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Abstract. In this paper we consider a family of random Cantor sets on
the line. We give some sufficient conditions when the Lebesgue measure
of the arithmetic difference is positive. Combining this with the main
result of a recent joint paper of the second author with M. Dekking we
construct random Cantor sets F1, F2 such that the arithmetic difference
set F2 − F1 does not contain any intervals but Leb(F2 − F1) > 0 almost
surely, conditioned on non-extinction.

1. Introduction

This note is a continuation of a joint work of the second author with M.
Dekking [4]. Both papers deal with a random version of the following prob-
lem asked by J. Palis related to the arithmetic difference

F2 − F1 = {y − x : x ∈ F1, y ∈ F2}
of the dynamically defined Cantor sets F1, F2 ⊂ R.

Conjecture 1 (Palis). ”Typically” either the set F2 − F1 is ”small” in the
sense that Leb(F2 − F1) = 0 or F2 − F1 is a ”big” set in the sense that
F2 − F1 contains some intervals.

In this paper we show (Corollary 1) that within a natural family of self-
similar random Cantor sets it can happen that F2−F1 has positive Lebesgue
measure but contains no intervals almost surely.

In [2] T.A. Moreira and J.C. Yoccoz answered Palis’ problem positively for
”typical” non-linear deterministic C2 Cantors sets on the line. However the
problem is still open for linear Cantor sets.
The authors of [4] considered a natural family of random Cantor sets and
they gave a condition (see Theorem 1(a)) under which F2 − F1 contains
some intervals (conditional on F1, F2 6= ∅). On the other hand, the authors
of [4] also gave a condition (see Theorem 1(b)) which implies that int(F2 −
F1) = ∅. Continuing this line of research in this paper we consider the same
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2 PÉTER MÓRA, KÁROLY SIMON, AND BORIS SOLOMYAK

family of random Cantor sets and we give a condition which implies that
the arithmetic difference set F2 − F1 has positive Lebesgue measure. Using
a combination of these two results, we construct some families of random
Cantor sets for which the Palis conjecture above fails.

2. Results

Our main result is about the Lebesgue measure of the set F2 − F1, where
F1, F2 are independent copies of the random Cantor sets constructed below.
We have analogous results for the F − F type random Cantor sets and in
the deterministic cases.

2.1. Preliminaries. We use the same definition of the random Cantor set
as in [4, p. 206]. For the convenience of the reader here we sketch the idea
of the construction. We are given a natural number M ≥ 2 and a vector
p = (p0, . . . , pM−1) ∈ [0, 1]M which is not a probability vector in general.
In the first step of the construction we partition the unit interval I = [0, 1]
into M equal sub intervals I0, . . . , IM−1. We choose interval Ik =

[
k
M
, k+1
M

]
with probability pk independently for each k = 0, . . . ,M − 1. The first
approximation F 1 of our random Cantor set is the union of the intervals
chosen in the first step. In the second step for all of the intervals Ik which
were chosen in the first step we repeat the same process for Ik instead of I
independently. So, the level 2 interval

Ik1k2 :=

[
k1

M
+

k2

M2
,
k1

M
+

k2

M2
+

1

M2

]
can be chosen in the second step of the construction only if we selected
Ik1 in the first step. In this case the conditional probability that we select
Ik1k2 conditioned on the event that Ik1 was selected is equal to pk2 . All
selections made are independent of everything. The union of all of these
randomly selected intervals Ik1k2 is denoted by F 2 and is called the level 2
approximation of our random Cantor set. We continue this process in the
same way to define the level n approximation F n as a union of randomly
selected level n intervals of the form

Ikn
:=
[
k1 ·M−1 + · · ·+ kn ·M−n, k1 ·M−1 + · · ·+ kn ·M−n +M−n] ,

where kn = (k1, . . . , kn). Then the random Cantor set F is defined by

F :=
∞⋂
n=1

F n.

In this paper, if we do not say otherwise, we always consider the arithmetic
difference of two independent copies F1, F2 of this random Cantor set. As
above, the level n approximation of F1, F2 is denoted by F n

1 , F
n
2 respectively.
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For the precise definition of the probability space (Ω,F ,P) of pairs of inde-
pendent random Cantor sets see [4, p. 206]. It is well known (see e.g. [4,
Fact 2]) that

F2 − F1 = Proj45◦(F1 × F2).

It follows (cf. [4, p. 207]) that whenever
M−1∑
k=0

pk <
√
M the difference of the

Cantor sets F2 − F1 has Hausdorff dimension smaller than 1.
Now we can define the cyclic autocorrelations γk by

γk :=
M−1∑
j=0

pjpj+k ( mod M) for k = 0, . . . ,M.

Theorem 1 (Dekking, Simon [4]). Conditional on F1, F2 6= ∅, we have

(a): If γk > 1 for all k, then F2−F1 contains an interval almost surely.
(b): If there exists k ∈ {0, . . . ,M−1} such that γk and γk+1 are both

less than 1, then F2−F1 almost surely does not contain any intervals.

2.2. The main result. To state our main result we introduce

(2.1) uk :=

{
p0pk + · · ·+ pM−k−1pM−1, if 0 ≤ k < M ;
0, if k = M .

note that γk = uk + uM−k.

Theorem 2. We assume that

(A1) Γ := γ0 · · · γM−1 > 1,

(A2) and for every 0 ≤ k ≤M − 1 we have

min(uk, uk+1) > 0 or min(uM−k, uM−k−1) > 0.

Then conditional on F1, F2 6= ∅,
Leb(F2 − F1) > 0

holds almost surely.

Remark 1. The second assumption of our theorem is rather technical. How-
ever, it always holds whenever all the probabilities p0, . . . pM−1 are positive.

Remark 2. Our result is close to be sharp. Namely, our theorem asserts
that if the geometric mean of the γi’s is greater than 1 and (A2) holds, then
the difference set F2−F1 has positive Lebesgue measure. On the other hand,
as it was noted in [4, p. 215], the algebraic mean of γi’s is less than 1, then
dimH F1 + dimH F2 < 1 so, Leb(F2 − F1) = 0.

Remark 3. Dekking and Grimmett investigated a related problem in [3].
Namely, they considered a higher dimensional random Cantor set and stud-
ied the Lebesgue measure of its orthogonal projections. They worked with
the generated branching process in random and varying environment. From
this respect we use the same method, however, in our case we use a 45◦

projection which implies that we have two different types of individuals (the
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left triangles and right triangles see Figure 3) and we need to take care of
the independence of their line of inheritance. This is one of the reasons
that the implementation of the method introduced in [3] becomes much more
complicated in our proof.

It follows from the main result of [4] and our theorem together that the
Palis Conjecture (Problem 1) mentioned above does not hold in our case.

Corollary 1. Let M = 3 and

(p0, p1, p2) = (0.52, 0.5, 0.72).

In this case we have

γ0 = p2
0 + p2

1 + p2
2 = 1.0388, γ1 = γ2 = p0p1 + p1p2 + p2p0 = 0.9944,

This implies that the difference of random Cantor sets almost surely contains
no interval (by Theorem 1 part (a)). On the other hand, the product

γ0γ1γ2 = 1.0272

is greater than 1. Thus it follows from the main result of the paper that
this difference of random Cantor sets almost surely has positive Lebesgue
measure, conditioned on non-extinction.

Remark 4. Conditioned on F 6= ∅, we have (see [5], [6])

dimH F = log

(
M−1∑
i=0

pi

)
/ logM

almost surely. The condition (A1) implies that
∑M−1

i=0 pi >
√
M , thus con-

ditioned on non-extinction dimH F > 1/2 almost surely.

Remark 5 (The deterministic case). We use the same construction as be-
fore but we assume that all the probabilities pi are either zero or one. The
Cantor set obtained in this way is denoted by F . This situation was set-
tled (essentially completely) in [4, Section 8]. However, it was not remarked
there that the proof of [4, Theorem 2] implies that the Palis conjecture holds
in this case. That is either Leb(F − F ) = 0 or F − F contains an interval.

2.3. The case of F − F type random Cantor sets.

Theorem 3. If both conditions (A1) and (A2) of Theorem 2 hold, then
conditional on F1 6= ∅, we have

Leb(F1 − F1) > 0

almost surely.

This result is a consequence of Theorem 2. We prove it in Section 6.
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2.4. A generalization. Here we consider the same problem as in Theorem
2 but we assume that the random Cantor sets are constructed with different
probabilities: p = (p0, . . . , pM−1) and q = (q0, . . . , qM−1). That is, the
probability that Ii1...ik is selected given that Ii1...ik−1

was selected, is equal
to pik for F1 and (independently) qik for F2. Following the notation of [4,
Section 4.4] let

γ̃k :=
M−1∑
j=0

qjpj+k ( mod M).

Then the conclusion of Theorem 2 remains valid under the following as-
sumptions:

Theorem 4. Let F1, F2 be independent random Cantor sets constructed as
above. We assume that the following hold:

(Ã1) Γ̃ := γ̃0 · · · γ̃M−1 > 1,

(Ã2) for every 0 ≤ k ≤M − 1 we have 0 < pk and 0 < qk.
Then conditional on F1, F2 6= ∅,

Leb(F2 − F1) > 0

holds almost surely.

The proof of this theorem is the same as the proof of Theorem 2 with obvious
modifications.

The paper is organized as follows: For the convenience of the reader in
Section 3 we repeat the notation of [4]. In Section 4 and 5 we prove our
Main result. In the last section we prove our results about the F − F type
random Cantor sets.

3. Notation

We can visualize the difference of two points x and y on the line as follows:
Take the point A = (x, y) ∈ R2. Then y − x is the 45◦ projection of A to
the y-axis. Let us denote the 45◦ projection to the line {(x, y) : x+ y = 1}
by π. (See Figure 1.) That is,

π(x, y) :=

(
1− (y − x)

2
,
1 + (y − x)

2

)
.

Then we have

Leb1(F2 − F1) =
2√
2
Leb1(π(F1 × F2)).

Therefore, to decide if F1 − F2 is a set of positive Lebesgue measure it is
enough to consider the same problem for the set π(F1×F2). Since it is more
convenient to study the 90◦ projection to the first axis than 45◦ projection,
we rotate the square [0, 1]2 in the positive direction and we move it in such
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A(x, y)

1

0

−1

1

y

x
45◦y − x

π(A)

Figure 1. The definition of π.

a way that its center lies in the origin of the coordinate axis. Let us call this

transformation ϕ. We call the rotated square Q̃ = ϕ[0, 1]2. (See Figure 2.)

√
2

2

−
√

2

2

√
2

2
−
√

2

2

L̃ R̃L̃0,0 R̃0,0

L̃1,0 R̃1,0

Q̃0,2

L̃1,2 R̃1,2

L̃12,22

R̃12,22
Q̃20,12 L̃22,12

R̃22,12

Figure 2. The definition of the Q̃ and the left and right triangles.

The y-axis divides Q̃ into two triangles: L̃ and R̃. Similarly, put Q̃`,k :=

ϕ(I` × Ik). Then the vertical diagonal divides Q̃`,k into the triangles L̃`,k
and R̃`,k. (See Figure 2.)
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Now we introduce the transformation ψ : Q̃ → R2 as follows: ψ| eR :=

identity. Further, ψ moves the left half L̃ exactly to the ”top” of R̃ (as

shown in Figure 3) so that the image L := ψ(L̃) has the same projection to

x axis as R := R̃ and they are adjacent to each other.
That is, Proj(L) = Proj(R), where we write Proj for the 90◦ projection to
the x-axis.

R0,0

R1,1

R2,2

L1,0

L2,1

L0,2

L1,2 R1,2

C0 C1 C2
C12C20

L12,22

R12,22

R = R̃

L = ψ(L̃)

R12,00

Figure 3. The vertical columns and higher level triangles

Put

Λ := ψ(ϕ(F1 × F2)), and Λn := ψ(ϕ(F n
1 × F n

2 )).

We call L and R level 0 triangles. The collections of the triangles

{Lk,` : 0 ≤ k, ` ≤M − 1} , {Rk,` : 0 ≤ k, ` ≤M − 1}
are called the level 1 left triangles and level 1 right triangles respectively.
The vertical sides of the level 1 left and right triangles naturally define

M vertical columns. Namely, we partition the interval [0,
√

2
2

] into J(k) :=√
2

2
· [ k

M
, k+1
M

]
, 0 ≤ k ≤M − 1 and we define the k-th level 1 column

C(k) := {(x, y) : x ∈ J(k)} .
Analogously, for every n > 1 the n-th iterate of the system naturally defines
the level n left and right triangles and level n columns. Namely, for every
n ≥ 1 and for every kn := (k1, . . . , kn) ∈ {0, . . . ,M − 1}n first we define the
interval

J(kn) :=

√
2

2
·[k1 ·M−1 + · · ·+ kn ·M−n, k1 ·M−1 + · · ·+ kn ·M−n +M−n] .

Now the level n column corresponding to kn := (k1, . . . , kn) ∈ {0, . . . ,M − 1}n
is defined as

C(kn) := {(x, y) : x ∈ J(kn)} .



8 PÉTER MÓRA, KÁROLY SIMON, AND BORIS SOLOMYAK

It follows naturally from the definition of the level n approximations F n
1 , F

n
2

of our random Cantor sets F1, F2 that we have to divide [0, 1]2 into level n

squares of the form Ikn
× I`n . The corresponding level n squares of Q̃ are

Q̃kn,`n
:= ϕ(Ikn

× I`n), where kn, `n ∈ {0, . . . ,M − 1}n .
The rotated square Q̃kn,`n

is divided by its vertical diagonal into the triangles

L̃kn,`n
, R̃kn,`n

. We obtain the level n left and right triangles as

Lkn,`n
:= ψ

(
L̃kn,`n

)
, Rkn,`n

:= ψ
(
R̃kn,`n

)
,

where kn, `n ∈ {0, . . . ,M − 1}n . When we want to state assertions which
are valid for both Lkn,`n

and Rkn,`n
then we use the following notation: we

write V ∈ {L,R} and define Vkn,`n
as Lkn,`n

if V = L and Rkn,`n
otherwise.

From the geometry of the construction it is immediate that the following
fact holds:

Fact 1. Let V ∈ {L,R}. We pick some level n V -triangles Vi1n,j1n
, . . . , Vi`n,j`

n

from the level n approximation Λn of Λ which are in the same column C(kn).
That is,

Vi1n,j1n
, . . . , Vi`n,j`

n
⊂ C(kn) ∩ Λn.

Then the random Cantor sets{
Vimn ,jm

n
∩ Λ
}`
m=1

are independent.

For kn := (k1, . . . , kn) ∈ {0, . . .M − 1}n and for U, V ∈ {L,R} we define
random variable ZUV (kn) as the number of the level n V -triangles in the
intersection of the level 0 (”big”) U -triangle with the column C(kn) ∩ Λn.
(See Figure 4.)
As in [4], the mean matrices are

M(kn) :=

[
EZLL(kn) EZLR(kn)
EZRL(kn) EZRR(kn)

]
.

Then from the definition one can easily check that

M(k1 . . . kn) =M(k1) · · ·M(kn).

Further, an immediate calculation yields that

(3.1) M(k) =

[
uM−1−k uM−k
uk+1 uk

]
,

where uk was introduced in (2.1). The first (second) column sum of M(k)
shows the expected number of the left (right) level 1 triangles in the column
C(k) respectively. They can be expressed as

(3.2) EZLL(k) + EZRL(k) = γk+1, EZLR(k) + EZRR(k) = γk.
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C(0, 2)

C(2)

Figure 4. For this realization: M = 3, ZLL(2) = 1,
ZLR(2) = 0, ZRL(2) = 0, ZRR(2) = 1. Further, ZLL(0, 2) =
ZLR(0, 2) = 0 and ZRL(0, 2) = 2, ZRR(0, 2) = 3.

4. The proof of the main result

This Section is organized as follows: First we state a Proposition which
carries the main part of Theorem 2. Then we prove Theorem 2 using this
proposition. In the next Section we verify our Proposition.

Proposition 1. We assume that both of the hypotheses of Theorem 2 hold.

Then for Lebesgue almost all x ∈
[
0,
√

2
2

]
we have

P {x ∈ Proj(Λ)} > 0.

Proof of Theorem 2. We remind the reader that the probability space of the
pairs of independent random Cantor sets was denoted by (Ω,F ,P). First
we show that

(4.1) P {Leb (Proj(Λ)) > 0)} > 0.

This is equivalent to the following inequality:

(4.2) E (Leb(Proj(Λ))) > 0.

We define the function χ : Ω× [0,
√

2/2]→ {0, 1} by

χ(ω, x) :=

{
1, if x ∈ Proj(Λ(ω));
0, otherwise.
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Then using Proposition 1 we obtain that (4.2) holds as follows:

E (Leb(Proj(Λ))) =

∫∫
χ(ω, x) dx dP(ω) =

∫∫
χ(ω, x) dP(ω) dx =

√
2/2∫

x=0

P {x ∈ Proj(Λ(ω))} dx > 0.

The rest of the proof is a standard argument showing that {Leb (Proj(Λ)) > 0}
is a 0− 1 event.
Using (4.1) and the definition of ψ and ϕ we obtain that

(4.3) c := P {Leb (Proj(ϕ(F1 × F2)) > 0)} > 0.

Now we show that

Leb(Proj(ϕ(F1 × F2))) > 0 if F1, F2 6= ∅
holds (P) almost surely.
Let An (Bn) be the number of level n intervals in the level n approximation
F n

1 (F n
2 ) respectively. We assume that F1 6= ∅ and F2 6= ∅. Then it follows

from Remark 4 and the definition of Hausdorff dimension that

0 < dimHF1 ≤ lim
n→∞

logAn
logMn

and 0 < dimHF2 ≤ lim
n→∞

logBn

logMn

hold almost surely. Thus An and Bn tends to infinity almost surely. We
fix an integer K > 0 and choose N > 0 such that AN , BN ≥ K holds.
Therefore we can choose the words

k1, . . . , kK ∈ {0, . . . ,M − 1}N and `1, . . . , `K ∈ {0, . . . ,M − 1}N
such that ki 6= kj and `i 6= `j for all i 6= j and Iki (I`i) is contained in F n

1

(F n
2 ) respectively. The K random Cantor sets{

Q̃ki,`i ∩ ϕ(F1 × F2)
}K
i=1

are independent realizations of scaled copies of ϕ(F1×F2) type Cantor sets.
Thus

P {Leb (Proj(ϕ(F1 × F2)) > 0) | F1, F2 6= ∅} ≥

1−
K∏
i=1

(
1− P

{
Leb

(
Proj(Q̃ki,li ∩ ϕ(F1 × F2)) > 0

)})
=

1− (1− c)K .
Since K was arbitrary we have

P {Leb (Proj(ϕ(F1 × F2)) > 0 | F1, F2 6= ∅)} = 1,

which is equivalent to

P {Leb(F1 − F2) > 0 | F1, F2 6= ∅} = 1.

�
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5. The proof of Proposition 1

5.1. A Branching process with random environment. We define a

random variable U ∈ Uniform
[
0,
√

2
2

]
and let P be the distribution of U and

we define E as the corresponding expectation. In order to prove Proposition
1 it is enough to show that

(5.1) P (P {U ∈ Proj(Λ)} > 0) = 1.

We recall that the measure P refers to the construction of the pair of random
Cantor sets F1, F2. The base M expansion of

√
2 · U naturally defines a

random infinite sequence (i1, i2, . . . ) ∈ {0, . . . ,M − 1}N

(5.2) U =

√
2

2
·
(
i1
M

+
i2
M2

+ · · ·
)
.

In order to check (5.1) we define a branching process with random environ-
ment

Zn(θ) = Zn(i1, . . . , iN︸ ︷︷ ︸
θ0

, . . . , i(n−1)N+1, . . . , inN︸ ︷︷ ︸
θn−1

, . . . ),

where N is a large integer defined in (5.7) below. The environment is θ =
(θ0, θ1, . . . ), where θk = (ikN+1, . . . , i(k+1)N). To verify that (5.1) holds we

want to define Zn(θ) in such a way that

(C1): If
{Zn(θ)

}
n≥0

does not die out then

√
2

2
·
(
i1
M

+
i2
M2

+ · · ·
)
∈ Proj(Λ),

(C2): P almost surely:
{Zn(θ)

}
n≥0

does not die out with positive P
probability.

The definition of the branching process Zn(θ) is somewhat involved. It is a
random number of some carefully chosen pairs of left and right triangles of
level nN . For each such pair, we will choose some descendants, or successors,
of level (n+1)N , and their total number will be Zn+1(θ). Figure 5 illustrates

this procedure: the pair (L
(k−1)
j , R

(k−1)
j ) in the left column, which counts

towards Zk−1(θ), has the pairs (A,B) and (C,D) as its descendants, which
count towards Zk(θ).
To define Zn(θ) precisely, we need some notation. For k ∈ {0, . . . ,M − 1}
and V ∈ {L,R} let q(k, V ) be the probability (P) that C(k)∩V ∩Λ1 contains
both level 1 left and level 1 right triangles. Now we define

(5.3) q := min
k=0,...,M−1

max
V ∈{L,R}

q(k, V )

It follows from the condition (A2) that q > 0. To see, this we fix k ∈
{0, . . . ,M − 1}. Then using (3.1) by condition (A2) the matrix M(k) has
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a strictly positive row. Let us say that the first row has this property. We
prove that in this case

(5.4) q(k, L) > 0.

Namely, the expected values of both of the level 1 left and right triangles in
C(k) ∩ L ∩ Λ1 are positive. It is immediate from this and from the way we
constructed our random sets F1, F2 that we have both level 1 left and level
1 right triangles in C(k)∩L∩Λ1 with positive probability which is exactly
(5.4).
For k ∈ {0, . . . ,M − 1} we define U(k) ∈ {L,R} as follows:

(5.5) U(k) =

{
L, if q(k, L) ≥ q;
R, otherwise.

It follows from (5.3) that

(5.6) q(k, U(k)) ≥ q.

Finally, we fix a large natural number N which satisfies

(5.7) (N − 1)
1

M
log Γ + log q > 0.

We recall that it was the assumption (A1) of Theorem 2 that Γ > 1. Now we
specify an algorithm with which we select some of the pairs of the level kN
triangles contained in C(i1, . . . , ikN)∩ΛkN . See Figure 5 for the visualization
of some of the key steps of the construction.
We define Pairk by induction as follows:

Pair0 := {(L,R)} .
Assume that we have already defined

Pairk−1 =
{(
L

(k−1)
1 , R

(k−1)
1

)
, . . . ,

(
L(k−1)
zk−1

, R(k−1)
zk−1

)}
,

with the following properties:

(P1): L
(k−1)
i is a left triangle and R

(k−1)
i is a right triangle, both of

them of level (k − 1)N and both of them are contained in

C(i1, . . . , i(k−1)N) ∩ Λ(k−1)N .

(P2): The zk−1 events{(
L

(k−1)
i ∪R(k−1)

i

)
∩ Λ
}zk−1

i=1

are independent. Namely, the boundary of the sets{(
L

(k−1)
i ∪R(k−1)

i

)}zk−1

i=1

can intersect at most in a single point.
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C(i1, · · · , ik·N−1)

R
(k−1)
j

L
(k−1)
j

C(i1, · · · , i(k−1)·N)

C(i1, · · · , ikN−1)

C(i1, · · · , i(k−1)N)

∆j
1

∆j
2

∆j
3

A

B

C

D

C(i1, · · · , ikN)
We keep only the
left triangles in
L

(k−1)
j ∪ R(k−1)

j

since U(ikN) = L.

∆j
1

∆j
2

∆j
3

Realization
of ΛkN

Realization
of ΛkN−1

Figure 5. The level (k−1)N pair (L
(k−1)
j , R

(k−1)
j ) gives birth

to the level kN pairs (A,B) and (C,D). That is, Desc
(k−1)
j =

{(A,B), (C,D)}.

For all 1 ≤ j ≤ zk−1 the set of (N step) descendants of (L
(k−1)
j , R

(k−1)
j )

(denoted by Desc
(k−1)
j ) will be defined as a set of some of the level kN pairs

of left and right triangles contained in C(i1, . . . , ikN) ∩ ΛkN .

Definition of the set Desc
(k−1)
j : First we consider all of the level kN − 1

triangles contained in

C(i1, . . . , ikN−1) ∩ ΛkN−1 ∩
(
L

(k−1)
j ∪R(k−1)

j

)
.

In Figure 5 these are 3 left and 3 right triangles. Among these, we keep
only the left triangles if U(ikN) = L, otherwise, we keep the right ones. The



14 PÉTER MÓRA, KÁROLY SIMON, AND BORIS SOLOMYAK

collection of the level kN − 1 triangles obtained in this way is denoted

(5.8) ∆j
1, . . . ,∆

j
Kj
.

In Figure 5 we kept the left triangles ∆j
1,∆

j
2,∆

j
3. For each 1 ≤ ` ≤ Kj we

select (if we can) exactly one level kN left and exactly one level kN right
triangle which are contained in the following intersection:

C(i1, . . . , ikN) ∩∆j
` ∩ ΛkN .

It follows from the definition of U(ikN) and (5.6) that the probability (P)
that we can make such a selection is at least q > 0. That is,

(5.9) P {∃ both level kN left and right triangles

in C(i1, . . . , ikN) ∩∆j
l ∩ ΛkN

} ≥ q.

The set Desc
(k−1)
j consists of those pairs of level kN left and right triangles

which were selected for some 1 ≤ ` ≤ Kj. In our example only ∆j
1 and ∆j

2

contain pairs (these are (A,B) and (C,D)), so the pair (L
(k−1)
j , R

(k−1)
j ) has

exactly two descendants.

Now we can define

Pairk :=

zk−1⋃
j=1

Desc
(k−1)
j .

It is immediate form the construction that Pairk satisfies property (P1)
with k instead of k− 1. To see that property (P2) also holds first we write

Pairk =
{(
L

(k)
1 , R

(k)
1

)
, . . . ,

(
L(k)
zk
, R(k)

zk

)}
.

It follows from the construction that all of the triangles ∆j
`, 1 ≤ j ≤

zk−1, 1 ≤ ` ≤ Kj, are of the same type. Namely, either all of them are
left or all of them are right triangles. Further they are in the same kN − 1
column. It follows from Fact 1 that the random Cantor sets{

∆j
` ∩ Λ

}
1≤j≤zk−1,1≤`≤Kj

are independent. Since all elements of Pairk are in different{
∆j
`

}
1≤j≤zk−1,1≤`≤Kj

therefore, the random Cantor sets{(
L

(k)
i ∪R(k)

i

)
∩ Λ
}zk

i=1

are independent.
Now we let

Z0(θ) := 1, Zk(θ) := #Pairk.

Then
{Zk(θ)}k≥0

is a branching process with random environment since

Pairk satisfies properties (P1), (P2) above. Now we prove that
{Zk(θ)}k≥0
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satisfies Conditions (C1) and (C2). It is obvious that (P1) implies that
(C1) holds. We obtain that (C2) holds as a corollary of [1, Theorem 3].

Corollary 2 (Corollary of [1, Theorem 3]). Suppose that

(a): There exists c > 0 such that for all θ we have P(Z1(θ) > 0) > c.
(b): D := 1

Mn

∑
(j1,...,jN )∈{0,...,M−1}N

log E
(Z1(θ | θ0 = (j1, . . . , jN))

)
> 0.

Then (C2) holds. That is, P almost surely:
{Zn(θ)

}
n≥1

does not die out

with positive P probability.

It is easy to see that condition (a) holds with the choice of c = qN . The fact
that condition (b) holds is an immediate corollary of the following lemma:

Lemma 1. Let (i1, i2, . . . ) be the random infinite sequence defined in (5.2).
The Assumptions of Theorem 2 imply that

(5.10) D = E {log E
(Z1(θ) | θ0 = (i1, i2, . . . , iN)

)}
> 0.

We remind the reader that E was defined at the beginning of Section 5.1 and
that E denotes the expectation on the probability space which corresponds
to the construction of our random Cantor sets.

Proof. We introduce the random variables

Xn := EZLL(i1, . . . , in) + EZRL(i1, . . . , in)

and

Yn := EZLR(i1, . . . , in) + EZRR(i1, . . . , in).

Note that Xn (Yn) is the first (second) column sum of M(i1, . . . , in). Al-
though we do not use it in the proof but we remark that by the special
choice of our matrices M(k), k = 0, . . . ,M − 1, the random variables Xn

and Yn have the same distribution. We will show that for every n > 0 we
have

(5.11) E(log Xn) ≥ n · log
M
√

Γ

and

(5.12) E(log Yn) ≥ n · log
M
√

Γ.

First we prove (5.10) assuming (5.11) and (5.12), then we verify (5.11) and
(5.12). The expected values of the number of the left (right) level N − 1
triangles in

C(i1, . . . , iN−1) ∩ ΛN−1 ∩ (L ∪R)

are XN−1 (YN−1), respectively. Recall the construction of Pair1 = Desc
(0)
1 ,

the descendants of the pair (L,R). We defined U(k) in (5.5). If U(iN) = L
then K1 = K1(i1, . . . , iN−1) was defined in (5.8) as the number of level
N − 1 left triangles in C(i1, . . . , iN−1) ∩ ΛN−1. That is, E(K1) = XN−1. On
the other hand, if U(iN) = R then K1 is the number of level N − 1 right
triangles in the same column. So in this case E(K1) = YN−1. Since U(iN)
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is independent of the random sequence (i1, . . . , iN−1), it follows from (5.11)
and (5.12) that we have

(5.13) E(log E(K1)) ≥ (N − 1) · log
M
√

Γ,

Using (5.9) for every 1 ≤ ` ≤ K1 we obtain a (N step) descendant of (L,R)
in C(i1, . . . , in) ∩∆1

l with at least probability q > 0, thus

E
(Z1(θ) | θ0 = (i1, i2, . . . , iN)

) ≥ E(K1) · q.
Taking the logarithm and the expected value E on both sides and applying
(5.13) and (5.7) we obtain that the assertion of our Lemma holds. Namely,

D = E (log E
(Z1(θ) | θ0 = (i1, i2, . . . , iN)

)) ≥
E (log E(K1)) + log q ≥ (N − 1) · log

M
√

Γ + log q > 0.

Now we prove (5.11) and (5.12) by induction. Using (3.2) and the definition
of Xn, Yn for n = 1 we obtain that:

E(logX1) = E(log γi1+1) =
log Γ

M

and

E(log Y1) = E(log γi1) =
log Γ

M
.

We assume that both of the inequalities (5.11) and (5.12) hold for n − 1,
that is, we assume that

(5.14) min {E(logXn−1), E(log Yn−1)} ≥ (n− 1) · log Γ

M
.

The induction step from n−1 to n is analogous for Xn and for Yn, therefore,
we present the proof only for Xn. We denote the elements of the matrix
M(k) as follows:

M(k) =

[
ek fk
gk hk

]
.

So we have

(Xn, Yn) = (Xn−1 · ein + Yn−1 · gin , Xn−1 · fin + Yn−1 · hin).

Thus, from

Xn =

(
ein
γin+1

Xn−1 +
gin
γin+1

Yn−1

)
γin+1

we obtain that

E(logXn) = E
(

log

(
ein
γin+1

Xn−1 +
gin
γin+1

Yn−1

))
+ E(log γin+1).

By the concavity of the logarithm function we get

E(logXn) ≥ E
(

ein
γin+1

logXn−1 +
gin
γin+1

log Yn−1

)
+ E(log γin+1)︸ ︷︷ ︸

(log Γ)/M

.
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Using the induction hypothesis (5.14), and the fact that the random vari-
ables ein/γin+1 and Xn−1, similarly gin/γin+1 and Yn−1, are independent, we
get that

E(logXn) ≥ log Γ

M
·
(

1 + (n− 1) · E
( ein + gin

γin+1︸ ︷︷ ︸
1

))
= n · log Γ

M
,

which yields (5.11). �

6. The proof of the result about the C − C type random
Cantor sets

Proof of Theorem 3. Let Cn be the number of level n intervals in the level
n approximation F n. We assume that F 6= ∅. Then it follows from Remark
4 that

0 < dimHF ≤ lim
n→∞

logCn
logMn

almost surely. Thus Cn tends to infinity almost surely. We fix an integer
K > 0 integer and choose N > 0 such that CN ≥ 2K holds. Therefore we
can choose the words

k1, . . . , k2K ∈ {0, . . . ,M − 1}N

such that ki 6= kj for all i 6= j and Iki is contained in F n. The K random
Cantor sets {

Q̃k2i−1,k2i ∩ ϕ(F × F )
}K
i=1

are scaled images of independent ϕ(F1 × F2) type sets. Thus

P {Leb (Proj(ϕ(F × F )) > 0) | F 6= ∅} ≥

1−
K∏
i=1

(
1− P

{
Leb

(
Proj(Q̃k2i−1,k2i ∩ ϕ(F × F )) > 0

)})
=

1− (1− c)K ,
where c was defined in (4.3). Since K was arbitrary, we have

P {Leb (Proj(ϕ(F × F )) > 0 | F 6= ∅)} = 1,

which is equivalent to

P {Leb(F − F ) > 0 | F 6= ∅} = 1.

�
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