il we introduce the following

notation:

Di1,i2,...,il(F) := Di1(Di2(. . . (Dil(F))))

When applying several different downshifts the question arises whether the

order of the downshifts is relevant. In general, the order of the downshifts

has an effect on the result. For an example consider the set system F =

{∅, {1, 2}}. For this we have D1,2(F) = {∅, {1}} and D2,1(F) = {∅, {2}},
thusD1,2(F) 6= D2,1(F). However, for extremal families we have the following

result:

Proposition 6.2 If F ⊆ 2[n] is extremal, then different downshifts commute,

i.e. Di,j(F) = Dj,i(F).

Proof: Without loss of generality we can suppose that i, j = 1, 2. For

H ⊆ {3, 4, . . . , n} we denote by F(H) the family

F(H) = {F ∈ F : F ∩ {3, 4, . . . , n} = H}

From the definitions it is immediate that for a family F ⊆ 2[n], H ⊆
{3, 4, . . . , n} and i ∈ {1, 2} we have

Di(F(H)) = Di(F)(H).

Moreover

Di(F) =
⋃

H⊆{3,4,...,n}

Di(F(H)),

and for {i, j} = {1, 2} we have

Di(Dj(F)) = Di(
⋃

H⊆{3,4,...,n}

Dj(F(H))) = Di(
⋃

H⊆{3,4,...,n}

Dj(F)(H)) =

=
⋃

H⊆{3,4,...,n}

Di(Dj(F)(H)) =
⋃

H⊆{3,4,...,n}

Di(Dj(F(H))).
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Thus it suffices to verify the claim D1,2(F) = D2,1(F) for families F of the

form G(H) where G is an extremal set system and H ⊆ {3, 4, . . . , n}. But

this reduces the problem to extremal families F ⊆ 2[2].

Note that for a vector v ∈ {0, 1}n and F1,F2 ⊆ 2[n]

ϕv(F1) = ϕv(F2)⇐⇒ F1 = F2

If F is not empty, then by a composition ϕv of some bit flips we can achieve

that ∅ ∈ F . Also,

D1,2(F) = D2,1(F)⇐⇒ ϕv(D1,2(F)) = ϕv(D2,1(F))⇐⇒
D1,2(ϕv(F)) = D2,1(ϕv(F)).

Thus to verify D1,2(F) = D2,1(F), we can assume that ∅ ∈ F . If F is a

down-set, we are done, since Di(F) = F . Now if F ⊆ 2[n], ∅ ∈ F , F is

extremal and F is not a down-set, then {1, 2} ∈ F and we have

F = {∅, {1}, {1, 2}}

or

F = {∅, {2}, {1, 2}}.

By symmetry, it suffices to do the calculation for the first case. Then

D1(F) = F∗ = {∅, {1}, {2}}, D2(F) = F and D2(F∗) = F∗. Thus

D1,2(F) = D1(F) = F∗ = D2(F∗) = D2,1(F). �

We have already seen that down-sets have very good properties. Now we

weaken the definition of a down-set.

Definition 6.2 F ⊆ 2[n] is an i-down-set if for every F ∈ F with i ∈ F we

have F\{i} ∈ F .

From the definition we can make some trivial observations. For every

F ⊆ 2[n], Di(F) is an i-down-set and furthermore if F ⊆ 2[n] is an i-down-

set, then Di(F) = F .
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Proposition 6.3 If F ⊆ 2[n] is an i-down-set, then Dj(F) is an i-down-set

as well, for every j 6= i.

Proof: This statement will be proved in Section 10 in a general case. (Propo-

sition 10.2) �

We have the following important consequence:

Proposition 6.4 Let F ⊆ 2[n]. Then n different downshifts applied to F in

an arbitrary order result in a down-set.

Proof: According to the previous statements, after applying a downshift

with i we get an i-down-set and this property remains invariant under fur-

ther downshifts. Therefore after n different downshifts we get a set system F̃
which is an i-down-set and so Di(F̃) = F̃ for all i ∈ [n]. This last property

is equivalent to the fact that F̃ is a down-set. �

The preceding statement occurs in [3], and can be proved by induction

on n as well. In Proposition 6.1 we have seen that for a family F ⊆ 2[n] we

have Sh(Di(F)) ⊆ Sh(F) for all i ∈ [n]. Thus

Sh(Di1,...,in(F)) ⊆ Sh(F)

if all the ik-s are different. On the other hand Proposition 6.4 says that

Di1,...,in(F) is a down-set, hence Sh(Di1,...,in(F)) = Di1,...,in(F). This also

means that

|Sh(Di1,...,in(F))| = |Di1,...,in(F)| = |F|

But if F was not extremal then |Sh(F)| > |F|, so with the downshifts the

size of Sh decreases from |Sh(F)| to |F|. (So one of the downshifts will result

an extremal set system.) However, if F is extremal then, by Proposition 6.1

and Proposition 4.1, the size of Sh cannot be decreased by downshifts. This

fact gives the idea of the following definition:

Definition 6.3 F ⊆ 2[n] is weakly extremal if for every i ∈ [n] we have
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Sh(Di(F)) = Sh(F).

In Section ?? we discuss the connection between extremality and weak

extremality.

In Section 3 we have already discussed a method for constructing Sm(F)

for a set system F ⊆ 2[n] using the recursive property. Now we give another

method using the downshift operation.

Theorem 6.1 Let F ⊆ 2[n] and ≺ be a lexicographic term order for which

xi1 � xi2 � · · · � xin. If we apply the downshifts Di1 , Di2 , . . . , Din to F in

this order, then we have Din,in−1,...,i1(F) = Sm(I(F)).

Proof: We will prove a more general form of this statement in Section 10.

(Proposition 10.1) �
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7 A graph-theoretical aspect

In this section we make some observations related to [6], and develop

some extensions of the ideas presented there. As before, the elements of a

set system F ⊆ 2[n] can be regarded as characteristic vectors, i.e. as 0 − 1

vectors of length n, thus F ⊆ {0, 1}n.

The n-cube is a graph Qn = ({0, 1}n, En) where En is the set of pairs

{F,G} from {0, 1}n such that F and G differ in just one component. If we

denote by d(F,G) the number of coordinates in which the two vectors differ

(i.e., the Hamming distance of the pair), then

En = {{F,G} : d(F,G) = 1}.

We note that the number of edges of the shortest path connecting any pair of

vectors in Qn coincides with the Hamming distance of the pair. If F ⊆ 2[n]

and F,G ∈ F , let dF(F,G) be the number of edges in the shortest path

between F and G in the subgraph induced by F in Qn if a path exists,

dF(F,G) = ∞ otherwise. In this section we alternate between the vector

view and the set view of the elements of F . The following two notations are

from [6].

Definition 7.1 F ⊆ {0, 1}n is isometrically embedded in Qn if for any pair

of different elements F and G in F

dF(F,G) = d(F,G).

Definition 7.2 F ⊆ {0, 1}n is strongly isometrically embedded in Qn if

Di1,i2,...,im(F) is isometrically embedded for every m and i1, i2, . . . , im ∈ [n].

The next two propositions discuss the connection between these notions

and extremality. They were already proposed by G.Greco, but the proofs

below seem to be simpler than those in [6].

Proposition 7.1 If F ⊆ {0, 1}n is extremal, then F is isometrically embed-

ded in Qn.
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Proof: Suppose the contrary, namely that F is not isometrically embedded

in Qn. Then there exist sets A,B ∈ F such that d(A,B) = k < dF(A,B).

Suppose that k is minimal. Clearly k ≥ 2. The Hamming distance is in-

variant under bit flips, and using bit flips one can achieve that A = ∅ and

|B| = k.

We prove that there is no set C for which C ∈ F and C ⊂ B. Otherwise

d(A,C) + d(C,B) = k < dF(A,B) ≤ dF(A,C) + dF(C,B).

We have either d(A,C) < dF(A,C) or d(C,B) < dF(C,B). This is a contra-

diction since d(A,C) < k, d(C,B) < k and k was minimal.

If F is extremal, then applying Corollary 4.1.1 to the elements of [n]\B we get

that H = {F ∈ F : F ⊆ B} is extremal as well. But in this case H = {∅, B}
and Sh(H) = {∅, {b1}, . . . , {bk}}. So |Sh(H)| = k + 1 ≥ 3 > 2 = |H|,
that is H cannot be extremal. From this contradiction we have that F is

isometrically embedded in Qn. �

Corollary 7.1.1 If F ⊆ {0, 1}n is extremal, then F is strongly isometrically

embedded in Qn.

Proof: If F is extremal, then so isDi1,i2,...,im(F) for everym and i1, i2, . . . , im ∈
[n], and according to the previous proposition all of them are isometrically

embedded in Qn. �

The main result of [6] is that the converse of the last statement also holds.

In the following we give a novel characterization of isometrically embedded

families. The main result is stated in Theorem 7.1, which simplifies much of

the results in [6]. We need some preparations first.

A chunk of the system F ⊆ {0, 1}n is the subsystem that we get by fixing

the bits in some positions, i.e. for fixed i1, i2, . . . , im ∈ [n] positions and fixed

ε1, ε2, . . . , εm bits, the chunk C defined by them is

C = {F ∈ F : F (i1) = ε1, . . . , F (im) = εm}
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This notion can be found in [3] already. As a consequence of Proposition 6.4,

it follows that when downshifting, the family of shattered sets can shrink if

F is not extremal.

Proposition 7.2 Let F ⊆ {0, 1}n. If for some i ∈ [n] there exists a set S

such that S ∈ Sh(F) and S /∈ Sh(Di(F)) (i.e. if the downshift with i reduces

Sh(F)), then F is not isometrically embedded in Qn.

Proof: Since S is not shattered by Di(F), there is a set H ⊆ S for which

there is no set D ∈ Di(F) such that S ∩D = H. But S is shattered by F ,

so there is a set F ∈ F such that S ∩F = H. From the previous observation

F /∈ Di(F), so it is downshifted to F\{i}. This is possible only if F\{i} /∈ F ,

and this holds for any set F for which S ∩ F = H.

On the other hand, since S is shattered by F , there must be a set F ′ such

that S ∩ F ′ = H\{i}. But dF(F ′, F ) must be greater than d(F ′, F ) and so

F cannot be isometrically embedded in Qn, because any shortest path in Qn

between F ′ and F goes through a set of the form G\{i} where S ∩ G = H

holds for G. But no such set is contained in F . �

We have a partial converse to the above proposition. At the same time it

can be regarded as a characterization for isometrically embedded set systems.

Theorem 7.1 F ⊆ {0, 1}n is isometrically embedded in Qn if and only if

for every chunk C and every i ∈ [n], Sh(C) = Sh(Di(C)).

Proof: For the first direction apply Proposition 7.2. We get that if F is

isometrically embedded in Qn then there is no set S with the described prop-

erties. Since for every i ∈ [n], Sh(Di(F)) ⊆ Sh(F), it follows that for every

i ∈ [n], Sh(Di(F)) = Sh(F). But it is clear that if F is isometrically em-

bedded in Qn then so is every chunk of it. So we have Sh(C) = Sh(Di(C))
for every i ∈ [n] and for every chunk C as well.

For the other direction recall the proof of Proposition 7.1 and as we did

there, suppose that F is not isometrically embedded in Qn. If we follow

that proof, we obtain a chunk H of F such that H = {∅, B} with |B| ≥ 2.
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For this chunk we have Sh(H) = {∅, {b1}, . . . , {bk}}. But if we apply a

downshift to H by an index i ∈ B, then Di(H) = {∅, B\{i}} and there-

fore Sh(Di(H)) = Sh(H)\{{i}}. So we have found a chunk H such that

Sh(Di(H)) 6= Sh(H), but this is a contradiction, so F must be isometrically

embedded. �

We have already mentioned that extremality is equivalent to the fact that

F is strongly isometrically embedded in Qn, thus the extremality of F does

not follow from the fact that F is isometrically embedded in Qn. We will

demonstrate this on some examples.

Example 7.1 F = [n]k−1 ∪ [n]k for 2 ≤ k ≤ dn
2
e is isometrically embedded

in Qn, but is not extremal.

Proof: Clearly F is isometrically embedded in Qn. To see whether F is

extremal or not, compute Sh(F). From the condition k ≤ dn
2
e we get that

every set of size at most k is shattered by F so

Sh(F) = [n]0 ∪ [n]1 ∪ · · · ∪ [n]k.

That means that for 2 ≤ k we have F  Sh(F), giving that F is not ex-

tremal. �

The previous example can be generalized:

Example 7.2 Let 0 < a < b < n be integers and F = [n]a∪[n]a+1∪· · ·∪[n]b.

We claim that F is isometrically embedded in Qn but not extremal.

Proof: As far as extremality is concerned, we are allowed to perform flips.

After possibly flipping at all coordinates, we can assume that a ≤ n − b.

With this assumption it is immediate that

Sh(F) = [n]0 ∪ [n]1 ∪ · · · ∪ [n]b,
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therefore F is not extremal. It is straightforward to see that F is isometri-

cally embedded in Qn. �

Let us recall the definition of weak extremality. In all of the above men-

tioned examples F is isometrically embedded in Qn, so according to Propo-

sition 7.1, Sh(C) = Sh(Di(C)) for every chunk C and every i ∈ [n]. Thus for

F itself Sh(F) = Sh(Di(F)), which means that F is weakly extremal. But

in none of the examples is F extremal. So all of these example show that

weak extremality is really weaker then extremality.
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8 Some remarks on the VC dimension

The Vapnik-Chervonenkis (VC) dimension is a widely known and used

notion in mathematics, with applications among others in machine learning

[25]-[27], probability theory [24] and combinatorics [23].

Definition 8.1 The Vapnik-Chervonenkis dimension of a set system F ⊆
2[n], denoted by V C − dim(F), is the maximum cardinality of a set shattered

by F .

As an example of its application, consider [22]. This says that the prob-

lem of computing the V C-dimension is in SATlog2n, the class of algorithmic

problems which are polynomial-time reducible to the satisfiability problem of

a boolean formula of length J with O(log2J) variables, and hard in SATCNFlog2n

(as SATlog2n, only with inputs in conjunctive normal form). This section is

about the problem of computing V C − dim(F) for a set system F ⊆ 2[n].

Proposition 8.1 (See [22].) For any set system F ⊆ 2[n], V C − dim(F) ≤
log |F|. (Here log stands for the logarithm with base 2.)

Proof: If the set S ⊆ [n] is shattered by F , then 2S = {F ∩ S : F ∈ F}.
This can only hold if there are at least 2|S| sets in F . Thus for any set S

shattered by F , we have |S| ≤ log |F|. �

By this proposition, the simple algorithm for computing the V C-dimension

of a set system F which enumerates all possible sets to be shattered, shall

terminate in mnO(log(m)) time, where m is the size of F (see [15]). We give

another algorithm with the same time bound. First let us recall that

Sh(F) =
⋃

lex orders

Sm(I(F)).

From the proof of Proposition 4.6 we know that if we take a set S from

Sh(F) then for the term order where the variables from xS are the small-

est we have S ∈ Sm(F) (i.e. xS ∈ Sm(I(F))). Thus in the above sum it
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suffices to sum up over a family of lexicographic orders where for every pos-

sible set S there is a suitable term order. According to Proposition 8.1, the

number of possible sets S, i.e. the number of sets with size at most logm, is

O(nlogm). Hence to get Sh(F ), and consequently V C−dim(F), it is enough

to compute Sm(I(F)) for O(nlogm) term orders. The computation of the

standard monomials for a particular term order can be done in O(nm) time,

so altogether the time bound that we get is O(mnlogm).
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9 Generalization of shattering

In the previous sections we have presented our results concerning shattered

sets, extremal set systems and standard monomials of vanishing ideals. Some

of them can be generalized to the case of an arbitrary k > 0.

There is a usual way of generalizing the notion of shattering (See e.g.

[22].):

Definition 9.1 Let F be a class of [n]→ {0, 1, ..., k− 1} functions. We say

that F shatters a set S ⊆ [n] if for every function g : S → {0, 1, ..., k − 1}
there exists a function f ∈ F such that f |S = g.

We can look at the elements of F as vectors from {0, 1, . . . , k− 1}n, thus

both I(F) and Sm(I(F)) are well defined. When considering this definition

we can observe that our basic inequality, Proposition 4.1 can not be general-

ized, because the size of F can be much greater than that of Sh(F). However

it is easy to see that the same recursive property holds for shattered sets like

earlier, namely that

(
⋃
β

Sh(Fβ))
⋃
{S ∪ {n} : S ∈

⋂
β

Sh(Fβ)} ⊆ Sh(F).

Since Proposition 4.1 does not hold in the general case, we do not define

extremality in the usual way, but using Corollary 4.6.1.

Definition 9.2 F ⊆ {0, 1, . . . , k− 1}n is said to be extremal if Sm(I(F)) is

the same for all lexicographic term orders.

For a subset H ⊆ [n] we write xH for the monomial
∏

i∈H x
k−1
i . The

polynomial fS,g is defined for a subset S ⊆ [n] and function (vector) g : S →
{0, 1, . . . , k − 1} as

fS,g =
∏
i∈S

xi(xi − 1) . . . (xi − (k − 1))

xi − gi
.

With this notation now we look at the analogues of Propositions 4.7, 4.5 and

4.6. Their proofs are similar to the case k = 2.
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Proposition 9.1 If S /∈ Sh(F), then there exists a function (vector) g :

S → {0, 1, . . . , k − 1} such that fS,g(v) = 0, ∀ v ∈ F , i.e. fS,g ∈ I(F).

Proof: Since S is not shattered by F , there is a function g : S → {0, 1, ..., k−
1} for which there is no function v ∈ F such that v|S = g. Consider the

corresponding fS,g polynomial. For this we have fS,g(v) 6= 0 if and only if

vev|S = g. According to our assumption there is no such v ∈ F , that is

fS,g(v) = 0 ∀ v ∈ F , i.e. fS,g ∈ I(F). �

Proposition 9.2 If xH ∈ Sm(I(F)) for some term order, then H ∈ Sh(F).

Proof: Suppose the contrary, namely that H /∈ Sh(F). According to Propo-

sition 9.1 there is a polynomial fS,g ∈ I(F). The leading monomial of this

polynomial is xS for all term orders, thus xH ∈ Lm(I(F)) which is a contra-

diction. �

This means that (Sm(I(F)) ∩ {xH , H ⊆ [n]}) ⊆ Sh(F) for every lexico-

graphic term order.

Proposition 9.3 If H ∈ Sh(F), then there is a lexicographic term order for

which we have xH ∈ Sm(I(F)).

Proof:We begin our proof just like in the case k = 2. Take the lexico-

graphic order where the variables of xH are the smallest. To prove that

xH ∈ Sm(I(F)) we will use the recursive property and the prefix tree con-

structed at the end of subsection 3.1. From the fact that F shatters H we

can conclude that the first |H| levels of this trie are complete, i.e. each vertex

above the |H|th level has exactly k children. This, together with the recursive

property imply that xH ∈ Sm(I(F)). �

These two statements together imply that

Sh(F) =
⋃

lex orders

(Sm(I(F)) ∩ {xH , H ⊆ [n]}).

In [17] Alon proved the following interesting statement:
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Proposition 9.4 For every F ⊆ {0, 1, . . . , k − 1}n there exists an up-set

G ⊆ {0, 1, . . . , k − 1}n such that

i) |G| = |F|, and

ii) |{g|I : g ∈ G}| ≤ |{f |I : f ∈ F}| for all I ⊆ [n].

Proof: See [17]. �

An immediate corollary of this proposition is that for every F ⊆ {0, 1, . . . , k−
1}n there exists an up-set G ⊆ {0, 1, . . . , k − 1}n such that |G| = |F| and

Sh(G) ⊆ Sh(F).

Before getting started with the generalization of downshifts in the next

section, we first mention the generalization of bit flips. Let χ : {0, 1, . . . , k−
1} → {0, 1, . . . , k − 1} be a fixed bijective function. For a vector v ∈
{0, 1, . . . , k − 1}n we denote by ϕχi the ith bit flip:

ϕχi (v) = (v1, . . . , vi−1, χ(vi), vi+1, . . . , vn).

Using Proposition 3.3 it is clear that extremality is henceforward invariant

to this operation.
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10 Generalization of downshifts

Downshifts can be generalized as well (See e.g. [5].), but for this we need

first some new notations. We write the standard basis of {0, 1, . . . , k−1}n as

e1, . . . , en. For J ⊆ [n], the span of {ej : j ∈ J} in {0, 1, . . . , k−1}n is denoted

by {0, 1, . . . , k − 1}J . The complement of J in [n] is written Ĵ , specially for

the complement of {j} we write ĵ. The J-section of F ⊆ {0, 1, . . . , k − 1}n

for z ∈ {0, 1, . . . , k − 1}Ĵ is the set

FJ(z) = {f |J : f ∈ F and f |Ĵ = z},

that is FJ(z) is the collection of vectors in F that are equal with z outside

J .

The downshift by the element i, denoted by Di, is defined using i-sections:

Definition 10.1 For F ⊆ {0, 1, . . . , k − 1}n Di(F) is the set for which

(Di(F))i(z) = {0, 1, . . . , |Fi(z)| − 1}

for every z ∈ {0, 1, . . . , k − 1}̂i.

Figure 1: The action of D1

In other words, in each i-section Di(F) has the same number of points

as F , but they are downshifted to the right of the plane xi = 0. Clearly

|Di(F)| = |F| and v ∈ Di(F) if and only if there are vi + 1 elements
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s0, . . . , svi ∈ {0, 1, . . . , k − 1} such that (v1, . . . , vi−1, sj, vi+1,...,vn) ∈ F for

j = 0, 1 . . . , vi. Figure 10 shows a two-dimensional example.

In the following we present the properties of downshifts in the general

case.

Proposition 10.1 For every i ∈ [n] we have Sh(Di(F)) ⊆ Sh(F).

Proof: Let S ∈ Sh(Di(F)). If i /∈ S, then clearly S ∈ Sh(F) holds as

well. Now suppose that i ∈ S. Let us build up the prefix trees of F and

Di(F) with the first |S| levels corresponding to the coordinates in S. Call

them respectively T1 and T2. Since Di(F) shatters S, in T2 the first |S| levels

must be complete, i.e. every vertex on a level smaller than |S| has exactly k

children. According to the definition of Di, this can happen only if the first

|S| levels are complete in T1 already, thus S is already shattered by F . This

finishes our proof. �

Definition 10.2 F ⊆ {0, 1, . . . , k − 1}n is an i-down-set if for every f ∈ F
we have (f1, . . . , fi−1, a, fi+1, . . . , fn) ∈ F whenever a < fi.

Clearly, in the general case, i-down sets have the same basic properties,

i.e. if F is an i-down-set, then Di(F) = F and Di(F) is always an i-down-set.

This also means that the operator Di is idempotent.

Proposition 10.2 If F ⊆ {0, 1, . . . , k−1}n is an i-down-set, then Dj(F) is

an i-down-set as well, for every j 6= i.

Proof: Without loss of generality we can suppose that i, j = 1, 2. We have

to prove that D2(F) is a 1-down-set, thus if we take an arbitrary vector v

from D2(F), then (c, v2, v3, . . . , vn) ∈ D2(F) must hold for all c < v1. Since

v ∈ D2(F), there are v2 + 1 elements s0, . . . , sv2 ∈ {0, 1, . . . , k− 1} such that

(v1, sj, v3, . . . , vn) ∈ F for j = 0, 1 . . . , v2. Since F is an 1-down-set, if we

take c < v1, then (c, sj, v3, . . . , vn) ∈ F for j = 0, 1 . . . , v2, what implies that

(c, v2, v3, . . . , vn) ∈ D2(F). �

Proposition 10.3 Let F ⊆ {0, 1, . . . , k − 1}n. Then n different downshifts

applied to F in an arbitrary order result in a down-set.
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This is an immediate consequence of the last statement just like in the

case k = 2.

Theorem 10.1 Let F ⊆ {0, 1, . . . , k−1}n and ≺ be a lexicographic term or-

der for which xi1 � xi2 � · · · � xin. If we apply the downshifts Di1 , Di2 , . . . , Din

to F in this order, then we have Sm(I(F)) = {xw : w ∈ Din,in−1,...,i1(F)}.
(Sm(I(F))” = ”Din,in−1,...,i1(F))

Proof: Without loss of generality we can suppose that ≺ is based on the

natural lex order, thus ik = k. We apply induction on n. For n = 1,

xl ∈ Sm(I(F)) and l ∈ D1(F) hold at the same time, namely when l < |F|,
thus for n = 1 the statement holds. Now let us suppose that the statement is

true for all values smaller than n, and consider the case of n > 1. A downshift

Di for i 6= n acts on the subsystems of F in which the nth coordinates are

equal, i.e.

Dn−1,...,1(F) =
k−1⋃
β=0

{(w, β) : w ∈ Dn−1,...,1(Fβ)}

From our induction hypothesis Sm(I(Fβ))” = ”Dn−1,...,1(Fβ). However when

constructing Sm(I(F)) from the Sm(I(Fβ))-s there is the same rule for the

exponent vectors as for the elements of Dn,n−1,...,1(F) when constructing it

from the Dn−1,...,1(Fβ)-s. x(w,l) ∈ Sm(I(F)) exactly in the same case when

(w, l) ∈ Dn,n−1,...,1(F), namely when there are at least l + 1 β-s such that

xw ∈ Sm(I(Fβ)) (w ∈ Dn−1,...,1(Fβ)). This finishes the proof. �

As a corollary of Theorem 10.1 we investigate now how the downshift

operation affects the standard monomials.

Corollary 10.3.1 Let F ⊆ {0, 1, . . . , k− 1}n and ≺ be a lexicographic term

order for which xi1 � xi2 � · · · � xin.. Suppose that F is a ij-down-set for

1 ≤ j < k. With this we have

Sm(I(Dik(F))) = Sm(I(F)).
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Proof: As previously, without loss of generality we can suppose that ij = j.

According to Theorem 10.1

Sm(I(F)) = Dn,n−1,...,1(F)

and

Sm(I(Dk(F))) = Dn,n−1,...,1(Dk(F)).

According to our assumption F is a j-down-set for 1 ≤ j < k, however, using

Proposition 10.2 we get that the same holds for Dk(F) as well. Since Di has

no effect on an i-down-set, we conclude that

Sm(I(F)) = Dn,n−1,...,k(F)

and

Sm(I(Dk(F))) = Dn,n−1,...,k(Dk(F)).

The fact that Dk is idempotent finishes the proof. �
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11 Conclusion and Future work

The aim of this study was to demonstrate that algebraic methods can be

very useful when studying combinatorial objects. We have presented basic

definitions and statements concerning Gröbner bases, standard monomials,

shattering and set system operations. We achieved several results in all of

these areas. To start with, in Section 4 we gave a new characterization for

extremal set systems using Gröbner bases. At the end of the same section

we proposed an efficient, O(n2m), algorithm for testing extremality using

the standard monomials of a set system. We also analyzed the connection

between the effect of set system operations and extremality, and proposed

a new method for constructing the family of standard monomials using the

downshift operation. In Section 7 we discussed the graph theoretical con-

sequences of extremality, characterized the event when downshifting makes

Sh(F) shrink, and made some remarks on the work of Greco in [6]. Then in

Section 8 we proposed a new algorithm for solving the problem of computing

the Vapnik-Chervonenkis dimension of a set system F ⊆ 2[n]. Section 9 and

10 were given over to the generalizations of some of our results.

There are many ways to follow up this study. These include finding

(slightly) faster (possibly linear time) algorithms for testing extremality, im-

proving the O(mnlogm) time bound of the algorithm for computing the VC-

dimension of a set system or extend more of our results to the general case.
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