SUB-ADDITIVE PRESSURE FOR TRIANGULAR MAPS

A MANNING! AND K SIMON?

ABSTRACT. We investigate properties of the zero of the subadditive
pressure used by Falconer, Barreira and Zhang to estimate the box and
Hausdorff dimension of a non-conformal repeller. In the conformal case,
and in Falconer’s 1-bunched non-conformal case, the contraction rates
satisfy bounded distortion and so this zero is insensitive to where on each
cylinder the contraction is evaluated. We study some non-linear two-
dimensional examples which do not satisfy bounded distortion but do
exhibit the same insensitivity. Here the contraction rate fails to specify
ellipses that can be used to cover cylinders.

1. INTRODUCTION

Pressure and subadditive pressure have proved valuable tools for obtaining
(at least) upper bounds on the Hausdorff and box dimension of an invariant
set of a non-conformal dynamical system. Consider a repeller A of a C?
expanding map E : M — M or (by constructing a Markov partition [3, p.
79] and taking local inverses) the invariant set of a (possibly graph-directed)
iterated function system (IFS).

When the maps are conformal the Hausdorff dimension is given by the
zero of the pressure function P(s) defined as P¢(—slog||DE||), [4, 10, 12].
The pressure, defined, for example, in [15, §9], is given by using one point
from each n-cylinder and incorporating an approximation to the diameter
of the cylinder (whose s-th power is used in calculating the upper bound for
Hausdorff s-measure given by the covering by n-cylinders). In the conformal
case one just multiplies the various contraction rates to get this approxima-
tion.

But, if the maps are not conformal, their composition can contract more
strongly. An attempt to capture this is the subadditive pressure of Falconer,
[6, 7], which uses a function ¢° in place of —slog || DE]|| that combines the
singular values of the derivative of local inverses of E. The norm of the
derivative of such inverses of EYV can be very different from the product of
norms, and subadditive pressure incorporates this.

Falconer considered a map for which the strongest expansion is less than
the square of the weakest expansion, called the 1-bunched case [1, p. 903]. In
the 1-bunched case the cylinders are convex and the singular values satisfy
the bounded distortion property. Even when the 1-bunched condition is not
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satisfied Zhang [16] found that this zero is an upper bound for the Hausdorff
dimension, but little else is known, although Barreira addresses this case in
[2]. The approach of [2] is to cover by ellipsoids whose semiaxes come from
certain singular values and then relate box dimension to a notion of elliptic
box dimension. In §7 we point out an error in the proof of that relation and
present a counterexample showing that a weaker statement does not hold.

The structure of our paper is as follows: we study examples in the plane
of a triangular type, in fact a skew-product over an affine Cantor set. In
Theorem 2 (§5) we show that, just beyond the 1-bunched condition (see
Remark 1), it can happen that, on some cylinders, the singular values fail
to satisfy bounded distortion. In Theorem 3 (§6) we show that the values
of ¢* on a cylinder can fail to determine an ellipse or rectangle that con-
tains the cylinder. In Theorem 1 (developed in §2 and proved in §4 using
estimates obtained in §3) we show that, for a wider class of skew-products,
the subadditive pressure does not depend on whether we use the maximum
or minimum of ¢* on each cylinder.

2. INSENSITIVITY OF SOME TWO-DIMENSIONAL EXAMPLES

In this section we introduce our class of two-dimensional examples, define
subadditive pressure for them and state our insensitivity theorem.

Let M C R? be non-empty and open. Let E: M — M be a C?> map. We
use notation very similar to that of Falconer in [7]. We say that a compact
subset A C M is a mixing repeller for FE if

(a): EJA is expanding,
(b): there is an open set V, A C V C M such that

(1) A={(z1,29) €V : E"(x1,22) € V for all n > 0}.
(c): E|A is topologically mixing.
Let Aq,... A, be a Markov partition of A into small subsets on each of which

FE is injective. Let Kk be the closure of the § neighbourhood of A, where §
is so small that A, C V and

Kiﬂf\j:@ifandonlyifl\iﬂAj:@.

A sequence i = (ig, ..., in) € {1,...,m}" ™ is called admissible if E(As;) D
A, for 0 < j <n. Let

Sy :=A{i:|i| =n+1,iis admissible}

For i € S, we write
n " n _
Ai = m E_k(A,k> and Ai = ﬂ E_k(AZk)
k=0 k=0
As in [7, p. 321] we denote the local inverse of the map Enmmuzn by

Figirin t Moy — Nigiv i
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Then, as in [7], we can find 0 < 1 < 2 < 1such that for every (z1,z2) € A
and for all u € R?

(2) Brilull < (D o) Figir...in Jull < G5 [[ull.

We now make the assumption that the function E|V is given in the (skew-
product) form

(3) E(x1,x9) := (e1(x1), e(z1, z2)).

in

So the local inverses are given in the form

(4) Fig iy (21, 22) 1= (fig,ir (T1): Gig,ia (71, 2)) (21, 22) € Ay

Then, for (ig,i1) admissible and (z1, z2) € /L-l, D (4, 24)Fig iy 1s non-singular.
oo ~

Forie ¥* := |J Se and (z1,22) € A, we write ag(i, (z1,x2)) for the k-th

(=1
biggest singular value of the matrix D, ,,)Fi. For k= 1,2 put

ar(i) == max_  ax(i, (z1,22)) ai(i) = min_ ax(i, (21, 22)).
(z1,2) €A, (z1,m2)€A;),

For 0 < s < 2 the singular value function is defined by

s (s ] ar(i, (21, 22))°, if s <1;
5) ¢ (o, 22)) = { ai(iv (xi,xi)) -o(i, (3?1,372))8_1, ifl<s<2.

As with «y above, let

6s(i) = max_ ¢°(i,(z1,22)), and ¢°(i) := min_  ¢°(i, (x1,2)).

($17$2)€Ain (Zl,rg)EAin
Following [7, p. 322] we define the subadditive pressure
.1 TR | =S
P(s) := nh_)rgo Elog GZS ¢ (i) = 1%fﬁlog GZS ¢ (i).
1 n 1 n

That this limit exists was proved in [7, p. 322]. Further put

(6) P(s) := liminf ! log > ¢°(i).

n—oo n K
iesS,

Theorem 1. For every 0 < s < 2 the limit exists in (6). For E as in (3)
we have

(7) P(s) = P(s).

That is the sub-additive pressure is not sensitive to the choice of the
points of the cylinders at which the singular value function is evaluated.
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3. ESTIMATING LOWER TRIANGULAR MATRICES

In this section we study the diagonal terms in the derivative of an n-fold
composition of our contractions and we estimate the off-diagonal terms using
the diagonal ones.

To simplify the notation for the derivative of Fj ;, in (4) we write

9Gi,i Oa.. :
uz.o,il(xl,l?) = gz.;fl (x1,$2) and Uio,il(x17x2) = gli.%(');l(xbxﬂa
so that
!/
®  DRen(n=| Faal) 0

Uz‘o,zd(wlam) ’Uz‘o,z‘l(whﬂa)

Since each Fj, ;, is contracting, for admissible (ig,71) and (z1,x2) € K,-l we
have

9) | fio i (@1)] < 1, Jvig i, (21, 22)] < 1 and |ugy (21, 2)| < 1.

Further, for every n > 2 and admissible (ig, . ..,%,) we define

n—2
aiO---in (‘Tl) = H f{k,ik+1 (fik+l'--i7L (xl)) : f’iln_l,in (:1:1)
k=0
and
n—2
Cig.oin (1, 72) 7= [ [ Wi (Fipirin (@1, 22)) - 03y (21, 72).
k=0
Then
ig...ir, (T1) 0
10 DFy i (z1,29) = | , “oin
(10) ioein (@1, 22) [ big...in (T1,72)  Cig..i, (21, T2)
where
"
(11) bi. i (@1, 22) = Db, (1, 29),
k=1
and
(12)
bz(f.)..in(xlaf@) L= igiy (Fiy i (01,22)) -+ iy iy (Fiy_y i (71, 22))

i i (Figein (€1, 22)) - fi i (Fiin (1)) - i (201)
For every n and admissible (i, ..., i,) we write

aio...in = max |ai0,__,~n(x1)| and EiO---in = max _ ’Cion_in($1,x2)|.
(z1,22)€EAN;,, (z1,x2)EAN,,

Further let

a

@, 4, = min_ |aj i, (z1)| and ¢;; ;= min_ iy, (71, T2)].

(x1,2)EN;, (z1,72)EA;,
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We write
—(k _ _
(13) bz(o.)..in = Cig.igg_q R iy -
Then it follows from (9) and (12) that
k —(k
(14) max b)), (z1,@0) < B,
(z1,22)€EN;,
Finally we define
n
7 7 (k)
biO-nin = szozn
k=1

Then by definition for every (z1,x2) we have
(15) [big...i (21, 22)] < big._i,,-

Using [11, Proposition 20.1] we obtain the bounded distortion properties
that there exist C7 > 0 such that for every n and admissible (ig, ..., 7,) we
have
(16) Ot < Yoin 0y and o7t < Sosin o 0y

Qlozn Q’L()Zn
It follows that
(17) Cr g iy~ Tiy i, < Ty, < g * Tiy i
and
(18) Cr % 0 “Cipiipor < Cigoiipo, < Cigovin * Cipoipge-

4. SINGULAR VALUES OF OUR TRIANGULAR MAPS

In this section we prove Theorem 1 by controlling the contribution of the
off-diagonal terms to the singular value function and its pressure.
a
b
see that the singular values A, i, which are the positive square roots of the

2 4 p2
eigenvalues of the matrix A*A = [ “ ;; b [;S ], satisfy:

For a lower triangular 2 x 2 matrix A = 2 } one can immediately

N2 =a?+b%+ % and A\ = ac.

Hence, for all 0 < s < 1, we have

1
(19) g5 tal” + [o" + e[} < max {A%, p*} < 4% - {[al” + [b" + |c[*} .
It follows that for every n and admissible (ig,...,%,), s > 0 we have
- ) 1
3 ‘125 ( f0- in + cfon 1n) < 3.9s (Qfomin +QZ$0-.~in)
(20) < ai(ip...in) <@(ig...in)

p— 7S A
<47 <az$0‘..in + by, + C;?Omin) :
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For every admissible i = (ig,...,i,) and every (x1,x2) we have
ai(z1,x2) - ci(z1, x2) = det (DFj(x1,22)) = ar(i, (x1,x2)) - aa(i, (z1, 22)).
In this way for 1 < s < 2 we have
¢*(i, (z1,22)) = au(i, (w1,22)) - aa(i, (w1, 22))° 7"
(21) = ai(i, (z1,22)* Pay(z1, 22)° Loy (1, 22)5

This implies that for 1 < s < 2 we have

F() < 4*°. (af‘s +h +a2—8) a et

1 1

(22) = 4% <a051+0151+b2 8*8 1z- 1).

1

We obtain from (20), (21) and (16) that there exists Cy > 0 such that for
1<s<2

(23) ¢s<)>c2[als 1+Clsl]

Similarly, for 0 < s < 1, we have

Cr? — -
e D@ <e®<FH < (@5 47).
Motivated by formulae (22) and (24) we define
s [@,  if0o<s<l1 oo [T ifo<s<l1
Vall) = { @, 1<s<2 Mdve@i=qggt 1o <

It follows from (17) and (18) that, for 0 < s <2, ;oo 9a(i) and ) ;5 2 (i)
are submultiplicative so the following limits exist:

(25)  Py(s) := lim —logzwa and P.(s) := lim l1ogzz/;g(i).
e e, Teen s,
Let
P2(s) :== max {P,(s), P.(s)}.

Proof of Theorem 1. It follows from (23) and (24) that for every 0 < s <2
we have

(26) PA(s) < P(s).

To verify our theorem we only need to prove that for every 0 < s < 2 we
have

(27) P(s) < P2(s).

For the rest of the proof we fix € > 0 and we choose K such that for every
n > K we have

(28) Z @ZJS < en(Pa(s +e) and Z ws n(Pc(s)—&-s)‘

€S, €S,
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First we assume that 0 < s < 1. It follows from (24) that

1 =5
(29) P(s) < max { P2(s),limsup — log Z b;

n
o i€Sn

So, it is enough to prove that

(30) lim sup 1 log Z b; < PA(s) +e.
Now
ayE - ¥ (YY) <X ()
ieS, ieS, \k=1 k=1ieSy,
~ MY, N~ DY . N 0%
_ 70 (i 70
- ZZ(bi ) +ZZ(bi ) + Y Z(bi ) .
j=1i€sS, j=K i€eS, j=n—K+1ieSy,
S1 S 3;
Using (13) and (9) we get that
(82)  Si<Kemfo 3@, SK-mf e,
(iKv---fin)eSan
i€SH— K
n—K
(34) Sy < Z eI (Pe(8)+e)+(n=3)(Pa(s)+e) . on(P2(s)+e)

j=K
Putting the last three inequalities together we immediately get that (30)
holds.

Now we assume that 1 < s < 2. Then for every admissible word i and for
every (x1,x2)
(35)

Oél(i, (1‘1, l’g)) . Ckg(i, (.’L’l, xg)) = det (DFi(.’L'l, .’L'Q)) = ai(xl, xg) . ci(xl, 1‘2).

This implies that

(36) ¢°(i, (21, 72)) = a1 (i, (z1,22))* % - @i (21, 2)5 7 - ci(w1, 29)*
This and (20) imply that
(37) G < LTI +b T aET +vl(D).

It follows that

1 T2—s _g_ _
(38) P(s) < max { P2(s),limsup — log Z bi2 @ttt
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In this way it is enough to verify that

1 9
(39) lim sup — log Z bi2 TLaTh g < PA(s) Fe
o ieSy,

Using that 0 <2 — s < 1 we obtain that

Sy twtgt < f:z (Ei(’“))z_s.af‘l-éf‘l

iesSn, k=1ieS,
= U1 +Ux+U;
where
K- n—K 2—s
_ Z Z (b(k> @ el Uy = Z Z (é@) a gt
k=1 ieS, k=K ieS,
and

Us := i Z(Bi(k))hsaisfl@isfl'

k=n—K+11ieS,
We can estimate Up,Us and Us in way similar to that used for S, S2 and
S3 above. Namely using (9) we obtain the existence of constants Cy =

Cy(K),C5 = C5(K) and Cg = Cg(K) such that

K-1 n
(40) i< Ciy Y i andUs<Cs ) ) Wil

k=1 ieS, k=n—K+1i€eS,
and, using (17) and (18),

n
Uy < Cs Z Z Cig...i; (Eio...ij)s_l : Z [ (Ez‘j...z'n)s_l

—-K
j=K (i07...,’ij)65j (ij,...,in)esn,j
K

(4) Cs N eI (P2 (s)+€)+(n—5) (P2 (s)+e) <Cs-n- (P2 (s)+e)

=

Putting together (40) and (41) we see that (39) holds. This completes the
proof of Theorem 1. O

5. FAILURE OF THE BOUNDED DISTORTION PROPERTY

In this section we will present an IFS of the form (4) for which the largest
singular value does not satisfy the bounded distortion property. Our IFS
will be {Fi, Fo} modeled by the full 2-shift and using maps F; instead of
F,.i, so the admissible n-tuples (i1, ...,i,) do not need the symbol .

Theorem 2. There exists an IFS of the form (4) such that
[ (1) Sup(ﬂ?17ﬂ?2)€/~\i ||DF1(I17J;2)||

(42) SuUp —1 = sup - =
iexr (i) exe inf, o5 [DFi(2, z2)
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Proof. Using the notation of (4) let m = 2. We fix for the rest of the proof
constants A1, A1, A2, A2 less than 1 that satisfy:

A ~ ~
(43) AL > iﬁ, A >4/ A1 and Ay < A
2

Note that for any 7 > 0 the following choice will do:

1 ~ 1 1~ 1

9’ 12%’ /\ZZWa QZF-

First we define affine contractions fi, fa : [0,1] — [0,1] by
fi(z) == XAz and fo(x) := Aox + 1 — Ag.

Let C be the attractor of the IFS {fi, fo}. As a preparation for the con-
struction of g;(z1,x2) for i = 1,2 and 0 < x1,29 < 1 we construct a strictly
increasing function h € C2([0,1]) which has zero derivative on C so that, on
every interval complementary to C, h' has maximum a little less than the
length of this interval. We use

Lemma 1. Let J; := fi([0,1]) and let I; := J;\ (int(J;,1 U J; 2)). There exists
a Ct function n:[0,1] — R* and z € (0,1) such that

(a):

(44) AL =

(45) n(x) =0 if and only if x € C.
(b): for every i € ¥* and z = fi(z) we have
_ |4
(46) 77('21) - log(n i 2)?

where n = |i].

Proof. We put z := A\ + M That is z is the midpoint of I :=
[0,1] \ int(J; U Ja). Let u and v be the left and right end points of the
interval I and for every i € ¥* let u; and v; be the left and right end points
of the interval I;.

For each i € ¥* we define the function 1 on I; as follows: if x is chosen
from the first quarter of the interval I; then let

8 (v — uz)?

47 =
(47) n() log(n+2) |4
Then for such an x we have

1 — 4
(48) H) = o)

- log(n+2) || ~ log(n+2)
Then we define the function 7 on the second quarter of the interval I; by
n(z) = L] /log(n + 2) —n (ui + |1i]/2 — x)

making the graph of 77|[ui7zd symmetrical about its midpoint. Then by the
symmetry, 7(z;) = 0. Therefore, we can define the function 7 on the second
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half of the interval I by reflecting the graph of 77|[u1,Zi] in the vertical line

x = z;. Then

(49) max 7|z, = n(z;) = &
! log(n + 2)

In this way we have defined n on Uijlj such that at all endpoints # is 0.
Let n|c := 0. Then n is differentiable on C' and /| = 0.
O

Choose ¢ such that for
(50) hz) = o1 / n(t)dt,
0

we have

h(1) := min{l 1 —L} =1 .

Then h € C?[0,1] is strictly monotonic and

(51) Va € C we have h/(z) = 0.

Further, for every j € ¥* with |j| = ¢ we have
461’I'|

52 W (z) = ——1—.

(52) (25) log(¢ + 2)

We choose ¢z := 4¢; - |I]. Then for j = (j1,...,Jr)
IS VIR
B () — €2 " Ajy Je

(53) () log(¢ + 2)

Now we can define our IF'S as:
(54) Fi(w1,22) 1 = (fi(z1), h(w1) + A1z2),

FQ(H?l,:CQ) = (fz(xl), h(l‘l) + XQQTQ +1-— h(l) — XQ)

Then F; : [0,1]> — [0,1)2 for i = 1,2 are C? functions and F}(0,0) = (0,0),
Fy(1,1) = (1,1). We write A for the attractor of {Fy, Fa}; A C [0,1]2. Since

A1+ A2 < 1 we have Fy ([0,1]?) N F> ([0,1]%) =0
and the strong separation property, see [9, p. 35], holds. Further,

_ )\1 0 . )\2 0
DFl(xlng) - |: h/(xl) )\1 :| 5 DF2($1,$2) = |: h/(xl) )\2 :| .
Because
i 0
P alon) = [ W (Farin@) X }
U+1---In 1k
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Ji= fi([07 1])

F1GURE 1. The cylinder F; ([0, 1]2) contains infinitely many

smooth strips of height A;

we get

-DF;, (x1,22)

l)Fi1 (Fzgzn (xla .1‘2)) o

D(Elzn (1'1, x2))

lezn ] ’

11 in
biy...in (T1)

(55)
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Where Ai = )‘Hzn = )‘i1 e )‘inv Ai = lezn = )\il e )\in' AS n (11),

= k
(56) bircin (1) 1= B (1),
k=1
where, as in (12), for 1 <k <n
(57) bgf)zn (‘Tl) = Xi1~--ik71 ’ h,(fikﬂmin (xl)) ’ )‘ik+1~~~in
and
(58) bz(?)zn (931) = Xi1-~~ik71 ’ h/(xl)'

Using this and the fact that for every ¢ and for every (ji,...,J¢) we have
fir..j,(uw) € C, (51) implies

(59) Vie X* bi(u) =0.
It follows from (53) that, for k& < n, we have
(60) h (f2k+1~~-2n (Z)) log(n — k‘ + 2) )\zk+1~--7fn7

while, for & = n, we have h/(z) = co/log2. In this way, for 1 < k < n, we
have
k) T C2 2
(61) b,El,Ln(Z) - )\i1...ik,1 . log(n _ k + 2) ' ()\ik+1~~in) 9
and for £ = n we have
(n) _5 ©2
(62) by i (2) = Niy iy - Jog2’

Let N :=2n+ 1. Then

(n+1) 5 C2 2

(63) bil,,,iN(Z) = Niy.oip * m : (>‘in+2...iN) .
Thus

+1 ~
(64) bg?z,i(z) _ c2 iy v Nipo.in

Aiy.in log(n+2) Ny

while

(n+1) 2
(65) bi?...iN(Z) _ c2 (Nipsoin)

Nt iy log(n + 2) Nipi1oin
Let us choose
(66) i:=(2,...,2,1,...,1), |ii=2n+1=N.

S—— ——

n n+1

Then, using (43), for this particular choice of i we have

(n+1) Y n
b. Ao
(67) i (Z) _ C2 ) 2A1 IS
A A9 log(n + 2) Ao
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as N — oo. Similarly we have

b§n+1) 2\ M
(68) e Tt @1) — 00,
)\i )\1 log(n + 2) )\1

as N — oo.
Now for the i defined in (66) we use (19) with s =1 to obtain

. 1 L. (n+1) T 2 2
(69) o <1, <z, 2)) =1 (2) i Glog(n + 2) ( 2 N)

where we could have chosen any other x5 € [0, 1] instead of 1/2. Using (59)
it follows from (19) again that

1 ~
(70) auli, (u, ) < Smax { \i, i }
Now putting together (67), (68), (69) and (70) we obtain
(i, (2, 3)) const

71
(7) a1, (u, 3)) ~ log(n +2)
as N = 2n+ 1 tends to infinity. This completes the proof of Theorem 2. [J

(min {)ng//\g, )\%/Xl}>n — 00,

Remark 1. For any 7 > 0 we can use \1 etc as in (44) and see that this
IFS is 1 4+ 37-bunched on a small neighborhood of the attractor. Falconer
[7] proved that a 1-bunched IFS satisfies the bounded distortion property and
has convex cylinders. Our example shows that these properties may not hold
without the 1-bunched assumption.

Corollary 1. Here we use thei € ¥* defined in (66). Let x; € [0,1]? denote
a point at which the singular value function ¢*(i, (x1,x2)) (defined in (5))
attains its maximum on the cylinder Fy([0,1]?). Then we have

aQ(iv (uv %))

72 . — 0,

2) 02 (i, )

as N tends to infinity.

Proof. ayjas is the determinant )\ixi, which is constant on F([0, 1]2). O

6. CYLINDERS THAT CANNOT BE COVERED BY ELLIPSES SUGGESTED BY
THE SINGULAR VALUES

In [2, Th. 3] Barreira claimed that the zero of the subadditive pressure
is an upper bound for the upper box dimension of a non-conformal repeller
A. His method of proof in §5.2 was to cover each N-cylinder by an ellipsoid
with semiaxes given by the singular values at a point where ¢° takes its
maximum. In this section we exhibit a cylinder for which this is not even
possible using the singular values at any of its points.

Here we use the same i as above, defined in (66). Similarly we use the same
maps Fi, F» as in the proof of Theorem 2. The idea is that F} contracts more
strongly vertically than horizontally while, for F5 it is the other way round.
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The cylinder i is strongly distorted because of the non-linear term coming
after weak horizontal contraction and before weak vertical contraction.

Since throughout the proof i depends only on n and o (i, (1, x2)), ag (i, (z1, 22))
do not depend on x2 € [0, 1], we will write for k = 1,2

a,gn) (1) = ag (i, (z1,22)) .

Theorem 3. For every constant cig we can find L such that for every
x = (z1,22) € [0,1]* and for every n > L the cylinder F; ([0,1]?) cannot be
covered by any rectangle with sides ¢y - oz(ln) (z1) and c19 - oy (1).

Let {an},—; and {b,},- | be sequences of positive numbers. We say that

1 1
an <K by, if limsup — log a,, < liminf — log b,,.

n—oo M n—oo 1

Similarly we write

1 1

an = by if lim —loga, = lim —loghb,.
n—oo n n—oo n

A simple calculation shows that for every 1 < k < 2n + 1 we have

(73) log(n + 2)b" T (2) > Xalog(2n + 1 — k + 2)b (2).

Thus in the sum (56) no summand is larger asymptotically than bi(n+1) (2).
Thus using (63) and (19) we obtain

(74) o\ (2) = " (2) = (A%)”.

It follows from (35) and (55) that

(75) ag(z) = xS
oe) (W)

Lemma 2. There exists a constant Cs such that for every n and every
0 <k <2n and for every x € (u,v) we have

(a): If |z — 2| < % then

o) L]

M ATThexntixe (Xm)"
A1

W(foriz) ~ 127
(b): Ifu<x<u+% 0rv—%'<aj<v then
W (foriz) _ o W (fonr) 2
W) T iy ~ T
respectively.

Proof. The proof follows immediately from (47) and (49). O
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Using this, (57), (74) and (75) we see that

. ~\n " A1LA
(76) Ve € (u,v), ag )(93) ~ (A%)\z) and ag )(:c) ( ;12>

Further, putting together Lemma 2, part (b) and (53) we obtain that for
0<k<2n+1 we have

)\O'ki
log(2n + 3 — k)

(1) w<w<ut D s (fu(a)) = exCy- (@ — )
and

1| Y, 2 Aoki
(1) v=T sesv= (o) =als-(v-2) log(2n + 3 — k)

Put ¢4 := ¢C3. Then this, (12), (57) and (73) imply that ifu < z <

U+ % then
C4 n n n n
(79) m(x —w)? NP A < by(x) < (2n 4 Deg(a —u)? - Ny - A2
Further, if v — % < x < w then
(80) g (v =2 3 N < bla) < (20 + Dealw =) 3 AP
Finally for |z — 2| < ﬂ we have
€2 n 2n I \2n
1 —_— < 2 1 . .
Lemma 3. For (z1,z2) € [0,1]? we have
(82)  Fenee) = |7 o £ (@1), palwn) + N Nws + an) |
where ap := (1 — h(1) — Xg)(X"—l o+ A+ 1) and for z € [0,1]
(83) Z Aije + h(fye13(2),
where il = (i1, ..., 1p).

Proof. The statement follows by induction from the definitions of i, Fi, Fb.
In fact we can write

n—1 n
pu(@) = 4 (@) + ) r (@)
k=0 /=0

where, for 0 < k <n —1,
o (@) =35 (577 (A @) = 25 b (forens(@))
and, for 0 < ¢ <n,

r(@) = X5 X b (f170@)) = N5 AL b (fneenni (@)
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Observe that it follows from (77) that for u <z <z + %

6203 _ 2
(84) Zlog @n+2—10) (z—u) )‘l\f (A, “1) ‘

An easy calculation yields )\1‘ o (Ager; ) < X” PYLE X*Q Thus with ¢4 := c2C3

and c5 := 2)\;21033 we obtain that, for u <z <u+ 5 | |
(85) lmg(;ﬁ-(x—u)2~xg-/\%”<]og(x) <esome(x—uw)? A5 AP

Thus we obtain that, for u < x <wu + %,
c ~
(86) Pn(2) Spn(u)+§5 n-(z—u)® N A2

Similarly if ‘l’ - “T‘H" < % then by Lemma 2 part (b) we have
ba
2 log(n+2)

Now we can prove that

(87) AR A < ph(x) <cs-n- A2,

Lemma 4. There exist cg and c; such that

(2): [pa(v —17) = palu+ ) > iy - X5 M.

) 3 n/3
(b): Foru<:n<u+§7%-<ﬁ) we have

1~ .~
(88) pn(u) < pn(x) < pn(u) + 5Xf“/\g.

Proof. Part (a) immediately follows from the left hand side of the inequality
(87).

Now we prove Part (b). We know that the function p,(z) is monotone
3/3)\

increasing. It follows from a straightforward calculation that for ¢y := T

(Xl)n/g we have

and r = v+ $&

Y \N
~ 1 ~ ~
B o (w—w)d AR A= - X
3 2
It follows from (43) that the assumption of (86) holds which immediately
implies the assertion of Part (b). O

Observe that it follows from (43) that A;/*AaA;/* > 2422 and X, Xg > 22
Choose § such that
A2

(%9) v

< 6 < min {/\}/3)\2/\1/3 X1X2} .
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Then we obtain from (76) that for all u < x < v

(90) ol (z) <« 0" <« (A}/ Sy 3)”.

~ \n/3
— <7 (AL ;
Lemma 5. Put H = [u,uqt T (A%) ] Then for all n big enough
there exists a ball of diameter " contained in F; (H X [%, 1])
Proof. 1t follows from (82) and Lemma 4 Part (b) that the rectangle
W\ 1
c7 1 n n In+13n In+13n
Ui7ui+375' (Af) VAREP VB |:pn(u)+an+2)‘1+1)‘27pn(u)+an+)‘1+1>‘2

. L . 3,0\ /3 1/3\ ~1/3

is contained in Fj [H X [0,1]]. Since we assumed that </\—%> AA2 = A 7N >
0 and X1X2 > ¢ this completes the proof of the Lemma. O
Proof of Theorem 3. Let L be so big that

(91) n> Lo gy, 0loen +2) (AM?) <sm.

C6 A1

To get a contradiction we assume that there exists n > L, x = (z1,22) €
[0, 1]? and a rectangle R with sides cloa,(cn) (z1) k = 1,2 which covers F; (N[O, 1]2).
The matrix Dy Fj is a triangular matrix with diagonal entries A\; and \; and
so

(92) ol (21) - o (21) = M.

It follows from Lemma 4 (a) that the vertical size of F([0,1]?) is greater
than bgf%ig‘)\%n Thus agn) (1) > b{g(‘v‘%}gw This and (92) implies
that

n ~ el 2) (Mxa)
(93) 610045 )(xl) < MM €10 Ogc(n + ) ( /1\ 2) <o
6 1

However, according to Lemma 5 there is a ball with radius 0" contained in
F;([0,1]?). This contradiction completes the proof of Theorem 3. O

7. ELLIPTIC BOX DIMENSION

For E ¢ R and r > 0 we denote the minimal number of balls of radius
r required to cover the set E by N,(E). In [5] Douady and Oesterlé write

&(E):=ay--- aka’,:rkl
for an ellipsoid E C R with semi-axes aq > - - > ag > 0wherek <t <k+1
and show that the associated elliptic Hausdorff dimension is the same as the
usual Hausdorff dimension.
Following [2] define N, ;(A) as the minimal number of ellipsoids E sat-
isfying & (E)Y* = r required to cover the set A. If E is a ball of radius
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r then &(E) = 7 so Nyt(A) < Np(A). In [2, Theorem 11] Barreira claims
that there exists a constant ¢ = ¢(t) depending only on ¢ such that for every
A CR?and t € [0,d] we have

N, (A)

Nr,t (A)

Here by constructing a counter example we prove that a much weaker state-
ment is false.

(94) < c.

Example 1 (Elliptic Box dimension). Let H C [0, 1] be a compact set such
that for s = dimg H we have 0 < s < 1. Put Z :=[0,1] x H C R?. Then it
is easy to see that

(95) dimpgZ =1+ s.
If1+s<t<2 then

. N (2)
96 lim su = 00.
( ) T—'OpN’I’,t(Z)
Proof. Using
t 1+s
97 — < )
(97) t—1 s
we can choose 1 + s < t' < t and we can also choose £ > 0 such that
t—1
. 1 — €.
(98) P t<l4+s—c¢
Using (95), for every r > 0 small enough we have
1 14+s—¢
(99) N(Z) > r~1757e = () .
r

Since t' — 1 > s = dimpg H there exists a sequence p,, | 0 such that for every
n the set H can be covered by

Mn — p,(t/,l)

n

intervals of length p,, Ifn), . ’IJ(\Z)J Let r, := pﬁf‘l)/t. FEach rectangle

T =01 x 1™, k=1,...,M,

is contained in an ellipse E,(Cn) having the same center and semi-axes 1 and

rz/(tfl) and so
ﬁt(Ez(gn)) =Ty
Therefore
(100) N ilZ) < M,
Now (98), (99) and (100) imply that
(101) Jifiznt((ZZ)) > ol DD L oo asn — oo,
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U
Barreira also asserts in [2, Theorem 11] that
log N, (Z
(102) dimpZ — lim inf 228 Nrt(%)
r—0  —logr

for any Z C R% and any ¢ € [0,d]. (There is a mistake in the proof in that
the sentence before (A3) may hold only for § near 1.) We finish our paper
with the following counterexample.

Example 2. Assume for Z C R? in Example 1 that

(103) dimpZ = dimpZ.
Then for every dimp Z < t < 2 we have
log N,-+(Z
(104) liminf 228 2) gy g
r—0 —logr

Proof. Using the notation of Example 1 above we write
gi=-1—s+e+tt'-=1)/(t—1) <0.
It follows from (101) that

(105) N"’n(Z) Z Tqu‘Nr,mt(Z).
Thus
log N,. (Z log N, A
dimgp Z = lim L”() > —q—i—liminfw
n—oo  — log Tn n—00 - log Tn
> liminf w.
r—0 — log r
O
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