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Abstract. We prove that the solenoid with two different contraction coefficients has zero
Hausdorff and positive packing measure in its own dimension and the SBR measure is
equivalent to the packing measure on the attractor. Further, we prove similar statements
for Slanting Baker maps with intersecting cylinders (in R

2).

1. Introduction
The SBR (natural) measure carries the most important information about strange attractors.
For many conformal hyperbolic attractors it is equivalent to the Hausdorff measure on the
attractor. However, it happens that the appropriate dimensional Hausdorff measure of the
attractor is zero while the packing measure is positive and finite and equivalent to the SBR
measure. In such a case it is the packing measure which is dynamically relevant. Such a
phenomenon has been previously observed by Sullivan in the context of parabolic Kleinian
groups, then by Denker and Urbański [5] in the context of parabolic rational functions,
then by Urbański [20] for non-recurrent rational functions. Also, the same phenomenon
was observed for infinite iterated function systems [9], parabolic dynamical systems [10]
and finite iterated function systems with overlapping cylinders [13]. In this paper we point
out that such a situation (when the packing measure is the dynamically relevant measure)
may occur even for the simplest axiom A diffeomorphisms. Based on this we believe the
following.

CONJECTURE 1. Let � be the attractor of an axiom A diffeomorphism. Then ‘typically’
its SBR measure is equivalent to the appropriate dimensional packing measure restricted
to �.

The examples we will consider include the solenoid, which is a most natural non-
conformal hyperbolic attractor, and the Slanting Baker maps. The Smale–Williams
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solenoid (see [15] and [16] for an illustration and more details) has an expanding and
two contracting directions. As an example, let �̄ be the attractor of the map

(t, x, z)→ (2t (mod 1), λ1x + ε cos(2πt), λ2z+ ε sin(2πt)), (1.1)

the map being defined on the torus S1 ×D, where D is the unit disk. We assume that the
contraction ratios are different so that the map is non-conformal. In order to assure the
map to be injective, we also have to assume that the greater contraction ratio λ1 is smaller
than 1

2 .
It follows from a recent result due to Hasselblatt and Schmeling [7], that all angular

sections of �̄ share the same Hausdorff and packing dimensions. On the other hand, it
was proved in [17] that the Hausdorff and the upper box dimensions (hence the packing
dimension as well) of �̄ are 1 + s, where s = log 2/−logλ1. Combining these theorems,
one can see that the Hausdorff and packing dimensions of all angular sections of �̄

are equal to s. We prove that the (1 + s)-dimensional Hausdorff measure is zero and
the (1+ s)-dimensional packing measure is positive and finite. Similarly, almost every
section has zero s-dimensional Hausdorff measure and positive s-dimensional packing
measure. Most importantly, the SBR measure for the solenoid (1.1) is equivalent to the
(1+ s)-dimensional packing measure.

We also consider plane maps, so called Slanting Baker maps. They were first studied
by Falconer in [6]. These are maps of the rectangle [0, 1]×[−1, 1] into itself. An example
of these is given by the formula

(t, x)→ (2t mod 1, λ(x −�(t))), (1.2)

where �(t) = 1 − |2t − 1| is the tent map, investigated previously by Carter and
Mauldin in [3]. Our results imply in this particular case that the attractor � has zero
Hausdorff measure but positive and finite packing measure in the dimension 1+ s, where
s = log 2/−logλ, whenever λ < 1

2 . Also in this case the SBR measure is equivalent to
the (1+ s)-dimensional packing measure.

Both in the case of solenoid and of Slanting Baker maps we need some linearity
assumptions to prove results on the packing measure. We can prove the Hausdorff measure
results in much greater generality.

2. Results
Following Bothe [1] we consider more general solenoid maps than that in (1.1). Namely,
let D be the unit disk in R2 centered at the origin. We consider a map f̄ defined on
[0, 1] ×D ⊂ R3 by the formula

f̄ (t, x, z) := (g(t), λ1(t, x), λ2(t, z)) (2.1)

where the component functions g : [0, 1] → [0, 1] and λ1, λ2 : [0, 1]×[−1, 1] → [−1, 1]
satisfy the following assumptions:
(a) we can partition [0, 1] into closed intervals I1, . . . , Im with disjoint interiors;
(b) for every 1 ≤ k ≤ m, g : int(Ik) → (0, 1) holds and is an onto and C2 map with

|g′(x)| > c > 1 for x ∈ int(Ik);
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(c) the second and third component functions λ1, λ2 are C2 maps with partial derivatives
satisfying 0 < q1 ≤ (∂/∂x)λ1, (∂/∂z)λ2 ≤ q2 < 1.

Furthermore, we say that f̄ is linear in the special case when g(t) and λi(t, x) are of the
form

g(t) = mt mod 1 and λi(t, x) = λix + ri (t), i = 1, 2 (2.2)

where m ∈ N, 0 < λi < 1, i = 1, 2 are constants. Notice that here we do not require the
linearity of ri (t) i = 1, 2.

Put

ϕ̄1(t, x, z) := log
∂

∂x
λ1(t, x), ϕ̄2(t, x, z) := log

∂

∂z
λ2(t, z). (2.3)

Let P = Pf̄−1 be the topological pressure for the transformation f̄−1 and let s1 and s2 be
the solutions of the pressure formulas:

P(s1ϕ̄1) = 0 and P(s2ϕ̄2) = 0. (2.4)

We assume that
s2 < s1 < 1 (2.5)

holds. Because of the symmetry between the second and third component functions,
without loss of generality we may always require that (2.5) holds if the solutions of the
two pressure formulas are different. This means that the contraction in the direction of the
z-axis is stronger than in the direction of the x-axis.

Observe that the first two component functions of f̄ depend only on the first two
variables. So we may consider the projection of f̄ to the first two coordinates. In this
way we obtain

f (t, x) := (g(t), λ1(t, x)). (2.6)

The attractors of f̄ and f are �̄ and �, respectively. That is

�̄ :=
∞⋂
n=0

f̄ n([0, 1] ×D) and � :=
∞⋂
n=0

f n([0, 1] × [−1, 1]).

It is important that f̄ is a one-to-one map, but f is not. Thus the unstable lines of � may
intersect each other.

Over each object in R
3 we use a bar (like f̄ and �̄). The same notation without the

bar means the projection of that object in space to the coordinate plane of the t and x axes
(like f and �).

It was proved in [1] and [17] that

dimH �̄ = dimP �̄ = 1+ s1 and dimH � = dimP � = 1+ s1 (2.7)

hold if all intersections between unstable lines of the attractor � are transversal.
This transversality condition was checked for the solenoid (1.1) with two different constant
coefficients in [17]. The main results of this paper are as follows.

THEOREM 1. If there are at least two intersecting unstable lines of � then both
H1+s1(�̄) = 0 and H1+s1(�) = 0.
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THEOREM 2. If all intersections between the unstable lines of � are transversal and f̄ is
linear (see (2.2)), then the (1+ s1)-dimensional packing measures of both of the attractors
� and �̄ are positive and finite. That is

0 < P1+s(�) ≤ P1+s(�̄) <∞. (2.8)

Moreover, the SBR measures both for f and f̄ are equivalent to the (1+s1)-dimensional
packing measures on � and �̄, respectively.

Remark 1. The maps (1.1) and (1.2) mentioned in §1 are linear in our sense and the
transversality condition mentioned in Theorem 2 holds, so all the results above apply to
them.

Remark 2. In Theorem 1 we do not require that the intersections between unstable lines
of � be transversal. However, we can guarantee that the Hausdorff dimension is 1 + s1

only if this transversality condition holds. Bothe proved in [1] that if we assume that the
contractions are strong enough, then this transversality condition holds on a residual subset
of endomorphisms f with intersecting unstable lines. So, the transversality condition
typically holds in some sense in the case of strong contractions.

Remark 3. If there are no intersections between the unstable lines of � then the Manning
McCluskey Theorem applies for �. It follows that the (1 + s1)-dimensional Hausdorff
measures of both � and �̄ are positive and finite. Then obviously both � and �̄ have
positive and finite (1+ s1)-dimensional packing measures as well. Therefore, without loss
of generality we may assume in the rest of the paper the following.

PRINCIPAL ASSUMPTION. There are two unstable lines of the attractor � intersecting
each other.

3. Notation
For any H ⊂ [0, 1] × D and t ∈ [0, 1] we write H(t) for the t-angular section of H .
That is H(t) := H ∩ ({t} ×D).

To construct a symbolic dynamic, we introduce the symbolic space " := {1, . . . ,m}Z.
As usual we write σ for the left shift. For technical reasons the right shift σ−1 on " will
commute with f̄ on �̄ via the natural projection $̄ : " → �̄. To define this natural
projection we write Ii1...in :=

⋂n
k=1 g

−(k−1)(Ik); further, put %̄i1...in := Ii1...in × D and
%i1...in := Ii1...in × [−1, 1]. For an i ∈ " we define

$̄(i) := lim
n→∞(%̄i0...i−(n−1) ∩ f̄ n(%̄in...i1)). (3.1)

We call a set %̄i0...i−(n−1) the vertical n-cylinder and S̄i1...in := f̄ n(%̄in...i1) is called the

horizontal n-cylinder, while the set C̄i1...ini0...i−(n−1)
:= %̄i0...i−(n−1) ∩ f̄ n(%̄in...i1) is called

the n-cylinder. Note that a horizontal n-cylinder S̄i1...in is a tube from the wall {0} × D

to the wall {1} × D in [0, 1] × D. In the special case when our map is of the form (1.1),
all its angular sections S̄i1...in (t), for t ∈ [0, 1], are ellipses with half axes λn1, λ

n
2. Note the

first (t) coordinate of the point $̄(i) ∈ [0, 1] ×D is
⋂∞

n=0 %̄i0...i−(n−1) . This is determined
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by the non-positive coordinates of i. So, we may introduce $̄− (i) := ⋂∞
n=0 %̄i0...i−(n−1) .

In this way $̄− defines a map both from " and from

"− := {(i0, i−1, . . . )|ik ∈ {1, . . .m} for k ≤ 0}
into [0, 1].

We also see for any i ∈ " that the intersection of tubes
⋂∞

n=0 S̄i1...in is a curve called
�̄i1i2···(t) for t ∈ [0, 1]. Clearly �̄ = ⋃

i∈" �̄i1i2···. Let us call Curves the set of all curves
�̄i1i2···. That is, Curves := {�̄i1i2···|i ∈ "+}, where

"+ := {(i1, i2, . . . )|ik ∈ {1, . . .m} for k ≥ 1}.
Then $̄+(i) := �̄i1i2 . . . defines a map both from " and "+ into Curves. Furthermore,

we define

ρ0(t, x, z) := t, ρ1(t, x, z) := (t, x), ρ2(t, x, z) := (t, z).

Changing from R
3 to the (t, x) coordinate plane we repeat all the above definitions, using

the same notation without bars over the symbols. Obviously,

$ = ρ1 ◦ $̄, �i1i2···(t) = ρ1 ◦ �̄i1i2···(t), Curves = ρ1 ◦ Curves.

LEMMA 1. There is a uniform bound K for the derivative of the C2 curves t �→ �i1i2···(t).
That is, there exists a K such that for every i1i2 · · · the curve |(d/dt)�i1i2···(t)| ≤ K holds
for every i1i2 · · · and for every t ∈ [0, 1].
Proof. Using that

�i1i2···(t) = [t, λ1(g
−1
i1
(t), λ1(g

−1
i2
◦ g−1

i1
(t), λ1(. . . )))] (3.2)

we immediately get the statement of the lemma. ✷

Let µ be a measure on R
n and X be a point in the support of µ. Then the upper and

lower s-dimensional density of the measure µ is defined by

D(µ,X, s) = lim inf
r→0

µ(B(X, r))

rs
, D(µ,X, s) = lim sup

r→0

µ(B(X, r))

rs
.

The following lemma is well known (see [8]).

LEMMA 2. If D(µ,X, s) ≥ c for all X ∈ E, then Hs (E) ≤ constant · (µ(E)/c); further,
if D(µ,X, s) ≤ c for all X ∈ E, then Ps(E) ≥ constant · (µ(E)/c).

4. The proof of Theorem 2
Our aim in this section is to prove Theorem 2. Therefore, we always assume in this section
that all intersections between unstable lines of � are transversal. We start with an easy
lemma we will use later.

LEMMA 3. Let η be a measure, ln a family of real-valued functions, each satisfying the
inequality

η({x | ln(x) > M}) ≤ h(M)

for a function h : R→ R. Denote l (x) = limn→∞ln(x). Then

η({x | l(x) > M}) ≤ h(M).



278 M. Rams and K. Simon

Proof. We can write

{x | l(x) > M} =
⋃
N

⋂
n>N

{x | ln(x) > M}.

This is a union of an increasing family of sets, hence the measure of the union equals to
the supremum of measures of these sets. However,

η

( ⋂
n>N

{x | ln(x) > M}
)
≤ η({x | lN+1(x) > M}) ≤ h(M). ✷

We work with the linear Slanting Baker map

f (t, x) = (mt mod 1, λx + r(t)). (4.1)

As we assume transversality, there exists Q such that any two ω, τ ∈ "+ with ω1 �= τ1

the lines �ω,�τ intersect each other in at most Q points. The mapping mt mod 1 will be
denoted by g. In our case s1 = logm/−logλ, hence mλ < 1. Let us define the functions
L̄t : "+ → �̄ and Lt : "+ → � by

L̄t (ω) = �̄ω(t) and Lt = ρ1 ◦ L̄t . (4.2)

Let µ̃ be the Bernoulli measure on "+ given by the probability vector (1/m, . . . , 1/m).
Denote by µt its projection under Lt . We denote

µ =
∫

µt dt.

Note that µ = $∗µ̃ and that µ is the SBR measure for the Slanting Baker map (4.1).
Similarly, µ̄ = $̄∗µ̃ is the SBR measure for the solenoid. When we write ωn, τn or in we
always mean that they are elements of {1, . . . ,m}n.

Let U be an open interval. We will denote by Uωn(t0) the intersection of the line t = t0

with the image of the strip {(t, x) | t ∈ %ωn...ω1, x ∈ U} under f n. We write

J (ωn, τn) = {t | Uωn(t) ∩ Uτn(t) �= ∅}.
We can find Q (independent of ω, τ ) such that for every n this set is a union of at most Q
intervals J (i)(ωn, τn). We assumed that all intersections between unstable lines of � are
transversal. It follows that there exists 0 < c < C such that if ω1 �= τ1 then each of these
intervals (except possibly those containing 0 or 1 which may be shorter) has length

cλn ≤ |J (i)(ωn, τn)| ≤ Cλn, (4.3)

since |Uωn | = |Uτn | = |U |λn.
For a t ∈ [0, 1], k > 0 and ωn, τn, let us denote the number of those ik for which

Uikωn (t) ∩ Uikτn(t) �= ∅ by Jk(ω
n, τn)(t). That is,

Jk(ω
n, τn)(t) := 9{ik | t ∈ J (ikωn, ikτ n)}. (4.4)

Therefore,
Jk(ω

n, τn)(t) =
∑

ik
1J (ωn,τn)(g

−k
ik
(t)) (4.5)

One can see this as the characteristic function of the set gk(J (ωn, τn)), counted with
multiplicities.
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LEMMA 4. For every n big enough, every ωn, τn and every t1, t2, we have

|Jk(ωn, τn)(t1)− Jk(ω
n, τn)(t2)| ≤ Q. (4.6)

Moreover, if ω1 �= τ1 then for every n:∫
Jk(ω

n, τn)(t) dt ≤ CQλnmk. (4.7)

Proof. Denote G(t) = mt , acting on the real line. This mapping is semiconjugated to g,
hence

Jk(ω
n, τn)(t) = 9{d ∈ Z | t + d ∈ Gk(J (ωn, τn))}.

The sets J (i)(ωn, τn) are intervals, hence sets Gk(J (i)(ωn, τn)) are also intervals, only
mk times longer. They are disjoint, hence we may write

Jk(ω
n, τn)(t) =

∑
i

9{d ∈ Z | t + d ∈ Gk(J (i)(ωn, τn))}.

Now every one of the summands on the right-hand side of this equality may differ at most
by 1 when we change t and that implies that (4.6) holds.

The second part of the assertion immediately follows from (4.3) and from the definition
of Jk(ωn, τn)(t). ✷

We denote
Ãn(t) = 9{(ωn, τn) | Uωn(t) ∩ Uτn(t) �= ∅}.

Similarly,
An(t) = 9{(ωn, τn) | ω1 �= τ1, Uωn(t) ∩ Uτn(t) �= ∅}.

We use the convention Ã0 ≡ 1, A0 ≡ 0. As An is the sum of characteristic functions of all
possible sets J (ωn, τn) with ω1 �= τ1 (there are m2n−1(m− 1) of them), we can use (4.3)
to obtain the following estimation:∫

An(t) dt ≤ C′Qλnm2n−1(m− 1), (4.8)

which is again true for all n.
The following proposition is crucial for the rest of the section.

PROPOSITION 1. There exists K > 0 such that for almost every t (with respect to the
Lebesgue measure), lim supn→∞m−nÃn(t) ≤ K .

Proof. If ω1 = τ1 then the sets Uωn(t) and Uτn(t) intersect each other if and only if the
sets Uω2...ωn(g

−1
ω1
(t)) and Uτ2...τn(g

−1
ω1
(t)) do, because the mapping f restricted to %ω1 is

bijective. Hence

Ãn(t) = An(t)+
m∑
i=1

Ãn−1(g
−1
i (t)).

Recursively, the formula follows

Ãn(t) = mn +
n∑

k=0

∑
t̃∈g−k(t)

An−k(t̃).
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We can write

m−nÃn(t) = m−n
K(n)∑
k=0

∑
t̃∈g−k(t)

An−k(t̃ )+
(

1+m−n
n∑

k=K(n)

∑
t̃∈g−k(t)

An−k(t̃)
)

where K(n) = ((−log c − n logλ+ logQ)/(logm− logλ)). The two summands will be
denoted by B1,n(t) and B2,n(t).

Let us start our estimations from the second one. If k > K(n), then cλn−kmk > Q.
Then for any t1 and t2 and for any ωn−k, τ n−k such that ω1 �= τ1, Lemma 4 gives us

1

Q+ 1
≤ Jk(ω

n−k, τ n−k)(t1)
Jk(ωn−k, τ n−k)(t2)

≤ Q+ 1.

One has only to notice that∑
t̃∈g−k(t)

An−k(t̃ ) =
∑

ωn−k,τn−k ;ω1 �=τ1

Jk(ω
n−k, τ n−k)(t)

to get a similar statement for B2,n: for all t1, t2,

1

Q+ 1
≤ B2,n(t1)

B2,n(t2)
≤ Q+ 1. (4.9)

We will now estimate the average values of B1,n and B2,n. Using (4.8) we get
∫

B1,n(t) dt ≤ m−n
K(n)∑
k=0

mkCQλn−km2n−2k−1(m− 1) ≈ (mλ)n−K(n)

and as mλ < 1 and n−K(n) is asymptotically a linear function of n, we get
∞∑
n=1

∫
B1,n(t) dt <∞,

so that B1,n(t) goes to zero for almost every t . Similarly,∫
B2,n(t) dt ≤ m−n

(
mn +

n∑
k=K(n)

mkC′Qλn−km2n−2k−1(m− 1)

)
≈ 1

hence (by (4.9)) B2,n(t) is universally bounded. The assertion follows. ✷

Until now, we did not need any assumptions about the set U . Now we will assume it is
so large that

� ⊂ [0, 1] × U.

Choose t and let (t, x) = �ω(t). The measure µt is defined as the $+ projection of
the {1/m, . . . , 1/m} distributed Bernoulli measure on the symbolic space "+. We can
choose constants 0 < c1, c2 (dependent on U ) such that for any x ∈ �ωn(t), if Uωn(t) ∩
Uτn(t) �= ∅, then the ball Bc1λ

n (x) will contain Uτn(t) (hence �τn(t) as well); while if
Uωn(t)∩Uτn(t) = ∅, then the ball Bc2λ

n (x) will not intersect �τn(t). The constants c1, c2

depend only on U (but not on t, ω or n). We obtained

µt(Bc1λ
n(x)) ≥ m−nÃt (ω

n)

µt (Bc2λ
n(x)) ≤ m−nÃt (ω

n)
(4.10)

where Ãt (ω
n) = 9{τn | Uωn(t) ∩Uτn(t) �= ∅}.
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Note that ∑
ωn

Ãt (ω
n) = Ãn(t),

hence

9{τn | Ãt (τ
n) ≥ M} ≤ Ãn(t)

M
. (4.11)

We may now prove Theorem 2.

Proof. First we prove that the packing measure of the attractor is positive. Note that it is
enough to prove this for the two-dimensional map f (4.1) as the corresponding attractor �
is the projection of �̄.

We introduce a new open interval V , containing U . All the statements we proved for U
in this section also remain true for V (except perhaps the constants may change). We will
use the notation Ãn(t;U) or Ãn(t;V ) (and similarly for other functions) to distinguish the
functions defined above for U from analogical ones we define for V .

Given ω, �ω(t) is a Lipschitz function. Hence we can choose V in such a way that

Uωn(t) ∩ Uτn(t) �= ∅ �⇒ for all t̃ ∈ (t − λn, t + λn), Vωn(t̃) ∩ Vτn(t̃) �= ∅.
We have

Ãt (τ
n;V ) ≥ sup

t̃∈(t−λn,t+λn)
Ãt̃ (τ

n;U),

hence (by (4.11))

9{τn | ∃t̃ ∈ (t − λn, t + λn), Ãt̃ (τ
n;U) ≥ M} ≤ Ãn(t;V )

M
. (4.12)

We want to prove that the (1 + s1)-dimensional packing measure of � is positive.
In order to do this we only need to prove that the lower (1 + s1)-dimensional density
of the measure µ is finite for µ-almost all (t, x). We may assume that our t is chosen such
that the assertion of Proposition 1 is satisfied for Ãn(t;V ). For almost all x we have

D(µ, (t, x), 1+ s) ≤ C′′ limn→∞ λ−n(1+s1)µ((t − λn, t + λn)× Bc2λ
n(�ω(t̃))).

We recall that λ−s1 = m. Using (4.10) we get

µ((t − λn, t + λn)× Bc2λn(�ω(t̃))) ≤ 2λnm−n sup
t̃∈(t−λn,t+λn)

Ãt̃ (ω
n;U).

Hence, we are interested in the lower limit (when n goes to the infinity) of
supt̃∈(t−λn,t+λn) Ãt̃ (ω

n;U). We can now use Lemma 3 for η = µt, h(M) = (K + 1)/M ,

ln(ω) = supt̃∈(t−λn,t+λn) Ãt̃ (ω
n;U) from (4.12) and Proposition 1; for Lebesgue-almost

all t we get that

µt ({x | D(µ, (t, x), 1+ s) ≤ M}) ≥ 1− 2(K + 1)

C′′M
.

Using (4.2) we obtain a little bit more than the positivity of the packing measure, namely

dP1+s1

dµ
> 0 µ-a.e. (4.13)
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If our Slanting Baker map is the two-dimensional projection of the solenoid map, the same
result must be true for the solenoid map as well (for the measure µ̄).

Now we prove our remaining assertions, both for the (two-dimensional) Slanting Baker
map f and for the (three-dimensional) solenoid map f̄ . In the case of the Slanting Baker
map, consider another Slanting Baker map f̃ with the same g and λ, but bijective on its
attractor �̃; in the case of the solenoid map let f̃ be a linear solenoid with same g, λ1, with
λ2 = λ1 and let �̃ be its attractor. It is well known in both cases that such a �̃ has
positive and finite (1 + s1)-dimensional Hausdorff and packing measures and the density
dP1+s1/dµ̃ (where the packing measure is restricted to the attractor) is uniformly bounded
from both below and above, see [11]. We then have the semiconjugacy (for Slanting Baker
maps) or conjugacy (for solenoid maps) acting from �̃ onto � (for Slanting Baker maps)
or �̄ (for solenoid maps), given by

ht = Lt ◦ L̃−1
t , ht = L̄t ◦ L̃−1

t

for the Slanting Baker transformation and solenoid, respectively. It is well defined, because
the projection L̃t from "+ onto {(t̃, . . . ) ∈ �̃ | t̃ = t} is one to one.

For both Slanting Baker maps and solenoid maps this (semi)conjugacy is Lipschitz.
Then the densities dP1+s1/dµ (for Slanting Baker maps) or dP1+s1/dµ̄ (for solenoid
maps) may be greater than dP1+s1/dµ̃ by at most a multiplicative constant, hence they
are uniformly bounded from above. This proves the finiteness of the (1+ s1)-dimensional
packing measure of � and (together with (4.13)) equivalence between P1+s1 and µ (µ̄). ✷

5. The proof of Theorem 1
In this section we consider the nonlinear case. We will define a measure supported on �̄

which is not invariant but has full Hausdorff dimension.

5.1. The measures we need We define the potentials =1,=2 : " → R by =1(j) :=
log(∂/∂x)λ1(ρ1($̄(σ j))) and =2(j) := log(∂/∂z)λ2(ρ2($̄(σ j))). Observe that ψk(j) =
ϕ̄k($̄(σ−1j)), k = 1, 2.

Then using that $̄ : "→ �̄ is a homeomorphism, it follows from [2, Proposition 2.13]
that

P(s1=1) = 0 and P(s2=2) = 0 (5.1)

hold. Denote the Gibbs measures of the potential sl=l by νl (l = 1, 2). Then there exists a
d > 0 such that

νl(i1 . . . in) ∈ [d−1, d] exp

(
sl

n−1∑
k=0

=l(σ
k(i))

)
(5.2)

holds (l = 1, 2) (see [2, p. 10]). Consider " as a product space of "− ×"+ and we write
ν−l , ν

+
l for the induced measures on "− and "+, respectively. Then it follows from the

σ -invariance of the measure νl and from (5.2) that

νl ∼ ν−l × ν+l l = 1, 2. (5.3)

Note that $̄∗ν−l is a measure on [0, 1] and $̄∗ν+l is a measure on Curves. In the linear
case, the measure $̄∗ν−l is the Lebesgue measure. However, in general $̄∗ν−l is singular
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to the Lebesgue measure. Let η be the absolutely continuous invariant measure for g.
Then $−1∗ (η) is a measure on "−. We define a measure supported on �̄ which is not
invariant in the nonlinear case, but has full Hausdorff dimension. We also call it µ since in
the linear case it is invariant and even coincides with the SBR measure. In general, there is
no invariant measure of full Hausdorff dimension see [11].

µ := $∗(($−)−1∗ (η)× ν+1 ). (5.4)

LEMMA 5. For ν1-almost every j ∈ " and for any ε > 0 there exists an L = L(j) such
that, if n > L, then ∑n−1

k=0 =1(σ
kj)∑n−1

k=0 =2(σ kj)
≤ s2

s1
+ ε. (5.5)

Proof. Using the definition of ν1 and ν2 and the variational principle (see [2]) twice, we
get that

0 = P(s1=1) = hν1(σ )+ s1

∫
=1 dν1,

and

0 = P(s2=2) = hν2(σ )+ s2

∫
=2 dν2 ≥ hν1(σ )+ s2

∫
=2 dν1.

Since =i < 0, i = 1, 2, we obtain that
∫
=1 dν1

/∫
=2 dν1 ≤ s2/s1.

From the ergodicity of ν1 we have that for ν1-a.e. j ∈ ", (1/n)
∑n−1

k=0 =1(σ
kj) →∫

=1(j) dν1(j) and (1/n)
∑n−1

k=0 =2(σ
kj) → ∫

=2(j) dν1(j) which immediately follows
the statement of the lemma. ✷

5.2. Bounded distortion lemmas. We recall that f , %i1...in , $, Si1...in , Ci1...ini0...i−(n−1)
and �

were defined as the ρ1 projection of f̄ , %̄i1...in , $̄, S̄i1...in , C̄i1...ini0...i−(n−1)
and �̄, respectively.

In this section, we work mainly in the (t, x) coordinate plane. Therefore, to simplify the
formulas, we write λ instead of λ1. Because of the symmetry, all the results remain valid
if we apply the projection ρ2 instead of ρ1.

Let us denote the set of n-cylinders Ci1...ini0...i−(n−1)
on the (t, x) coordinate plane by Cn.

It follows from the hyperbolicity of the map f that there is a constant c1 > 0 and
0 < p < 1 such that for every n-cylinder, diam(Ci1...ini0...i−(n−1)

) < c1p
n. From this, we

immediately obtain the following lemma.

LEMMA 6. There exists a constant c2 > 0 such that for any k ∈ N and any C ∈ Ck , we
have |log(∂/∂x)λ(z1)− log(∂/∂x)λ(z2)| < c2p

k for any z1, z2 ∈ C.

In the following two lemmas, we frequently use the second component function f n
2

of the function f n. That is, f n(t, x) = (gn(t), f n
2 (t, x)). Obviously f n

2 (t, x) =
λ(gn−1(t), f n−1

2 (t, x)). Thus, using the chain rule,

∂

∂x
f n

2 (P ) =
n−1∏
k=0

∂

∂x
λ(Pk), (5.6)

where P = P0 = (t, x) and Pk := f k(P ).
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LEMMA 7. There is a constant c3 > 0, such that if P 1, P 2 ∈ C ∈ Cn for some n, then

c−1
3 <

(∂/∂x)f n
2 (P

1)

(∂/∂x)f n
2 (P

2)
< c3 (5.7)

holds.

Proof. Note that P 1
k := f k(P 1) and P 2

k := f k(P 2) are in the same n−k cylinder. Thus, it
follows from Lemma 6 that |log(∂/∂x)λ(P 1

k ) − log(∂/∂x)λ(P 2
k )| < c2p

n−k . Therefore,

we have
∣∣∑n−1

k=0 log(∂/∂x)λ(P 1
k ) −

∑n−1
k=0 log(∂/∂x)λ(P 2

k )
∣∣ < c2/(1 − p) for every n.

Using (5.6) we obtain that ∣∣∣∣∣log
(∂/∂x)f n

2 (P
1)

(∂/∂x)f n
2 (P

2)

∣∣∣∣∣ <
c2

1− p
.

This completes the proof with c3 := exp(c2/(1− p)). ✷

LEMMA 8. There exists a c4 > 0 such that, for all t ∈ [0, 1] and for every x1, x2 ∈
[−1, 1], we have

c−1
4 <

(∂/∂x)f n
2 (P

1)

(∂/∂x)f n
2 (P

2)
< c4 (5.8)

for P 1 = (t, x1) and P 2 = (t, x2).

Proof. The same was proved in [19, Lemma 3.1]. ✷

Putting together the last two lemmas, we obtain that for t1, t2 ∈ Ij0...j−(n−1) for some
j0 . . . j−(n−1), and then for arbitrary x1, x2 ∈ [−1, 1],

c−1
5 <

(∂/∂x)f n
2 (t1, x1)

(∂/∂x)f n
2 (t2, x2)

< c5 (5.9)

holds with c5 = c3c
2
4. Namely, let (j1, . . . , jn) be arbitrary. We choose points P1, P2 ∈

Cj1...jn
j0...j−(n−1)

such that their first coordinates are t1, t2, respectively. Then it follows from
Lemmas 7 and 8 that

c−1
4 <

g(t1, x1)

g(P1)
< c4, c−1

3 <
g(P1)

g(P2)
< c3, c−1

4 <
g(P2)

g(t2, x2)
< c4.

It immediately follows that (5.9) holds.
We are going to use the lemmas above as follows. Let t ∈ Ijn...j1 and let θ = gn(t).

Then f n
2 (t, ·) : ({t} × [−1, 1]) → ({θ} × [−1, 1]) and Sj1...jn = f n(Ijn...j1 × [−1, 1]);

further,

|Sj1...jn(θ)| = 2
∂

∂x
f n

2 (t, x) (5.10)

holds for an x ∈ [−1, 1].
Vice versa, for any θ ∈ [0, 1] and j1 . . . jn we can find a (t, x) such that t ∈ Ijn...j1 , θ =

gn(t) and (5.10) holds. In this way (5.9) implies that for any j1 . . . jn and θ1, θ2 ∈ [0, 1]

c−1
5 <

|Sj1...jn (θ1)|
|Sj1...jn (θ2)| < c5. (5.11)
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This means that the ratios of the width of Sj1...jn for different θ are uniformly bounded.
We need one more bounded distortion lemma. Let us denote the set of finite words in the
alphabet {1, . . . ,m} by "∗. That is, "∗ := ⋃∞

k=1{1, . . . ,m}k. Usually we write i, j, τ ,ω
for the elements of "∗.

LEMMA 9. For any θ1, θ2, θ3, θ4 ∈ [0, 1] and any i, j, τ ∈ "∗, if

|Si(θ1)|
|Sj(θ2)| ∈ (e1, e2)

then |Sτ i(θ3)|
|Sτ j(θ4)| ∈ (c

−3
5 e1, c

3
5e2). (5.12)

Proof. Using that
f (Si ∩%τk...τ1) = Sτk i ∩%τk−1...τ1 (5.13)

we obtain that f k(Si ∩ %τk...τ1) = Sτ i and f k(Sj ∩ %τk...τ1) = Sτ j. Thus, there exist
t1, t2 ∈ %τk...τ1 and x1, x2 ∈ [−1, 1] such that

|Si(t1)|
∣∣∣∣ ∂∂x f k

2 (t1, x1)

∣∣∣∣ = |Sτ i(θ3)| and |Sj(t2)|
∣∣∣∣ ∂∂x f k

2 (t2, x2)

∣∣∣∣ = |Sτ j(θ4)|. (5.14)

Hence,
|Sτ i(θ3)|
|Sτ j(θ4)| =

|Si(t1)||(∂/∂x)f k
2 (t1, x1)|

|Sj(t2)||(∂/∂x)f k
2 (t2, x2)|

∈ (c−3
5 e1, c

3
5e2)

follows from the assumption of the lemma and (5.9). ✷

5.3. Lemmas about intersecting horizontal cylinders. In this section we prove that there
are many horizontal cylinders (as many as we wish) of approximately the same size lying
close (in comparison to their size) to each other.

LEMMA 10. For an arbitrary N ∈ N we can find i1, . . . , iN, such that:
(a) Sik (θ) ⊂ Si1(θ) and |Szik (θ)| ≥ q1c

−3
5 |Szi1(θ)| for every z ∈ "∗ and θ ∈ [0, 1];

(b) |Sik (θ)|/|Sil (θ)| ∈ [c−3
5 q1, c

3
5/q1] for all 1 ≤ k, l ≤ N and θ ∈ [0, 1]; we recall that

q1 was defined as the minimum of (∂/∂x)λ.

First observe that (b) immediately follows from (a).

Proof. We use mathematical induction to prove (a). For N = 1 the statement is trivial.
For N > 1 assume that we have already constructed i1, . . . , iN−1 satisfying (a). It follows
from our principal assumption that there exist ω, τ ∈ "+ such that the curves �ω(t) and
�τ (t) intersect each other at a certain t0 ∈ [0, 1] and τ1 �= ω1. Then there exist L such
that for each k, n ≥ L the horizontal cylinders Sτ1...τk and Sω1...ωn also cross each other.
Let τ := (τ1, . . . , τL). Then

f L(Sip ∩%τL...τ1) = Sτ ip (5.15)

holds for 1 ≤ p ≤ N − 1.
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Therefore, from the assumption we obtain that Sτ ip ⊂ Sτ i1 for 2 ≤ p ≤ N − 1. We can
choose k > N and t ′, t ′′ ∈ [0, 1] such that, for ω = ω1, . . . , ωk and θ ∈ [t ′, t ′′], we have

Sω(θ) ⊂ Sτ i1(θ) and q1|Sτ i1(θ)| ≤ |Sω(θ)|. (5.16)

Choose j := j1, . . . , jq such that %jq ...j1 ⊂ [t ′, t ′′]. Using (5.16) and Lemma 9 we

obtain that Sjω(t) ⊂ Sjτ i1(t) and c−3
5 q1|Sjτ i1(t)| ≤ |Sjω(t)| holds for all t ∈ [0, 1]. Also, it

follows from the assumption that Sjτ ip (t) ⊂ Sjτ i1(t) and c−3
5 q1|Sjτ i1(t)| ≤ |Sjτ ip (t)|

holds for 2 ≤ p ≤ N − 1 and all t ∈ [0, 1]. Thus the N different horizontal cylinders
Sjτ i1, Sjω, Sjτ ip for 2 ≤ p ≤ N − 1 satisfy the assumption. ✷

Fix N and i1, . . . , iN constructed above. Let Q be the subset of "+ covered infinitely
many times by

⋃
n≥0 σ

−ni1. That is,

Q = {j ∈ "+ | ∃ infinitely many k ∈ N such that σkj ⊂ i1} (5.17)

Remark 4. It follows from the ergodicity of the measure ν+1 that ν+1 (Q) = 1. Furthermore,
it follows from the definition of Q that there are infinitely many k such that for some
τ k = (τ1, . . . , τk), �j ⊂ Sτ k i1 holds. This implies that, for every θ ∈ [0, 1], the
r = |Sτ k i1(θ)| neighborhood in [−1, 1] of the second coordinate of the point �j(θ)

contains N intervals Sτ k i1(θ), . . . , Sτ k iN (θ) of approximately the same size. So, the upper
t-density of the measure Leb × ν+ is infinite almost everywhere. This follows that the
t-dimensional Hausdorff measure is zero.

In fact we prove more than this, namely an analogue statement in space.

5.4. The axes of the ellipses. Consider S̄j(t) for an arbitrary t ∈ [0, 1]. This is an ellipse
in the very special case when f̄ is defined by (1.1). In general, S̄j(t) is not an ellipse but
contained in the rectangle with vertices

{f̄ n(θ,−1, 0), f̄ n(θ, 1, 0), f̄ n(θ, 0,−1), f̄ n(θ, 0, 1)}
where θ ∈ Ijn...j1 and gn(θ) = t . Let A1

j (t), A
2
j (t) be the length of the horizontal and

vertical sides of this rectangle above. That is, A1
j (t) is the distance of the first two vertices

and A2
j (t) is the distance of the last two vertices of the rectangle above. Then we can

express Ak
j (t) with ψk .

LEMMA 11. Let j = (j1 . . . jn) be arbitrary. For any t ∈ [0, 1], ω ∈ (j1 . . . jn), that is
ωl = jl for 1 ≤ l ≤ n, the following holds:

Ak
j (t)

exp
( ∑n−1

l=0 ψk(σ lω)
) ∈

(
2

c5
, 2c5

)
k = 1, 2. (5.18)

Proof. Fix t ∈ [0, 1]. We can find θ such that gn(θ) = t and θ ∈ Ijn...j1 . It is enough to
prove the lemma for k = 1. Using (5.10) and the chain rule (we may use it because this
is essentially a one-dimensional computation) we obtain that there exists an x0 ∈ [−1, 1]
such that

A1
j (t) = 2

n−1∏
k=0

∣∣∣∣ ∂∂x f n
2 (θ, x0)

∣∣∣∣ = 2
n−1∏
k=0

∂

∂x
λ1(Pk)
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where P0 := (θ, x0) and Pk := f k(P0). Choose an arbitrary ω ∈ " ∩ (j1 . . . jn). That is,
ω1 = j1, . . . , ωn = jn. Then P ′0 := $(σnω) ∈ %jn...j1 . Using that P0 ∈ %jn...j1 also
holds, we obtain from (5.9) that

A1
j (t) ∈ (2c5−1, 2c5)

n−1∏
k=0

∂

∂x
λ1($(σn−kω)).

In the last step we use that f commutes with σ−1, which implies that

A1
j (t)

exp
(∑n

k=1 log(∂/∂x)λ1($(σkω))
) ∈ (2c−1

5 , 2c5).

Using that ρ2($̄(σ kω)) = $(σkω), the summand in the denominator is just
ψ1($̄(σ k−1ω)) which completes the proof. ✷

Let m′ be the maximum length of the words i1, . . . , iN ∈ "∗. We are going to prove that
the horizontal axis A1

j (t) is longer than the vertical axis A2
j (t) for almost every t ∈ [0, 1].

Actually, we prove a little more than this.

LEMMA 12. Let K = 1
2 (s2/s1 + 1). Then there exist T such that if n > T then for every

j ∈ " we have

K

n−1∑
k=0

ψ2(σ
kj) >

n−m′−1∑
k=0

ψ2(σ
kj).

Proof. If n is big enough,

∑n−m′
k=0 ψ2(σ

kj)+∑n−1
k=n−m′ ψ2(σ

kj)∑n−m′−1
k=0 ψ2(σ kj)

≤ 1+ −m′ log q1

−(n−m′) log q2
<

1

K

holds.
This implies the statement of the lemma, since in the left-hand side the denominator is

negative. ✷

Now we are ready to prove the main lemma of this section.

LEMMA 13. For ν+1 -almost every j ∈ "+, there exists M = M(j), such that, for all
n ≥ M and θ ∈ [0, 1],

A1
j1...jn

(θ)

A2
j1...jn−m′ (θ)

≥ 4c5.

Proof. Fix a T which satisfies Lemma 12. Let K ′ := 1
2 (s2/s1 + K). It follows from

Lemma 5 that there is an M = M(j) such that, if n > M , then

n−1∑
k=0

ψ1(σ
kj) ≥ K ′

n−1∑
k=0

ψ2(σ
kj) > K

n−1∑
k=0

ψ2(σ
kj) >

n−m′−1∑
k=0

ψ2(σ
kj).
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Thus from (5.18) and Lemma 12

A1
j1...jn

(θ)

A1
j1...jn−m′ (θ)

= A1
j1...jn

(θ)

exp
(∑n−1

k=0 ψ1(σ kj)
) exp

(∑n−1
k=0 ψ1(σ

kj)
)

exp
(∑n−m′−1

k=0 ψ2(σ kj)
) exp

(∑n−m′−1
k=0 ψ2(σ

kj)
)

Aj1...jn−m′ (θ)

≥ 2

c5

exp
(
K ′

∑n−1
k=0 ψ2(σ

kj)
)

exp
(
K

∑n−1
k=0 ψ2(σ kj)

) 1

2c5
≥ 2

c5
exp((K −K ′)n log q−1

2 )
1

2c5

= 1

c2
5

(
1

q2

)n(K−K ′)
> 4c5

if n is big enough. ✷

Let Kl := {j ∈ " | M(j) ≤ l}. Let j be an element of the set Kl ∩Q. (Q was defined
in (5.17).) Choose a τ whose length is greater than l such that j starts with τ i1. Then, for
every θ ∈ [0, 1],

A1
τ i1
(θ)

A2
τ (θ)

≥ 4c5 (5.19)

holds. This is because the length of τ is greater than M(j) and the length of i1 is less than
m′, so we can apply Lemma 13.

5.5. Density lemmas

LEMMA 14. Let j ∈ ⋃
l≥1(Q ∩Kl). Then we can find infinitely many τ such that

j starts with τ i1 and for every θ ∈ [0, 1] and for all 1 ≤ u, v ≤ N we have
Dist(S̄τ iu(θ), S̄τ iv (θ)) < 2A1

τ i1
(θ) where Dist means the Hausdorff distance.

Proof. Fix an l such that j ∈ Kl . We know that for 1 ≤ u, v ≤ N , Sτ iu(θ), Sτ iv (θ) ⊂
Sτ i1(θ), thus Dist(Sτ iu(θ), Sτ iv (θ)) < A1

τ i1
(θ). On the other hand, since S̄τ iu ⊂ S̄τ holds

for all u ≤ N , the Hausdorff distance between the projections to the z-axis of S̄τ iu(θ) and
S̄τ iv (θ) is less than A2

τ (θ) < A1
τ i1
(θ). This completes the proof. ✷

For a j ∈ "+ and θ ∈ (0, 1), and for an r > 0, we define

Cyl(θ, j, r) := {(t, Y ) ∈ [0, 1] ×D | |t − θ | < r, dist((t, Y ), �̄j(t)) < r}, (5.20)

where dist is the Euclidean distance.
Obviously, there exist constants c7, c8 such that

B(�̄j(θ), c7r) ⊂ Cyl(θ, j, r) ⊂ B(�̄j(θ), c8r). (5.21)

PROPOSITION 2. For µ-almost every X ∈ �̄ the upper (1+ s1)-density of the measure µ
is infinite. That is,

D̄(µ,X, 1+ s1) := lim sup
r→0

µ(B(X, r))

r1+s1
= ∞.

Proof. It is enough to prove that for a constant c10 and µ-almost every X ∈ �̄, we have
D̄(µ,X, 1 + s1) > c10N since N was arbitrary. We may assume that X = �j(θ) for a
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j ∈ ⋃
l≥1(QN ∩ Kl ). Then it follows from Lemma 14 and (5.11) that for r = 4c5A

1
τ̄ i1
(θ)

and for all |t − θ | < r , S̄τ iu(t) ⊂ Cyl(θ, j, r) holds for 1 ≤ u ≤ N . Thus,

µ(Cyl(θ, j, r))
r1+s1

≥ 2r
∑N

k=1 ν
+
1 (τ ik)

r1+s1
≥ Nc9(A

1
τ̄ i1
(θ))s1

(4c5)s1(A1
τ̄ i1
(θ))s1

≥ Nc10.

In the second inequality we used that ν+1 (τ ik) ≥ d−1(2s1c
s1
5 )
−1(A1

τ̄ i1
(θ))s1 what

immediately follows from (5.2) and (5.18). This completes the proof. ✷

5.6. The Absolute Continuity Lemma. The proof of the theorem is based on the previous
proposition and the next lemma.

LEMMA 15. The (1 + s1)-dimensional Hausdorff measure H1+s1 (restricted to �̄) is
absolutely continuous with respect to µ.

Proof. We are going to writeH1+s1 for the restriction of the (1+s1)-dimensional Hausdorff
measure to �̄ and for brevity we write η instead of ($−)−1∗ (η) when we are on "−.
If µ(A) = 0 for an A ⊂ �̄, then η × ν+1 ($̄−1(A)) = 0. Fix an ε > 0. The set
$̄−1(A) ⊂ " can be covered by a countable system of cylinders {Ci} of the form
Ci = (ωi−mi

, . . . , ωi
0, . . . , ω

i
ni
), such that

∑
i≥1 µ($̄(Ci)) < ε. We may assume about

the length (in ") and shape of these cylinders that for a constant c11 > 0 and for all
θ ∈ [0, 1]

|Iωi−mi ...ωi0 |
diam(S̄ωi1...ω

i
ni

(θ))
∈ (c−1

11 , c11) and
∑

j1...jni∈{1,...,m}ni
(A2

j1...jni
(θ))s1 < ε. (5.22)

Namely, by subdividing the cylinders the first requirement is easy to fulfill
(see (5.11)). Considering the second part of (5.22), it follows from (5.2) that
ν2(j1, . . . , jl) ≈ (A2

j1...jl
(θ))s2 . Thus

∑
j1...jl

(A2
j1...jl

(θ))s2 < constant. From the

definitions A2
j1...jl

(θ) < ql2. So,∑
j1...jl

(A2
j1...jl

(θ))s1 < q
l(s1−s2)
2

∑
j1...jl

(A2
j1...jl

(θ))s2 < q
l(s1−s2)
2 constant.

Hence, there exists an l0 such that for l ≥ l0∑
j1...jl

(A2
j1...jl

(θ))s1 < ε. (5.23)

The second part of (5.22) requires that the length of the positive part (in ") of all cylinders
Ci are at least l0. That is, ni ≥ l0. By subdivisions, if necessary we can construct such a
cover of ".

We divide the index set N into two parts. Let us write Ak
j for Ak

j (0) (k = 1, 2).

Let J ′ := {i | A1
ωi1,...,ω

i
ni

≥ A2
ωi1,...,ω

i
ni

} and J ′′ := {i | A2
ωi1,...,ω

i
ni

> A1
ωi1,...,ω

i
ni

}.
For an i ∈ J ′ we have diam($̄(Ci)) ∈ (c−1

12 , c12)A
1
ωi1,...,ω

i
ni

, where c12 = c5c11e, where
the constant e is defined by

|Iωi−mi ...ωi0 |
η(Iωi−mi ...ω

i
0
)
∈ (e−1, e).
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The existence of such an e follows from the Folklore Theorem [12, p. 352]. On the other
hand, using (5.2) and (5.18) we obtain that ν+1 (ω

i
1, . . . , ω

i
ni
) ∈ (c−1

13 , c13)(A
1
ωi1,...,ω

i
ni

)s1 ,
where c13 = d(2c5)

s1 . In this way

µ($̄(Ci)) ≥ η(ωi−mi
, . . . , ωi

0)ν
+
1 (ω

i
1, . . . , ω

i
ni
) > c14A

1
ωi1,...,ω

i
ni

(A1
ωi1,...,ω

i
ni

)s1

thus µ($̄(Ci)) > c14(A
1
ωi1,...,ω

i
ni

)1+s1 . This follows from

∑
i∈J ′

(diam($̄(Ci)))
1+s1 < c

1+s1
12

∑
i∈J ′

(A1
ωi1,...,ω

i
ni

)1+s1 < εc12c14, (5.24)

since "µ($̄(Ci)) < ε. In the rest of the proof, we give a similar estimate for the index
set J ′′. We may assume that {Ci} is ordered in such a way that {ni} is a non-decreasing
sequence. We define a sequence of finite words {jk} as follows: Let {j1} := (ω1

1, . . . , ω
1
n1
).

If we have already defined j1, . . . , jk−1, then we define jk in the following way. Let

l := min{i | (ωi
1, . . . , ω

i
ni
) ∩ jp = ∅ for all 1 ≤ p ≤ k − 1}.

Then jk := (ωl
1, . . . , ω

l
nl
). Using that any two cylinders of "+ are either disjoint or one

of them contains the other, we obtain that
⋃

i $̄(Ci) ⊂ ⋃
k≥1 S̄jk and S̄jk ∩ S̄jl = ∅ for

any two different k, l. Further, from the definition of J ′′, A2
jk > A1

jk holds. For each

k we partition the interval [0, 1] into nk := [1/A2
jk ] sub-intervals called {J k

l }nkl=1 with

equal length. Let Ēk
l := (J k

l ×D) ∩ S̄jk for 1 ≤ k and 1 ≤ l ≤ nk . So,

⋃
i

$̄(Ci) ⊂
⋃
k≥1

nk⋃
l=1

Ēk
l . (5.25)

Therefore
∑
k≥1

nk∑
l=1

|Ēk
l |1+s1 < 2

∑
k≥1

nk∑
l=1

|J k
l ||A2

jk |s1 <
∑
k≥1

nk
1

nk
|A2

jk |s1 (5.26)

=
∑
k≥1

(A2
jk )

s1 < constant
∑
i1...il0

(A2
i1...il0

)s1 < ε · constant. (5.27)

The last but one inequality can be proved as follows. We partition the cylinder
(i1, . . . , il0) into cylinders {ωk}∞k=1 arbitrarily. Then

(A2
i1...il0

)s1 = ((A2
i1...il0

)s2)s1/s2 ≈ (ν+2 (i1 . . . il0))
s1/s2 ≥

∑
k≥1

(ν+2 (ω
k))s1/s2 ≈

∑
k≥1

(A2
ωk )

s1

since s1/s2 > 1. From (5.24) and (5.26) we obtain that the (1+ s1)-dimensional Hausdorff
measure of �̄ is less than or equal to constant · ε. Since ε > 0 was arbitrary, this implies
that H1+s1(�̄) = 0 which completes the proof. ✷

5.7. The proof. Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let E be the set of X ∈ �̄ for which D̄(µ,X, 1 + s1) = ∞. Using
that µ is a finite Borel measure it follows from [4, Proposition 2.2(b)] that H1+s1(E) = 0.
Then Proposition 2 implies that µ(�̄ − E) = 0. From Lemma 15 we obtain that
H1+s1(�̄− E) = 0. In this way we have proved that H1+s1(�̄) = 0. ✷
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