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Abstract. In this paper we consider self-affine IFS {Si}m0

i=1 on

the plane of the form Si(x1, x2) = (λix1 + t
(1)
i

, ξ
i
x2 + t

(2)
i

), where
0 < |λi|, |ξi| < 1

2 . We describe the multifractal analysis of Birkhoff
averages of the continuous functions. In Section 6 we compute it
numerically in a special case (see Figure 1).

1. Introduction

It is in general an open problem to find the dimension spectrum for
the Birkhoff averages of a Hölder continuous function on a nonconfor-
mal repeller. Namely, let M ⊂ ���

be open. Let Λ be the nonconformal
repeller of the C1+α map F : M → M . For a Hölder continuous func-
tion f : M → �

and for a β ∈ �
we define the set of those x where the

Birkhoff averages are equal to β:

(1) Kβ :=

{

x ∈ Λ : lim
n→∞

n−1∑

k=0

f(F kx) = β

}

.

The function
β → dimH Kβ

is called the dimension spectrum of the Birkhoff averages of f . The
goal of our paper is to answer this problem in some special cases. The
dimension theory of non-conformal repellers is very difficult. We mostly
have almost all type results in the self-affine case (i.e. when the local
inverses are affine maps) in the sense of Falconer’s paper [6] and upper
estimates for the dimension of nonconformal repellers [7] ,[1]. For the
multifractal case there has been work on a class of examples relating
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to Sierpiński carpets in
� 2, [10] and

�
d, [13]. In [8] Falconer looks at

the Lq spectrum for self-affine measures in the same almost all sense as
[6] . Our research was motivated by a recent preprint of Barreira and
Radu [2] in which the authors gave an almost all type lower bound on
dimH Kβ in the sense introduced by Falconer [6] assuming the following:

A1: ‖(DFx)
−1‖ < 1

2
.

A2: The local inverses of F can be presented in the form

Sj(x1, x2) = (γj(x1), τj(x2)), j = 1, . . . , m0,

A3: Let rγ, and rτ be the roots of the appropriate pressure for-
mulae determined by the iterated function systems {γj}m0

j=1 and

{τj}m0

j=1. Then

(2) rγ, rτ < 1.

We remark that Assumption A3 can hold only if

(3) dimH Λ < 1

that is A3 requires that Λ is ”small”. Under these assumptions Bar-
reira, Radu gave natural lower bound on the Hausdorff dimension of
Kβ which is analogous to the one which holds in the conformal case
and which holds at least almost surely in Falconer’s sense mentioned
above. The difficulty of the Barreira Radu paper is that they do not
assume that the maps γj(x1), τj(x2) are affine. On the other hand their
result does not settle the self affine case completely. In this note us-
ing completely different methods we restrict ourselves to the self-affine
case. More precisely, throughout this paper we always assume that
{Sj}m0

j=1 is a self-affine IFS on
� 2 and we also assume that A1 holds.

Our result does not simply give a lower bound for the dimension of Kβ

but gives an equality in Falconer’s almost all sense. Note that while
we state our results and present the proofs in

� 2 the results generalise
to

�
d without difficulty. Our proof consists of two parts. When giving

the lower bound on the dimension of Kβ we do not need any additional
assumption and the method of the proof is that we use our joint result
[9] with M. Pollicott about the dimension of self-affine measures. To
obtain the upper bound we need to assume that A2 holds and we use
the methods of L. Olsen [12] combined with a method that we learnt
from Barreira Saussol [3].

1.1. Statement of our Main result. Given the contractive self affine
IFS {Si}m0

i=1 on
� 2. For every i = 1, . . . , m0 we can write Si in the form

Si(x) = Ai · x + ti,
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where Ai is a 2 × 2 non-singular matrix. We will always assume that

(4) ‖Ai‖ <
1

2
∀i = 1, . . . , m0.

As usual we write Π for the natural projection from the symbolic space
Σ = {1, . . . , m0}m0 to the attractor Λ (which is the only non-empty
compact set satisfying: Λ = ∪m0

i=1SiΛ). That is

Π(i) := lim
n→∞

Si0...in(0),

where Si0...in := Si0 ◦ · · · ◦ Sin . Since we use the 2 · m0 dimensional
vector

t := (t1, . . . , tm0) ∈
� 2 × · · · × � 2

︸ ︷︷ ︸

m0

as a parameter we use the notation Λt, {St

i }
m0

i=1 and Πt.
The Lyapunov dimension of a measure: (see [9]) Let ν be an
ergodic invariant measure on Σ and let A : Σ → M, where M denotes
the set of d × d matrices with elements from

�
, be defined by

A(i) := Ai0 .

Then for the stationary process given by the measure ν and

(5)
{
Pn(A, i) := A∗

in−1
· · ·A∗

i0

}∞

n=0

we denote the Lyaponov exponents [11, Theorem 5.7] by

(6) λ1(ν) ≥ λ2(ν).

Definition 1 (Definition of the Lyapunov dimension D(ν)).

(i): If

(7) k := k(ν) = max {i : 0 < hν + λ1(ν) + · · ·+ λi(ν)} < d,

then we define the Lyapunov dimension D(ν) by

(8) D(ν) := k +
hν + λ1(ν) + · · ·+ λk(n)

−λk+1(ν)
.

(ii): If hν + λ1 + · · ·+ λd > 0 then we define

D(ν) := d · hν

−(λ1 + · · ·+ λd)
.

If we have 2 × 2 diagonal matrices of the form Ai =

[
λi 0
0 ξi

]

then

we can define the functions g1, g2 : Σ → �
by g1(i) = log λi1 and
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g2(i) = log ξi1. We then have that
(9)

λ1(ν) = max

{∫

g1dν,

∫

g2dν

}

and λ2(ν) = min

{∫

g1dν,

∫

g2dν

}

.

Thus in this case we can extend the definition of Lyapunov exponents
to invariant measures by using the integrals in (9).

We are also given a Hölder continuous function f : Σ → �
. Let

βmax = max
µ∈Mσ(Σ)

{∫

fdµ

}

and βmin = min
µ∈Mσ(Σ)

{∫

fdµ

}

For a given β ∈ (βmin, βmax) we would like to find the dimension of the
set

Kt

β := Πt

{

i ∈ Σ : lim
n→∞

1

n

n−1∑

k=0

f(σki) = β

}

,

at least for Lebd·m0 almost all t, where σ is the left shift on Σ as usual.
We write Mσ(Σ) for the set of σ-invariant measures on Σ and Eσ(Σ)
for the set of ergodic measures on Σ.

Proposition 1. We assume that (4) holds. Let β ∈ (βmin, βmax) arbi-
trary. Then for almost all t ∈ Rd·m0 we have

dimH Kt

β ≥ min

{

sup

{

D(µ) : µ ∈ Eσ(Σ),

∫

fdµ = β

}

, d

}

.

To give an upper bound we need to restrict ourselves to
� 2 and we

also have to assume that all matrices Ai are diagonal.

Proposition 2. We assume that d = 2 and that for all i = 1, . . . , m0

the matrix Ai is diagonal. Let β ∈ (βmin, βmax) be arbitrary. Then for
all t ∈ R2·m0 we have

dimH Kt

β ≤ min

{

sup

{

D(µ) : µ ∈ Mσ(Σ),

∫

fdµ = β

}

, 2

}

.

Finally by combining these results and using the variational principle
combined with other properties of the pressure function we obtain the
following main result.

Theorem 1. Assume that the matrices Ai are 2 × 2, diagonal and
(4) holds. Then for almost all t ∈ R2·m0 we have that for any β ∈
(βmin, βmax),

(10) dimH Kt

β = min

{

sup

{

D(µ) : µ ∈ Mσ(Σ),

∫

fdµ = β

}

, 2

}

.
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2. The lower estimate

Here we prove Proposition 1. Let

(11) ∆(β) :=

{

i ∈ Σ : lim
n→∞

1

n

n−1∑

k=0

f(σki) = β

}

.

Then by definition Kt

β = Πt(∆(β)). It follows from the Birkhoff Er-

godic Theorem that for every µ ∈ Eσ(Σ) with
∫

fdµ = β we have
µ(∆(β)) = 1. Thus we obtain that for such a measure µ and for each
t we have

(12) dimH(Kt

β) ≥ dimH(µ ◦ (Πt)−1).

On the other hand it was proved in [9, Theorem 4 (a)] that for Lebd·m0

almost all t we have

(13) dimH(µ ◦ (Πt)−1) = min {D(µ), d} .

This completes the proof of Proposition 1.

3. Notation and large deviation results

To prove Proposition 2 we will use results from the theory of large
deviations. This is based on the methods used in [12]. In this section
we will introduce our notation and state the necessary large deviation
results.

Definition 2. Let X be a complete metric space and let {Pn}n be a
sequence of probability measures on X. Let {an}n be a sequence of
positive numbers with lim

n→∞
an = ∞ and let I : X → [0,∞] be a lower

semi continuous function with compact level sets. The sequence {Pn}n

is said to have the large deviation property with constants {an}n

and rate function I if the following holds:

(1) For each closed K ⊂ X

lim sup
n

1

an

log Pn(K) ≤ − inf
x∈K

I(x);

(2) For each open G ⊂ X

lim inf
n

1

an

log Pn(G) ≥ − inf
x∈G

I(x).

Theorem 2. Let X and {Pn} be like above. Assume that the sequence
{Pn}n has the large deviation property with constants {an}n and rate
function I. Let F : X → �

be a continuous and bounded function.
Then
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(1) lim
n→∞

1
an

log
∫

exp(anF )dPn = − infx∈X(I(x) − F (x))

(2) For each n we define the probability measure Qn on X by

Qn(E) :=

∫

E
exp(anF )dPn

∫
exp(anF )dPn

.

Then the sequence of measures {Qn}n has the large deviation
property with constants {an}n and rate function (I−F )−infx∈X(I(x)−
F (x)).

Proved in [4, Theorem II.7.1-2].

For a compact metric space X we denote the set of probability mea-
sures on X by M(X). We write E for the set of ergodic measures on
Σ. Put σ for the left shift on Σ. Following Olsen’s paper [12] for every
ω ∈ Σ we define Ln(ω) ∈ M(Σ)

Ln(ω)(E) :=
1

n

n−1∑

k=0

δσkω(E) =
1

n
#

{
0 ≤ k ≤ n − 1 : σkω ∈ E

}
, for E ⊂ Σ.

Furthermore we fix a Hölder continuous function f : Σ → �
and define

Ξ : M(Σ) → �

Ξ : µ →
∫

fdµ.

Then naturally Ξ ◦ Ln : Σ → M(Σ) → �
:

ΞLn(ω) =
1

n

n−1∑

k=0

f(σkω).

Our aim is to give an upper bound on the Hausdorff dimension of
the natural projection of the set

∆(β) =
{

ω ∈ Σ : lim
n→∞

ΞLn(ω) = β
}

,

for a β ∈ �
since we have that Kt

β = Πt∆(β). To do that we need to
estimate the dimension of the projection of the set

∆n

(

β,
1

k

)

:=

{

ω ∈ Σ : ΞLm(ω) ∈ B

(

β,
1

k

)

holds for all m ≥ n

}

where B
(
β, 1

k

)
refers to the closed ball of radius 1

k
. Then obviously

(14) ∆(β) =
⋂

k

⋃

n

∆n

(

β,
1

k

)
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Since we are assuming that our matrices are diagonal we will de-

note Ai =

[
λi 0
0 ξi

]

where λi, ξi < 1 for all 1 ≤ i ≤ m. Thus we

can determine the Lyapunov exponents with respect to a measure in
terms of integrals. To do this we define functions Φ1, Φ2 : Σ → �

by Φ1(ω) = log λω1 and Φ2(ω) = log ξω1. We can now compute the
Lyapunov exponents of an invariant measure µ to be

λ(µ) =

∫

Φ1(ω)dµ(ω) and ξ(µ) =

∫

Φ2(ω)dµ(ω).

The Lyapunov dimension of an invariant measure µ is given by

dimL(µ) = min

{

− h(µ)

max{λ(µ), ξ(µ)} , 1 − h(µ) + max{λ(µ), ξ(µ)}
min{λ(µ), ξ(µ)}

}

.

We remark that if the measure µ is not only invariant but ergodic
then this definition gives the same as Definition 1.

To use the decomposition (14) to help compute the dimension of Kβ

we need the following three Lemmas.

Lemma 1. The function g : Mσ(Σ) → �
, defined by g(µ) = dimL(µ),

is upper semi-continuous.

Proof. This follows from the upper semi-continuity of entropy (see [17,
Theorem 8.2]) and the continuity of the Lyapunov exponents ξ(µ) and
λ(µ). �

Lemma 2 (Olsen). Let X be a metric space and let f : X → �
be

an upper semi-continuous function. Let L1, L2, . . . ⊆ X be non-empty
compact subsets of X with L1 ⊇ L2 ⊇ · · · . Then

inf
k

sup
t∈Lk

f(t) = sup
t∈∩kLk

f(t)

Proof. See the proof of Lemma 3.2 in [12]. �

Finally we need a Lemma which is similar to Lemma 3.3 in [12]. Note

that we use the metric on Σ defined by d(ω, τ) = 1
2

|ω∧τ |
and dM will

denote the standard metric for the weak∗ topology defined on M(Σ).

Lemma 3. Let ω, τ ∈ Σ. Then for every r > 0 ∃M such that for
m ≥ M if |ω ∧ τ | = m, then for all C ∈ �

(15) ΞLm(ω) ∈ B(C, r) =⇒ ΞLm(τ) ∈ B(C, 2r).

Proof. Since M(Σ) is compact w.r.t. the weak∗ topology and Ξ :
M(Σ) → �

is continuous therefore Ξ is uniformly continuous. If we let
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m = |ω ∧ τ | then we have that

dM(Lm(ω) − Lm(τ)) ≤
(

1

2

)m

.

The result now follows from the uniform continuity of Ξ.
�

It immediately follows from this lemma that for

ω|n := (ω1, . . . , ωn, ω1, . . . , ωn, . . . )

and for all n ≥ M = M(r) and for all C we have

(16) ΞLn(ω) ⊂ B(C, r) =⇒ ΞLn(ω|n) ⊂ B(C, 2r).

4. Proof of Proposition 2

We need the following definitions: For a 0 ≤ t ≤ 2 we define F t :
Mσ(Σ) → �

F t(µ) :=

{
t max{λ(µ), ξ(µ)} for t ≤ 1
max{λ(µ), ξ(µ)}+ (t − 1) min{λ(µ), ξ(µ)} for 1 < t ≤ 2

It is important to note that these functions are continuous with re-
spect to the weak-* topology. We wish to apply Theorem 2 to the
space Mσ(Σ). Furthermore we need to define a sequence of mea-
sures on Mσ(Σ) satisfying the large deviation property. Namely, let
Pn ∈ M(Mσ(Σ))

Pn(E) :=
1

mn
0

∑

|ω|=n

δLn(ω)(E),

where E ⊂ M(Σ) and ω := (ω, ω, . . . ). Observe that δLn(ω) ∈ Mσ(Σ).

Lemma 4 (Eizenberger-Kifer-Weiss). The sequence of measures Pn

satisfies the large deviation property with constants {an}n = n and rate
function,

(17) I(µ) = − log m0 − h(µ).

Proof. See [5]. �

Moreover let

Qt
n(E) :=

∫

E

exp (nF t) dPn

∫
exp (nF t) dPn

.
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To evaluate Qt
n(E) we observe that for a continuous G : Mσ(Σ) → �

we have.

(18)

∫

E

G(µ)dPn(µ) =
1

mn
0

∑

|ω|=n

Ln(ω)∈E

G(Ln(ω)), E ⊂ M(Σ).

We use this to define when t ≤ 1

Gt
n(µ) := exp

(
n · F t(µ)

)
= max

{
m∏

k=1

λ
n·t·µ([k])
k ,

m∏

k=1

ξ
n·t·µ([k])
k

}

and for 1 < t ≤ 2

Gt
n(µ) := exp

(
n · F t(µ)

)
= max

{
m∏

k=1

λ
n·µ([k])
k ξ

n·(t−1)·µ([k])
k ,

m∏

k=1

ξ
n·µ([k])
k λ

n·(t−1)·µ([k])
k

}

.

Using this and the fact that Ln(ω)([k]) is 1
n

times the number of indices
1 ≤ ` ≤ n for which ω` = k we obtain that for an |ω| = n:

(19) Gt
n(Ln(ω)) =

{
max{λt

ω, ξt
ω} for t ≤ 1

max{λωξt−1
ω , ξωλt−1

ω } for 1 < t ≤ 2
,

where λω = λω1 · · ·λωn
and ξω = ξω1 · · · ξωn

. From now on let

E :=

{

µ ∈ Mσ(Σ) : Ξµ ∈ B

(

β,
2

k

)}

.

We obtain from (18) and (19) that

(20) Qt
n(E) :=







P

|ω|=n

ΞLn(ω)∈B(β, 2
k

)

max{λt
ω ,ξt

ω}

P

|ω|=n

max{λt
ω ,ξt

ω}
for t ≤ 1

P

|ω|=n

ΞLn(ω)∈B(β, 2
k

)

max{λωξt−1
ω ,ξωλt−1

ω }

P

|ω|=n

max{λωξt−1
ω ,ξωλt−1

ω }
for 1 < t ≤ 2

.

We first consider the case where t ≤ 1. Let n ≥ M( 1
k
) which was defined

in Lemma 3. Then it follows from (16) that for δj := |Λ|max1≤i≤m0

√
2||Ai||j

and j ≥ n ≥ M( 1
k
) we have

Ht
δj

(

Π

(

∆n(β,
1

k
)

))

≤ |diamΛ|t
∑

|ω|=j

ΞLj (ω)∈B(β, 2
k

)

max
{
λt

ω, ξt
ω

}

= |diamΛ|tmj
0Q

t
j(E)

∫

Gt
j(µ)dPj(µ).(21)
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For 1 < t ≤ 2 using the above definitions we get

Ht
δj

(

Π

(

∆n(β,
1

k
)

))

≤ |diamΛ|t
∑

|ω|=j

ΞLj (ω)∈B(β, 2
k

)

([
max{λω, ξω}
min{λω, ξω}

]

+ 1

)

min{λt−1
ω , ξt−1

ω }

≤ C|diamΛ|tmj
0Q

t
j(E)

∫

Gt
j(µ)dPj(µ)

Where C is chosen such that
([

max{λω ,ξω}
min{λω ,ξω}

]

+ 1
)

≤ C max{λω ,ξω}
min{λω ,ξω}

(For

example C = 2 would suffice).
From Lemma 4 we have that {Pn} ∈ M(Mσ(Σ)) satisfies the large

deviation property, with constants {n}n and rate function I(µ) :=
log m − h(µ). Thus from Theorem 2 (2) we have
(22)

lim sup
j

1

j
log Qt

j(E) = − inf
µ∈Mσ(Σ)

Ξµ∈B(β, 2
k

)

(
(
I(µ) − F t

µ

)
− inf

ν∈Mσ(Σ)

(
I(ν) − F t(ν)

)
)

.

Furthermore, it follows from the definition of Gt
j and Theorem 2 (1)

that

lim
j→∞

1

j
log

∫

Gt
j(µ)dPj(µ) = lim

j→∞

1

j
log

∫

exp
(
j · F t(µ)

)
dPj(µ)

= − inf
ν∈Mσ(Σ)

(
I(ν) − F t(ν)

)
(23)

The last two formulae with (21) gives that for t ≤ 1

lim
j→∞

logHt
δj

(

Π

(

∆n(C,
1

k
)

))

≤ sup
µ∈Mσ(Σ)

Ξµ∈B(β, 2
k

)

{

t max

{∫

Φ1dµ,

∫

Φ2dµ

}

+ h(µ)

}

and for 1 < t ≤ 2

lim
j→∞

logHt
δj

(

Π

(

∆n(β,
1

k
)

))

≤ sup
µ∈Mσ(Σ)

Ξµ∈B(β, 2
k

)

{

max

{∫

Φ1dµ,

∫

Φ2dµ

}

+ (t − 1) min

{∫

Φ1dµ,

∫

Φ2dµ

}

+ h(µ) } .

(24)

For both expressions the right hand side is less than 0 if and only if

t > sup
µ∈Mσ(Σ)

Ξµ∈B(β, 2
k

)

dimL(µ).
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To complete the proof of Proposition 2 we simply apply Lemmas 1 and
2 for the sets

Lk :=

{

µ ∈ Mσ(Σ) : Ξµ ∈ B

(

β,
1

k

)}

.

5. Proof of Theorem 1

In this section we assume that all the matrices Ai satisfy ||Ai|| < 1
2

and are diagonal. By Proposition 1 we have that for almost all t

dimH Kt

β ≥ min

{

sup

{

D(µ) : µ ∈ Eσ(Σ),

∫

fdµ = β

}

, 2

}

.

Note that the supremum is taken over ergodic measures. The remain-
ing step to complete the proof of Theorem 1 is to show that this is
equivalent to taking the supremum over invariant measures. To do this
we use the pressure function ([17]) in a similar way to [3]. A similar
approach when maximising related quantities in different settings were
used in [15] and [16]. Let Φ1, Φ2 : Σ → �

be defined as before. For
0 ≤ s ≤ 1 let

Ψs
1(i) = sΦ1(i) and Ψs

2(i) = sΦ2(i)

and for 1 < s ≤ 2 let

Ψs
1(i) = Φ1(i) + (s − 1)Φ2(i) and Ψs

2(i) = Φ2(i) + (s − 1)Φ1(i).

Note that these functions are Hölder continuous. For an ergodic mea-
sure µ on Σ with D(µ) ≤ 2 it follows that D(µ) = s where s satisfies

h(µ) + max

(∫

Ψs
1dµ,

∫

Ψs
2dµ

)

= 0.

Thus it follows that if for i = 1, 2

h(µ) +

∫

Ψs
idµ > 0

then D(µ) ≥ s.
For q ∈ �

and 0 ≤ s ≤ 2 we look at the function

l(q, s) = qf − qβ + Ψs
1.

Recall that

P (f) = sup
µ∈Mσ(Σ)

{∫

fdµ + h(µ)

}

and it follows from the variational principle that for Hölder functions
there exists an ergodic equilibrium measure µq,s such that

P (qf − qβ + Ψs
1) = h(µq,s) +

∫

qf − qβ + Ψs
1dµq,s.
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It also follows from standard properties of pressure that the pressure
of this function will be continuous with respect to s and q.

Lemma 5. For 0 ≤ s ≤ 2 and β ∈ (βmin, βmax) there exists q, which
depends continuously on s and β, such that

∫

(qf − qβ)dµq,s = 0.

Proof. Recall (see for example Proposition 4.10 in [14]) that

d

dq
P (l(q, s)) =

∫

(qf − qβ)dµq,s.

Thus it follows from that properties of the pressure function that

d

dq
P (l(q, s)) =

∫

(qf − qβ)dµq,s

behaves continuously with both q and s. Thus it is sufficient to show
that for any 0 ≤ s ≤ 2 we can find q1, q2 such that

∫

q2f − q2βdµq2,s ≤ 0 and

∫

q1f − q1βdµq1,s ≥ 0.

Note that we can find k1, k2 such that

k1 ≤
∫

Ψs
1dµ + h(µ) ≤ k2

for all invariant measures. If we take q1 > |k1|+|k2|
βmax−β

and choose ν to be

an invariant measure with maximum integral (that is
∫

fdν = βmax)
then we have that

P (l(q1, s)) > k2.

Thus for the equilibrium measure µq1,s we have that
∫

q(f − β)dµq,s +

∫

Ψs
1dµq,s + h(µq1,s) ≥ k2

and hence
∫

q(f − β)dµq,s ≥ 0. We find q2 similarly. �

We will denote this value of q by q(s).

Lemma 6. If we let

(25) s = sup

{

D(µ) : µ ∈ Mσ(Σ),

∫

fdµ = β

}

and assume that 0 ≤ s ≤ 2 then we have that P (q(s)f−q(s)β+Ψi) = 0
for either i = 1 or i = 2 and the supremum in (25) is achieved by the
ergodic equilibrium state for q(s)f − q(s)β + Ψi.
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Proof. We will assume without loss of generality that the supremum
in (25) is the same if we just consider measures where

∫
Φ1(i)dµ ≥

∫
Φ2(i)dµ. In this proof we write simply q instead of q(s). We can find

arbitrarily small ε ≥ 0 for which there exists an invariant measure µ
such that

h(µ) +

∫

Ψ
(s−ε)
1 dµ = 0 and

∫

fdµ = β.

Thus we have that

h(µ) +

∫

(qf − βq + Ψ
(s−ε)
1 )dµ = 0

and hence P (qf−βq+Ψ
(s−ε)
1 ) ≥ 0. From the continuity of the pressure

function it follows that

P (qf − βq + Ψs
1) ≥ 0.

Let p = P (qf −βq +Ψs
1) ≥ 0 and let µq,s be the associated equilibrium

measure. If we assume that p > 0 it follows that

0 <

∫

Ψs
1dµq,s + h(µq,s)

and thus

D(µq,s) > s

which is a contradiction. Thus p=0 and hence

D(µq,s) = s.

�

Theorem 1 immediately follows from this Lemma together with Propo-
sitions 1 and 2.

6. Example

Consider the special case when for an i = (i0, i1, . . . ) ∈ Σ

f(i) := log pi0 ,

for a given probability vector (p1, . . . , pm) and we have

Ai :=

[
λ 0
0 ξ

]

for all i = 1, . . . , m,

moreover 0 < ξ < λ < 1
2
. In this case we can explicitly calculate

the ‘almost all’ formula for the dimension of Kβ given in Theorem 1.
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This simple calculation and the statement of Theorem 1 gives that for
almost all t we have

dimH Kt

β = min







log

(
m∑

k=1

pt0
k

)

− βt0

− log λ
, 1 +

log

(
m∑

k=1

pt0
k

)

− βt0 + log λ

− log ξ







,

where we obtain t0 = t0(β) as the solution of the equation

m∑

k=1

pt0
k log pk = β ·

m∑

k=1

pt0
k .

This is so because it is easy to verify that the supremum in (10) is
attained for the Bernoulli measure

µ =







pt0
1

m∑

k=1

pt0
k

, . . . ,
pt0

m
m∑

k=1

pt0
k







�

.

We made a computation when m = 4 and (p1, . . . , p4) = (1/2, 1/4, 1/8, 1/8)
and λ = 0.4, ξ = 1/6. We computed the right hand side of formulae
(10) and this is shown by Figure 1. Note that in this case

βmin = log
1

8
, βmax = log

1

2

and for a typical t we have

dimH Kt

βmin
=

log 2

− log(2/5)
= 0.7564707974

as is shown on Figure 1. Note that the curve is smooth except at the
values where dim Kβ = 1.

7. Final Comments

(1) Generalising the results to higher dimensions than 2 is not a
problem. The proofs were given in 2-dimensions to simplify the
presentation.

(2) It is possible to get an upper bound in the non-diagonal case
as well. For a matrix A we define the singular values α1(A) ≥
α2(A) to be the eigenvalues of A∗A. We can define the singular
value function for 0 ≤ s ≤ 2 by

φs(A) = α1(A)s for s ≤ 1

φs(A) = α1(A)α2(A)s−1 for 1 < s ≤ 2.
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Figure 1. The dimension spectrum in a special case

Note that this function is submultiplicative (see [6] Lemma 2.1).
We define F t : Mσ(Σ) → �

by

F t(µ) =

∫

log φt(Ai1)dµ(i).

We define Pn and Qn as in the proof of Proposition 2. We define
the sets ∆n(β, 1

k
) as before and let δj = max1≤i≤m |Λ|||Ai||j. If

we let Gt
n(µ) = exp(nF t(µ)) then

Gt
n(Lnω) = φt(ω1) · · ·φt(ωn)
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for ω = (ω1, . . . , ωn). Thus we get

Ht
δj

(

Π

(

∆n(β,
1

k
)

))

≤ |diamΛ|t
∑

|ω|=j

ΞLj (ω)∈B(C, 2
k

)

φs(Aω1) · · ·φs(Aωn
)

= |diamΛ|tmjQt
j(E)

∫

Gt
j(µ)dPm(µ).

Using an identical method to Proposition 2 we can then show
that

dim Kβ ≤ sup

{

s(µ) : µ ∈ Mσ(Σ),

∫

fdµ = β

}

where s(µ) is the solution to h(µ) + F t(µ) = 0. This estimate
can be improved by applying the same method to the iterated
function system generated by looking at n-fold compositions of
the original system. This will give a better estimate because of
the submultipilicity of the singular value function.
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