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EQUIVALENCE OF POSITIVE HAUSDORFF MEASURE AND
THE OPEN SET CONDITION FOR SELF-CONFORMAL SETS

YUVAL PERES, MICHA L RAMS, KÁROLY SIMON, AND BORIS SOLOMYAK

(Communicated by David Preiss)

Abstract. A compact set K is self-conformal if it is a finite union of its

images by conformal contractions. It is well known that if the conformal
contractions satisfy the “open set condition” (OSC), then K has positive s-
dimensional Hausdorff measure, where s is the solution of Bowen’s pressure
equation. We prove that the OSC, the strong OSC, and positivity of the
s-dimensional Hausdorff measure are equivalent for conformal contractions;
this answers a question of R. D. Mauldin. In the self-similar case, when the
contractions are linear, this equivalence was proved by Schief (1994), who used
a result of Bandt and Graf (1992), but the proofs in these papers do not extend
to the nonlinear setting.

1. Introduction

Let V ⊂ Rd. Recall that a map S : V → V is contracting if there exists
0 < γ(S) < 1 such that |S(x) − S(y)| ≤ γ(S) · |x − y| for all x, y ∈ V ; if equality
holds here for all x, y ∈ V , then S is a contracting similitude. Let {Si}mi=1 be a
collection of contracting maps on an open set V ⊂ Rd and suppose that for some
closed set X ⊂ V we have Si(X) ⊂ X for all i ≤ m. By [6], there is a unique
non-empty compact set K ⊂ X such that

K =
m⋃
i=1

SiK .(1.1)

If all Si are similitudes, then K satisfying (1.1) is called self-similar.
The contracting maps {Si}mi=1 of V are said to satisfy the Open Set Condition

(OSC) if there is a non-empty open set U ⊂ V such that SiU ⊂ U for all i, and
SiU ∩ SjU = ∅ for i 6= j. The strong Open Set Condition holds if the set U in
the definition of the OSC can be chosen with U ∩K 6= ∅, where K is a compact set
satisfying (1.1).
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Next, consider a collection of contracting similitudes {Si}mi=1 and let K be the
corresponding self-similar set. The similarity dimension for this collection is
defined as the unique positive solution s of the equation

∑m
i=1 γ(Si)s = 1. It is

immediate that the Hausdorff measure Hs(K) is finite. Hutchinson [6] proved that
if the OSC holds, then Hs(K) is positive and hence the Hausdorff dimension of K
equals s.

Bandt and Graf [1] gave a very useful characterization of self-similar sets with
positive Hausdorff measure in the similarity dimension. Let A∗ be the set of finite
“words” in the alphabet A = {1, . . . ,m} and denote Su = Su1 ◦ . . . ◦ Sun for
u = u1 . . . un ∈ A∗. For u ∈ A∗ let Ku = Su(K). We say that two maps Su and Sv
are ε-relatively close if

|Su(x)− Sv(x)| ≤ εmin{diam(Ku), diam(Kv)} for all x ∈ K.(1.2)

Bandt and Graf [1] proved that Hs(K) > 0 if and only if there exists ε > 0 such
that for distinct u, v in A∗, the maps Su and Sv are not ε-relatively close. Building
on [1], Schief [11] proved that Hs(K) > 0 is equivalent to the OSC and also to the
strong OSC.

Much of the theory has been extended from self-similar to self-conformal sets
(see, e.g., [10, 2]). Let V ⊂ Rd be an open set. A C1-map S : V → Rd is
conformal if the differential S′(x) : Rd → Rd satisfies |S′(x)y| = |S′(x)| · |y| 6= 0
for all x ∈ V and y ∈ Rd, y 6= 0. We say that {Si : X → X}i≤m is a conformal
iterated function system on a compact set X ⊂ Rd if each Si extends to an
injective conformal map Si : V → V on an open connected set V ⊃ X and
sup{|S′i(x)| : x ∈ V } < 1. We assume Hölder continuity of the differentials, that
is, there exists α > 0 such that for all i ≤ m,

||S′i(x)| − |S′i(y)|| ≤ const · |x− y|α for all x, y ∈ V.(1.3)

We should note that for d ≥ 2 Hölder continuity (and, in fact, real analyticity) of
|S′i(·)| follows from conformality and injectivity.

Under these assumptions the unique non-empty compact set K ⊂ X satisfying
(1.1) is called self-conformal. The role of similarity dimension is played by the
unique solution s of the Bowen equation P (s) = 0, where the pressure P (t) is
defined by

P (t) = lim
n→∞

1
n

log sup
x∈K

∑
u∈An

|S′u(x)|t, for t > 0.(1.4)

It is well-known that Hs(K) < ∞. The definitions of ε-relatively close maps (1.2)
and of the compositions Su extend to this setting.

We say that the Bandt-Graf condition holds if there exists ε > 0 such that
for distinct u, v in A∗, the maps Su and Sv are not ε-relatively close. Our main
result is the complete equivalence theorem for self-conformal sets.

Theorem 1.1. For a conformal i.f.s. {Si}i≤m, satisfying the Hölder condition, and
the associated self-conformal set K, the following are equivalent:

(a) the OSC;
(b) Hs(K) > 0 where s > 0 is such that P (s) = 0;
(c) the Bandt-Graf condition;
(d) the strong OSC.

The implication (a) ⇒ (b) is standard (see, e.g., [4, p. 89]), so we just need to
prove that (b) ⇒ (c) ⇒ (d).
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Perhaps surprisingly, the existing proofs of these implications in the self-similar
case do not extend to the nonlinear setting. The elegant method of Bandt and Graf
[1] for the proof of (b)⇐⇒ (c) is very much dependent on the set K being precisely
self-similar. In several places of [1] it was crucial that

∑
j |S′j(x)|s = 1 for all x. We

have to use a more “robust” method to allow for distortion.
The implication (a)⇒ (d) answers a question of R. D. Mauldin (see [7, Question

9.1]). This implication was stated by Fan and Lau in [5, Lemma 2.6]. Although
their approach is very promising, unfortunately, the proof in [5] contains a gap,
as was pointed out by N. Patzschke (personal communication). A more detailed
comment on this is given at the end of the paper.

We also obtain the following corollary, which extends Schief’s result [11, Cor.
2.3]:

Corollary 1.2. If K ⊂ Rd is self-conformal and the solution of the pressure equa-
tion s equals d, then Hd(K) > 0 implies that K is the closure of its interior.

2. Generalizing the Bandt-Graf theorem

After some preliminaries, which will be needed in Section 3 as well, we prove the
implication (b) ⇒ (c) in Theorem 1.1, generalizing the result of Bandt and Graf
[1].

We consider a conformal contracting i.f.s. {Si}mi=1 satisfying the Hölder condition
(1.3) on an open set V , such that Si(X) ⊂ X for a compact set X ⊂ V . Let
A = {1, . . . ,m} and equip the sequence space AN with the product topology. We
write A∗ =

⋃
n≥1An for the set of finite “words” in the alphabet A. The symbol

σ denotes the left shift on AN and A∗. The map Π : AN → Rd defined by

Π(ω) = lim
n→∞

Sω1...ωn(x), x ∈ V,

is called the natural projection map (clearly, it does not depend on x). The
self-conformal set associated with the i.f.s. is K = Π(AN). Let

O(F, r) = {x ∈ Rd : dist(x, F ) < r}

denote the r-neighborhood of a compact set F ⊂ Rd. The closed ball of radius r
centered at x ∈ Rd is denoted by B(x, r). We write [x, y] to denote the line segment
connecting x and y in Rd.

Fix δ0 > 0 so that O(X, 3δ0) ⊂ V and let

V ′ = O(X, δ0), V ′′ = O(X, 2δ0).

Since SiX ⊂ X and |S′i(x)| < 1 for all x ∈ V , we also have SiV
′ ⊂ V ′ and

SiV
′′ ⊂ V ′′ for all i.

Next we recall the standard bounded distortion property of conformal i.f.s. sat-
isfying the Hölder condition (see, e.g., [8, Lemma 2.1]): there exists C1 ≥ 1 such
that for all u ∈ A∗,

|S′u(x)| ≤ C1|S′u(y)| for all x, y ∈ V ′′.(2.1)

Denote

‖S′u‖ = sup
x∈V ′′

|S′u(x)|.
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The property (2.1) yields (see, e.g., [8, Lemma 2.2]) that there exists C2 ≥ 1 such
that for all u ∈ A∗,

C−1
2 ‖S′u‖ · |x− y| ≤ |Su(x)− Su(y)| ≤ C2‖S′u‖ · |x− y| for all x, y ∈ V ′.(2.2)

This implies

B(x, r) ⊂ V ′ ⇒ SuB(x, r) ⊃ B(Su(x), C−1
2 ‖S′u‖r) for all u ∈ A∗(2.3)

(see, e.g., [8, Cor. 2.3]). Denote du = diam(Ku) for u ∈ A∗. By (2.2), there exists
C3 ≥ 1 such that

C−1
3 ‖S′u‖ ≤ du ≤ C3‖S′u‖ for all u ∈ A∗.(2.4)

By (2.1) and (2.4), there exists C4 ≥ 1 such that for all u, v ∈ A∗,
C−1

4 max{‖S′u‖dv, ‖S′v‖du} ≤ duv ≤ C4 min{‖S′u‖dv, ‖S′v‖du}.(2.5)

Let ω ∧ τ denote the common initial block (possibly empty) of two sequences
ω, τ ∈ AN. We equip the space AN with a metric

ρ(ω, τ) = dω∧τ for ω 6= τ.(2.6)

It follows from the bounded distortion properties that the product topology on
AN coincides with the one defined by ρ. Clearly, the natural projection map Π :
(AN, ρ)→ Rd is Lipschitz.

The reader is referred to [3, 4] for the background on thermodynamic formal-
ism. Define a Hölder continuous function on AN by φ(ω) = log |S′ω1

(Π(σω))|. The
pressure function P (t) of tφ with respect to the shift σ can be expressed by (1.4).
There is a unique value s such that P (s) = 0. Let µ be the Gibbs measure on AN
for the potential sφ. Denoting by [u] the cylinder set corresponding to u ∈ A∗, we
have by the definition of the Gibbs measure and the bounded distortion principle
(2.1) that there exists C5 ≥ 1 such that

C−1
5 ‖S′u‖

s ≤ µ[u] ≤ C5‖S′u‖
s for all u ∈ A∗.(2.7)

Lemma 2.1. (i) The measure µ is equivalent to the s-dimensional Hausdorff mea-
sure on AN with the metric ρ.

(ii) The restriction of the Hausdorff measure Hs|K is absolutely continuous with
respect to the measure ν = µ ◦Π−1 on K.

Proof. (i) A ball in the metric ρ is a cylinder [u] for some u ∈ A∗. Any collection
of cylinders in AN contains a disjoint subcollection with the same union. Now the
claim is immediate by comparing (2.4), (2.6) and (2.7).

(ii) Suppose that ν(B) = 0 for some Borel set B ⊂ K. Then µ(Π−1B) = 0;
hence the s-dimensional Hausdorff measure of Π−1B ⊂ AN is zero by part (i) of
this lemma. It follows that Hs(B) = 0 since Π is Lipshitz.

Proof of (b) ⇒ (c) in Theorem 1.1. We are going to prove that if for any ε > 0
there exist u 6= v such that Su and Sv are ε-relatively close, then Hs(K) = 0. First
we make a few useful observations concerning ε-relatively close maps.

Claim 1. If Su, Sv are ε-relatively close, then Swu and Swv are C2C4ε-relatively
close for every w ∈ A∗. Indeed, we have by (2.2), (1.2) and (2.5) for x ∈ K:

|Swu(x)− Swv(x)| ≤ C2‖S′w‖ · |Su(x) − Sv(x)|
≤ C2‖S′w‖ · εmin{du, dv}
≤ C2C4εmin{dwu, dwv}.
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Claim 2. If Sw1 , Sw2 are ε-relatively close, then Sw1u and Sw2u are C4‖S′u‖
−1
ε-

relatively close for every u ∈ A∗. Indeed, in view of (1.2) and (2.5),

|Sw1u(x) − Sw2u(x)| = |Sw1(Su(x)) − Sw2(Su(x))|
≤ εmin{dw1 , dw2}
≤ C4‖S′u‖

−1
ε ·min{dw1u, dw2u}.

Claim 3. If Su, Sv are ε-relatively close, then

dv ≤ (1 + 2ε) · du.

This is immediate from the definition (1.2).
Claim 4. If Su, Sv are δ-relatively close and Sv, Sw are δ-relatively close, then

Su, Sw are 2δ(1 + 2δ)-relatively close. Indeed, by (1.2) and Claim 3, min{du, dv} ≤
(1+2δ) min{du, dw} and min{dv, dw} ≤ (1+2δ) min{du, dw}. The rest is immediate.

Lemma 2.2. Suppose that for any ε > 0 there exist u 6= v such that Su and Sv
are ε-relatively close. Then for any N ∈ N and any ε > 0 there exist distinct
u1, . . . , uN such that Sui , Suj are ε-relatively close for all 1 ≤ i < j ≤ N .

Proof. It is enough to show that if the statement holds for N , then it holds for
2N . Assuming it holds for N , find distinct u1, . . . , uN such that Su1 , . . . , SuN are
pairwise δ1-relatively close where δ1 = 1

4 (C2C4)−1ε. Next let

δ2 = (1/4)C−1
4 min

j≤N
‖S′uj‖ · ε

and find w1 6= w2 such that Sw1 , Sw2 are δ2-relatively close. Then the 2N words
wkuj, k = 1, 2, 1 ≤ j ≤ N , are all distinct, and we claim that the maps {Swkuj :
k = 1, 2; 1 ≤ j ≤ N} are pairwise ε-relatively close. Indeed, Sw1ui , Sw1uj are ε

4 -
close by Claim 1 and Sw1uj , Sw2uj are ε

4 -close by Claim 2. Now Claim 4 implies
that Sw1ui , Sw2uj are δ3-close, with δ3 = ε

2 (1 + ε
2 ). We have δ3 ≤ ε for ε ≤ 2, which

we can certainly assume, and the lemma is proved.

Now we resume the proof of (b) ⇒ (c) in Theorem 1.1. Fix N ∈ N and find
distinct u1, . . . , uN such that Su1 , . . . , SuN are pairwise 1-relatively close. Recall
that ν = µ ◦Π−1 is the push-down measure on K. We claim that for ν-a.e. x,

lim sup
r→0

νB(x, r)
rs

≥ c ·N,(2.8)

with a constant c > 0 independent of N .
It is well-known (see [3] or [4, Cor. 5.6]) that the Gibbs measure µ is an ergodic

invariant measure for the shift σ on AN. Since µ[u1] > 0, the block u1 occurs
infinitely often in µ-a.e. sequence ω by the Ergodic Theorem. Let Ω ⊂ AN be the
set of all such ω. Fix ω ∈ Ω. We know that there exist arbitrarily large n such that
σnω ∈ [u1]. Fix such n, let w = ω1 . . . ωn, and consider the words vj = wuj for
j = 1, . . . , N . By Claim 1, the maps Swuj are pairwise C2C4-relatively close. By
(1.2), this implies that for x = Π(ω) ∈ Kwu1 we have

B(x, r) ⊃
N⋃
j=1

Kwuj , where r = (2 + C2C4) max
j≤N

dwuj .
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Thus, by (2.7) and (2.4),

νB(x, r) ≥
N∑
j=1

µ[wuj ] ≥ C−1
3 C−1

5 N min
j≤N

dswuj .

Combining this with Claim 3, we obtain

νB(x, r)
rs

≥ C−1
3 C−1

5 N

(2 + C2C4)s(1 + 2C2C4)s
.

Since r in the last formula can be arbitrarily small, (2.8) follows.
We have verified (2.8) for x ∈ Π(Ω) which is a set of full ν-measure. Now

Hs(Π(Ω)) ≤ 2s(cN)−1ν(Π(Ω)) by the Rogers-Taylor density theorem (see [9] or
[4, Proposition 2.2]). On the other hand, ν(K \ Π(Ω)) = 0, so Hs(K \ Π(Ω)) = 0
by Lemma 2.1(ii). Thus, Hs(K) ≤ 2s(cN)−1ν(K), and since N was arbitrary we
conclude that Hs(K) = 0.

3. Generalizing Schief’s theorem

In this section we prove the implication (c) ⇒ (d) in Theorem 1.1 and Corol-
lary 1.2, generalizing results of Schief [11]. For T ≥ 1, a ≥ 0 and u ∈ A∗ let

Wa,T (u) =
{
v ∈ A∗ :

1
T
≤ dv
du
≤ T, dist(Kv,Ku) ≤ adu

}
.(3.1)

Lemma 3.1. Suppose that the Bandt-Graf condition holds, that is, there exists
ε > 0 such that for any distinct v, w ∈ A∗,

∃x ∈ K : |Sv(x) − Sw(x)| ≥ εmin{dv, dw}.(3.2)

Then for any a > 0 and T ≥ 1 there exists C(a, T ) <∞ such that

#Wa,T (u) ≤ C(a, T ) for all u ∈ A∗.

Remark. This lemma is the only place in this section where the Bandt-Graf con-
dition is used. It is easy to see that the statement of the lemma holds if the
Bandt-Graf condition is replaced by the OSC, thus providing a direct derivation of
the implication OSC ⇒ SOSC (the strong OSC).

Proof of Lemma 3.1. Let δ = ε
4C2C3T 2 . It follows from (3.2) that if x̃ ∈ K and

|x− x̃| ≤ δ, then for v, w ∈Wa,T (u), in view of (2.2) and (2.4),

|Sv(x̃)− Sw(x̃)| ≥ |Sv(x)− Sw(x)| − |Sv(x)− Sv(x̃)| − |Sw(x)− Sw(x̃)|
≥ εmin{dv, dw} − C2δ(‖Sv‖+ ‖Sw‖)
≥ εmin{dv, dw} − C2C3δ(dv + dw)
≥ du(εT−1 − C2C3 · 2δT )
= (1/2)duεT−1.(3.3)

Fix a finite set {x1, . . . , xN} ⊂ K so that
⋃N
i=1 B(xi, δ) ⊃ K. For each v ∈ Wa,T (u)

let ξv = [Sv(xi)]i≤N ∈ RdN . By (3.3),

|ξv − ξw| ≥ (1/2)duεT−1 for all v, w ∈Wa,T (u).

On the other hand, if v ∈Wa,T (u), then dist(Kv,Ku) ≤ adu; hence

|Su(x) − Sv(x)| ≤ adu + du + dv ≤ (a+ 1 + T )du for all x ∈ K.
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It follows that |ξu − ξv| ≤
√
N(a + 1 + T )du. Thus, open balls in RdN of radius

1
4duεT

−1 around ξv for v ∈ Wa,T (u) are all disjoint and lie in the ball of radius
(
√
N(a+ 1 + T ) + 1

4εT
−1)du around ξu. It follows that

#Wa,T (u) ≤
(√

N(a+ 1 + T ) + 1
4εT

−1

1
4εT

−1

)dN
,

which is a constant independent of u.

We need a lemma on “local” bounded distortion. Recall that V ′′ = O(X, 2δ0) ⊂
V .

Lemma 3.2. (i) There exists L1 > 0 such that for all x, y ∈ V ′′,
|S′u(x)|
|S′u(y)| ≤ exp[L1|x− y|α] for all u ∈ A∗.(3.4)

(ii) There exists L2 > 0 such that for all u ∈ A such that du ≤ δ0 and all
w ∈ A∗,

dist(z,Ku) ≤ du ⇒ exp[−L2d
α
u ] ≤ dwu

du|S′w(z)| ≤ exp[L2d
α
u ].(3.5)

Proof. (i) is folklore; it is obtained in the course of the standard proof of “global”
bounded distortion (see, e.g., [2] or [8, Lemma 2.1]).

(ii) Note that z ∈ O(X, δ0) ⊂ V ; hence |S′w(z)| is well-defined. We can assume
that du is sufficiently small, since otherwise (3.5) follows from (2.4) and (2.5).
Suppose that C2C4du ≤ δ0. Then for any x, y ∈ K we have [Su(x), Su(y)] ⊂ V ′;
hence

|Swu(x)− Swu(y)| ≤ |S′w(ζ)| · |Su(x) − Su(y)|

for some ζ satisfying dist(ζ,Ku) ≤ du. If dist(z,Ku) ≤ du, then |ζ − z| ≤ 3du and
ζ, z ∈ V ′. Thus,

dwu ≤ du|S′w(z)| exp[L1(3du)α]

by (3.4). To obtain the other inequality, observe that by (2.3) and (2.5),

SwB(Su(x), C2C4du) ⊃ B(Swu(x), C4‖S′w‖du) ⊃ B(Swu(x), dwu).

Therefore, [Swu(x), Swu(y)] ⊂ V ′ and we have

|Su(x)− Su(y)| ≤ |(S−1
w )′(ξ)| · |Swu(x)− Swu(y)|,

for some ξ ∈ B(Swu(x), dwu) ⊂ SwB(Su(x), C2C4du). We have |z − S−1
w (ξ)| ≤

2du + C2C4du; hence by (3.4),

du ≤ dwu|S′w(S−1
w ξ)|−1 ≤ dwu|S′w(z)|−1 exp[L2d

α
u ],

with L2 = L1(2 + C2C4)α, as desired.

Lemma 3.3. Let T0 ≥ 1 and ε > 0. There exists δ = δ(T0, ε) > 0 such that for all
u ∈ A∗ with du ≤ δ, for all a ∈ [0, 1] and all T ∈ [T0, 2T0],

v ∈ Wa,T (u) ⇒ wv ∈Wa(1+ε),T (1+ε)(wu) for all w ∈ A∗.
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Proof. Suppose that du ≤ δ < δ0/(2T0) and v ∈ Wa,T (u). Fix w ∈ A∗. We need to
check that (i) T−1(1+ε)−1 ≤ dwu

dwv
≤ T (1+ε) and (ii) dist(Kwv,Kwu) ≤ a(1+ε)dwu.

(i) Let z ∈ Kv be such that dist(z,Ku) ≤ adu ≤ du. Then by (3.5), using that
duT

−1 ≤ dv ≤ duT ≤ 2δT0 < δ0, we obtain

dwu
dwv

≤ du|S′w(z)| exp[L2d
α
u ]

dv|S′w(z)| exp[−L2dαv ]
≤ TeL2δ

α(1+(2T0)α) ≤ T (1 + ε),

for δ > 0 sufficiently small. The other inequality is obtained similarly.
(ii) Since v ∈ Wa,T (u), there exist x, y ∈ K such that |Su(x) − Sv(y)| ≤ adu.

Then [Su(x), Sv(y)] ⊂ V ′; hence

|Swu(x)− Swv(y)| ≤ |S′w(z)| · |Su(x) − Sv(y)|

for some z with dist(z,Ku) ≤ adu ≤ du. Therefore, by (3.5),

dist(Kwv,Kwu) ≤ a|S′w(z)| · du ≤ adwu exp[L2δ
α] ≤ a(1 + ε)dwu,

for δ > 0 sufficiently small, and we are done.

Proof of (c) ⇒ (d) in Theorem 1.1. The scheme of the proof generally follows that
of Schief’s [11], but we have to be careful with distortion.

Fix T0 ≥ 1 so large that for all j ∈ A and all v ∈ A∗,

dv ≤ T 2
0 dvj and T0dj ≥ 1(3.6)

(in fact, one can take T0 = max{d−1
j , C

1/2
4 ‖S′j‖

−1/2, j ∈ A} by (2.5)). It follows
from (3.6) that for any r ≤ 1 and any w = w1 . . . wn ∈ A∗, with dw ≤ r, there is
1 ≤ k ≤ n such that

T−1
0 ≤ dw′/r ≤ T0 where w′ = w1 . . . wk(3.7)

(just take maximal 1 ≤ k ≤ n such that dw′ ≥ rT−1
0 ). To simplify notation, let

Wa(u) := Wa,(1+a)T0(u) and Ma(u) = #Wa(u).

By Lemma 3.1, there exists C = C(1, 2T0) > 0 such that

Ma(u) ≤ C for all u ∈ A∗ and all a ∈ [0, 1].

By the definition (3.1), the function a 7→ Ma(u) is non-decreasing. For r > 0
consider

M̃a(r) := sup{Ma(u) : u ∈ A∗, du ≤ r}.(3.8)

Let ε = 1
2C and fix r = min{1, δ(T0, ε)} where δ(T0, ε) is from Lemma 3.3. The

function a 7→ M̃a(r) on [0, 1] is non-decreasing, integer-valued, and is bounded
above by C. Thus, we can find an interval [a1, a2] ⊂ [0, 1] with a2 − a1 ≥ 1

C such
that M̃a1(r) = M̃a2(r). Clearly, the supremum in (3.8) is attained, so we can find
u ∈ A∗ with du ≤ r such that

Ma1(u) = M̃a1(r).

Fix this u for the rest of the proof. Since, in addition, M̃a2(r) = M̃a1(r) and
Ma2(u) ≥Ma1(u), we deduce that Ma2(u) = M̃a2(r) = Ma1(u). Observe that

a2 ≥ (1 + (2C)−1)a1 = a1(1 + ε)
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and

1 + a2 ≥ (1 + a1)(1 + (2C)−1) = (1 + a1)(1 + ε);

hence

v ∈Wa1(u) ⇒ qv ∈ Wa2(qu) for all q ∈ A∗

by Lemma 3.3. It follows that Ma2(qu) ≥Ma1(u). But

Ma2(qu) ≤ M̃a2(r) = M̃a1(r) = Ma1(u);

therefore, Ma2(u) = Ma1(u) = Ma2(qu) for all q ∈ A∗. Thus,

Wa2(qu) = {qv : v ∈ Wa2(u)} for all q ∈ A∗.(3.9)

Consider

U =
⋃
v∈A∗

SvO(Ku, ε′),(3.10)

where ε′ > 0 will be chosen later. This will be our open set in the strong OSC.
Clearly, U∩K 6= ∅ and SiU ⊂ U for all i ≤ m. It remains to check that SiU∩SjU =
∅ for all i 6= j. This will follow if we prove that for all v, w in A∗ and all i 6= j,

SivO(Ku, ε′) ∩ SjwO(Ku, ε′) = ∅.(3.11)

If ε′ ≤ δ0, then

SivO(Ku, ε′) ⊂ O(Kivu, ‖S′iv‖ε′) ⊂ O(Kivu, ε′′divu), with ε′′ = C4d
−1
u ε′,

in view of (2.5). Similarly,

SjwO(Ku, ε′) ⊂ O(Kjwu, ε′′djwu).

Assume that divu ≥ djwu without loss of generality. By (3.7), there is a prefix
(initial block) jw′ of the word jwu such that T−1

0 ≤ djw′
divu
≤ T0 (here w′ may range

from empty to wu). Now jw′ satisfies the diameter condition for membership in
Wa2(ivu) but jw′ 6∈ Wa2(ivu) by (3.9). Therefore,

dist(Kivu,Kjwu) ≥ dist(Kivu,Kjw′) > a2divu.

Thus, if ε′′ ≤ a2/2, then (3.11) holds. It suffices to take ε′ = min{δ0,
1
2a2C

−1
4 du},

and the proof is complete.

Proof of Corollary 1.2. We want to show that if s = d, the dimension of the space,
and Hs(K) > 0, then K = clos(intK). The proof is quite similar to the proof of
[11, Cor. 2.3]. By Theorem 1.1, the OSC holds, and moreover, the open set U can
be chosen so that U ⊂ V ′ = O(X, δ0) (see (3.10)). The OSC means that SiU are
pairwise disjoint subsets of U , for i ≤ m. Let

W = U \
m⋃
i=1

SiU.

We claim that Ld(W ) = Hd(W ) = 0 where Ld is the Lebesgue measure in Rd.
Indeed, it is easy to see that the sets SvW are pairwise disjoint for all v ∈ A∗, and
they all lie in U . Thus,∑

n≥1

∑
|v|=n

Ld(SvW ) ≤ Ld(U) <∞.(3.12)
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We have

Ld(SvW ) =
∫
W

|S′v(x)|d dx ≥ C−d1 ‖S′v‖
dLd(W ),

in view of (2.1). Therefore, by (2.7),∑
|v|=n

Ld(SvW ) ≥ C−d1 C−1
5 Ld(W )

∑
|v|=n

µ[v] = C−d1 C−1
5 Ld(W );

hence Ld(W ) = 0 by (3.12). This implies that the open set U \ clos (
⋃m
i=1 SiU) is

empty. Therefore,

m⋃
i=1

Si(closU) =
m⋃
i=1

clos(SiU) = clos

(
m⋃
i=1

SiU

)
= closU,

so closU is an invariant compact set for the i.f.s. {Si}i≤m. By uniqueness, closU =
K, and the proof is complete.

In conclusion, we should comment on the paper of Fan and Lau [5] where the
implication OSC ⇒ SOSC is stated in Lemma 2.6. However, as pointed out by
N. Patzschke (personal communication), the proof of [5, Lemma 2.6] contains a
gap. The formula on the second line of [5, p. 335] is unjustified; proving it involves
checking two facts, one of which, that IJ ∈ Λ|UIJ0 |, may fail, due to distortion.
Perhaps one could fix the proof, but this would require further arguments.
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