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1. INTRODUCTION. The classical definition of the length of a curve, based on
polygonal approximation, is not useful for measuring the “length” of more complicated
sets. For a Borel (e.g., closed or open) subset F of R, the Lebesgue measure |F | of F ,
which is defined by

|F | = inf

{∑
i

|Ii | : F ⊂
⋃

i

Ii

}
(1)

using countable covers by intervals, works well (here |I | signifies the length of an
interval I ). This definition was extended by Carathéodory [5] as follows.

Definition 1. For a Borel set F in R
d let

H1(F) = lim
ε→0

inf

{∑
i

diam(Bi ) : F ⊂
⋃

i

Bi , diam(Bi ) ≤ ε

}
,

where the infimum is extended over all countable covers of F by closed sets Bi of
diameter at most ε.

It turns out that H1 is a measure, now called one-dimensional Hausdorff measure
because it was generalized by Hausdorff [10] to the whole family of measures Hα,
where α is any positive number (integer or noninteger). The modern theory of “frac-
tals” is largely based on the notion of the Hausdorff dimension dimH (F) of a set F ,
defined by dimH (F) = inf{α > 0 : Hα(F) = 0}. We recommend the book by Fal-
coner [8] for an introduction to fractals.

Here we consider only α = 1, since we are interested in the generalizations of
length. If F is a rectifiable curve, then H1(F) is exactly its length; therefore in modern
analysis, it is standard to refer to H1(F) for any compact set F as the “length of F .”

Another way to measure length goes back even further, to the eighteenth century.
In 1733 Georges-Louis Leclerc, the “Comte de Buffon,” posed the following problem,
which became known as “Buffon’s needle problem”: Given a collection of parallel
lines in the plane, with distance d between adjacent lines, determine the probability
that a needle of length � < d will cross one of these lines when dropped at random
on the plane. The answer 2�/(πd) was given by Buffon himself in 1777 and can be
found in many probability texts (for example, in [9]). It follows from Buffon’s formula
that if a polygon of perimeter p and diameter less than d is dropped on the same
plane, then the expected number of points at which it will cross one of the parallel
lines is 2p/(πd). This idea was formalized and extended in 1868 by Crofton (see [6]
and [19]), as follows. Count the number of intersections of a given set F with a straight
line, and then integrate this number over the space of all lines. The result is denoted
by I1(F) and called the integral-geometric measure of F . More precisely, let �θ be
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the orthogonal projection onto the line Lθ passing through the origin that makes an
angle θ with the horizontal. Then

I1(F) =
∫ π

0

∫
Lθ

card(F ∩ �−1
θ (y)) dy dθ.

When F is a rectifiable curve, I1(F) is twice its length (see [18]), but for other compact
sets in the plane I1(F) and 2H1(F) can differ sharply; in the next section we provide
examples for which H1(F) > 0, whereas I1(F) = 0.

It is easy to see that I1(F) = 0 if and only if |�θ(F)| = 0 for almost all θ in [0, π).
Another notion of “length” in the Euclidean plane, called Favard length (see [3]), is
defined for a Borel set F by

Fav(F) =
∫ π

0
|�θ(F)| dθ.

Thus Fav(F) = 0 if and only if I1(F) = 0. Consequently, to say that a set has “zero
Buffon needle probability” is another way of saying that almost every projection of the
set onto a line has zero Lebesgue measure.

2. SELF-SIMILAR FRACTALS IN THE PLANE AND THEIR PROJEC-
TIONS. There is no universally agreed upon definition of a “fractal,” but “we know
one when we see one.” The sets that we discuss in this article are certainly fractals,
but they would be excluded if we used the naive definition of a fractal as a set having
nonintegral Hausdorff dimension (our sets in the Euclidean plane have dimension
one). When we say “fractal” we usually have several properties in mind, such as
“fine structure on arbitrarily small scales” and some form of “self-similarity” (see [7]
or [8]). The latter term will be used here in the following precise sense: a compact set
in Euclidean space is said to be self-similar if it can be represented as a finite union
of (not necessarily disjoint) sets, each of which can be obtained from the whole set by
scaling (with a factor less than one), followed by an isometry.

The best known fractal is probably the Cantor middle-third set. We consider a vari-
ant of the Cantor set construction where at each stage we remove middle halves of
intervals rather than their middle thirds.

Start with the unit interval F0 = [0, 1]. Remove the (open) middle half—resulting
in F1 = [0, 1/4] ∪ [3/4, 1]. Then repeat the process removing the middle half of each
of the intervals that remain (see Figure 1). At stage n we get a set Fn that is the
union of 2n intervals of length 4−n . These sets are nested: F0 ⊃ F1 ⊃ F2 ⊃ . . . . Their
intersection

Figure 1. Construction of the Cantor middle-half set.
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K =
∞⋂

n=0

Fn

(nonempty by the nested intersection theorem) is called the Cantor middle-half
set.

Observe that |Fn| = (1/2)n → 0, so |K | = 0. Thus, the length measure is not very
useful when applied to the set K . (It turns out that the ‘natural’ measure on K is the
1/2-dimensional Hausdorff measure, but we do not discuss this here.)

Notice also that the Cantor middle-half set is self-similar in the sense defined earlier.
Indeed, the recursive nature of the construction allows us to write

K = 1
4 K ∪ (

1
4 K + 3

4

)
. (2)

Iterating formula (2) leads to a more explicit expression for the Cantor middle-half
set in terms of expansions in base 4. In fact, K is the set of all numbers in [0, 1]
admitting base 4 expansions in which the only allowable digits are 0 and 3 (or 0 and
3/4, depending on whether we elect to index the series that gives the expansion starting
with n = 1 or n = 0). Formally,

K =
{ ∞∑

n=1

an4−n : an ∈ {0, 3}
}

=
{ ∞∑

n=0

an4−n : an ∈ {0, 3/4}
}

. (3)

More generally, a self-similar set K in the real line can be defined by a set equation

K =
m⋃

i=1

(r K + di ), (4)

where r in (0, 1) is called the contraction ratio and the m numbers d1, . . . , dm are said
to be admissible digits. A nonempty compact subset of R satisfying (4) is unique [8,
p.114] and can be expressed as follows:

K =
{ ∞∑

n=0

anr n : an ∈ {d1, d2, . . . , dm}
}

. (5)

(It seems natural to assume that the digits di are all distinct. However, if we have a
family of self-similar sets depending on parameters, then for some parameter values
two or more digits may coincide, so we do not preclude such a possibility.) In fact,
we do not have to restrict ourselves to the real line—everything works the same way
in the plane and in higher dimensions. The only change that needs to be made is to
allow the digits in (4) and (5) to be vectors. Of particular interest to us will be the set
K 2 = K × K , where K is the Cantor middle-half set. It can be described directly by a
Cantor-like construction in which we start with the unit square [0, 1]2 = [0, 1] × [0, 1]
at stage 0, and at stage n replace each of the squares from the previous stage by four
corner squares of side-length 4−n (see Figure 2). The alternative “digit” description of
the set K 2 is:

K 2 =
{ ∞∑

n=1

an4−n : an ∈
{(

0
0

)
,

(
0
3

)
,

(
3
0

)
,

(
3
3

)}}
. (6)

We remark that the “four corner” set K 2 is a union of four pieces, each of which is a
translate of K 2 scaled by a factor of 1/4. This self-similar structure suggests that K 2 is
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Figure 2. Construction of the “four corner” set.

a one-dimensional set. Indeed, one can show that 0 < H1(K 2) < ∞. The upper bound
follows easily from the definition of H1, since K 2 is covered by 4n squares of diameter√

2 · 4−n for each n. The lower bound can be derived by considering the probability
measure µ on K 2 such that µ(K 2 ∩ Q) = 4−n for each of the 4n squares Q arising at
stage n of the construction (see [8, 1.3] for a justification that such a measure exists).
This measure satisfies µ(B) ≤ 9 diam(B) for any closed set B, since B can be covered
by at most nine dyadic squares with side-length smaller than diam(B). Therefore, for
any cover {Bi } of K 2 by disks, we have

∑
i diam(Bi ) ≥ ∑

i µ(Bi )/9 ≥ µ(K 2)/9 =
1/9. For more details, we refer the reader to [8, chap. 4].

We would like to understand the projections of self-similar sets in the plane. Again,
let �θ : R2 → R denote the orthogonal projection on the line Lθ through the origin
that makes an angle θ with the horizontal. It is more convenient, however, to consider
all projections to be subsets of R. To this end, we let

Pθ

(
x
y

)
= x cos θ + y sin θ (7)

for θ in [0, π). Clearly, �θ = Rθ Pθ , where Rθ is the rotation through angle θ , so
|Pθ (�)| = |�θ(�)| for any set � of the plane. If � is a self-similar set in the plane
given by (4) or (5), but now with vector digits bi , then Pθ (�) is a self-similar set
in R with the same contraction ratio r and with digits Pθ (b1), . . . , Pθ (bm). (Observe
that some of the digits for the projection may coincide even if all the vector digits are
distinct.) However, these projected sets are often very complicated because of possible
overlap (see Figure 3). In general, they can no longer be described via an iterative
process of “removals,” as was the case for the Cantor middle-half set. Figure 3 shows
the projection of the first stage of the construction of the set K 2. When we iterate the
construction, the interplay between “gaps” and “overlaps” becomes quite involved.
(Note that in Figure 3 we translated the set K 2 away from the origin in order to make
the picture more illuminating. This just translates the projections.)

Some projections of K 2 are easy to describe. Indeed, P0(K 2) = K is the Cantor
middle-half set, hence |P0(K 2)| = 0. Also, Pπ/2(K 2) = K , so |Pπ/2(K 2)| = 0. This
observation has a remarkable consequence, in view of the following theorem of Besi-
covitch [2].

Theorem 2 (Besicovitch). Let F be a compact subset of R
2 with the property that

0 < H1(F) < ∞. If two distinct projections of F have zero length, then almost every
projection of F has zero length.
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θ

Figure 3. Projecting the “four corner” set.

The theorem clearly applies to the set K 2. “Almost every projection” means that
there is a set E in [0, π) of zero Lebesgue measure such that |Pθ (F)| = 0 for all θ not
belonging to E . The proof of Theorem 2 is quite complicated. Our goal is to give an
elementary proof of it for a class of self-similar sets F that includes the “four corner”
set K 2. One advantage of this elementary approach is that it can be refined to yield
quantitative estimates (see section 3).

Proposition 3. Suppose that m ≥ 3 and that

� =
{ ∞∑

n=0

anm−n : an ∈ {b1, b2, . . . , bm}
}

, (8)

where b1, b2, . . . , bm are distinct vectors in R
2 such that the “pieces” �i = bi +

m−1� are pairwise disjoint. Then |Pθ (�)| = 0 for almost every θ in [0, π).

One can check that for m = 2 the set �, defined as in (8), is a line segment, so all
its projections, except one, have positive length. For m ≥ 3 the disjointness condition
precludes the set � from being a subset of a line; this is proved in Lemma 6.

The proof of Proposition 3 is based on several lemmas dealing with subsets of R.

Lemma 4. Let F be a compact subset of R with positive Lebesgue measure. Then for
any δ > 0 there is an interval J such that |F ∩ J | ≥ (1 − δ)|J |.

Proof. (This follows immediately from Lebesgue’s theorem on points of density, but is
actually more elementary.) By (1) and the compactness assumption, F can be covered
by finitely many open intervals {Ii } such that
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∑
i

|Ii | ≤ (1 − δ)−1|F |.

If |F ∩ Ii | < (1 − δ)|Ii | held for all i , then summing over i would yield a contradiction.

In the following three lemmas we consider the set

K = K ({d1, . . . , dm}) =
{ ∞∑

n=0

anm−n : an ∈ {d1, . . . , dm}
}

, (9)

where d1, d2, . . . , dm are real numbers (not necessarily distinct). Thus, K is a self-
similar subset of R given by (5), but of the special form in which the contraction ratio r
is equal to m−1, the reciprocal of the number of digits. In the proof of Proposition 3
we will have K = Pθ (�) for a fixed θ ; then di = Pθ (bi ).

Lemma 5. For K as in (9), let Ki = di + m−1 K . Then K = ⋃m
i=1 Ki and |Ki ∩ K j | =

0 for i �= j .

Proof. The first statement follows immediately from the definition of K . The second
statement is an easy consequence of self-similarity. The set K is a union of m pieces,
each of which is a translate of m−1 K . Since |K | = m · |m−1 K |, the pieces have to be
pairwise disjoint in measure. The formal proof goes as follows: Fix 1 ≤ i < j ≤ m.
We have

|K | =
∣∣∣∣∣

m⋃
k=1

Kk

∣∣∣∣∣ ≤ |Ki ∪ K j | +
∑

k≤m; k �=i, j

|Kk | =
m∑

k=1

|Kk| − |Ki ∩ K j |.

But |Kk| = |dk + m−1 K | = m−1|K |, hence |Ki ∩ K j | ≤ 0.

Observe that the lemma covers the case di = d j as well. Then Ki ∩ K j = Ki , but
|K | = |Ki | = 0, so there are no surprises here.

The previous lemma says that the pairwise intersections Ki ∩ K j cannot be “large.”
However, at least one of them must be nonempty.

Lemma 6. Let K and Ki be as in Lemma 5. There exist indices i and j , i �= j , such
that Ki ∩ K j �= ∅.

Proof. Let Nε(F) = {x : dist(x, F) < ε} denote the neighborhood of radius ε of a
set F . Suppose that the sets Kk are pairwise disjoint. Since they are compact, the
distance between any two of them is positive. Thus we can find ε > 0 so that Nε(Ki) ∩
Nε(K j ) = ∅ whenever i �= j . Then we have

|Nε(K )| =
∣∣∣∣∣

m⋃
k=1

Nε(Kk)

∣∣∣∣∣ =
m∑

k=1

|Nε(Kk)|.

On the other hand,

|Nε(Kk)| = |Nε(dk + m−1 K )| = |Nε(m
−1 K )| = m−1|Nmε(K )|,
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since m Nε(m−1 K ) = Nmε(K ). We conclude that |Nε(K )| = |Nmε(K )|. This is a con-
tradiction, for both Nε(K ) and Nmε(K ) are bounded open sets, and Nε(K ) is obviously
a proper subset of Nmε(K ).

Before stating the next lemma we need to introduce some notation. Recall that the
self-similar set K has a representation

K =
m⋃

i=1

Ki =
m⋃

i=1

(di + m−1 K ).

Substituting this formula into each term in its right-hand side, we obtain

K =
m⋃

i, j=1

Ki j , Ki j = di + m−1d j + m−2 K .

The sets Ki and Ki j are called the cylinder sets of K of orders 1 and 2, respectively.
This operation can be iterated. For each positive integer � the set K is the union of
m� pieces, called cylinders of order �, each of which is a translate of m−�K . Let A =
{1, 2, . . . , m} and A� = {u = u1 . . . u� : ui ∈ A}. Then

K =
⋃

u∈A�

Ku, Ku = Ku1...um =
�∑

n=1

dun m−n+1 + m−�K .

Repeating the proof of Lemma 5 for this decomposition demonstrates that

|Ku ∩ Kv| = 0 (10)

for different u and v in A�.
We want to understand when |K | = 0. There is an easy sufficient condition: |K | = 0

if two cylinders of K coincide; i.e., if Ku = Kv for some distinct u and v in A�. This
can be seen in many ways; for instance, |K | = m�|Ku| = m�|Ku ∩ Kv| = 0 by (10).
This condition is too strong to be necessary, however: for the planar self-similar set �

in (8), there are just countably many θ in [0, π) for which �θ = Pθ (�) has two coin-
ciding cylinders. Thus we would like to know what happens if some cylinders “almost”
coincide.

Definition 7. Two cylinders Ku and Kv are ε-relatively close if u and v belong to A�

for some � and Ku = Kv + x for some x with |x | ≤ ε · diam(Ku).

Note that diam(Ku) = diam(Kv) = m−� diam(K ) for all u and v in A�. Let

du =
�∑

n=1

dun m−n+1,

so that Ku = du + m−�K . Then Ku and Kv are ε-relatively close whenever

|du − dv| ≤ εm−� diam(K ). (11)

Lemma 8. If for every ε > 0 there exist an index � and distinct u and v in A� such
that Ku and Kv are ε-relatively close, then |K | = 0.
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This lemma (and its converse, which holds as well) is a very special case of a theo-
rem by Bandt and Graf [1].

Proof. Suppose, to the contrary, that |K | > 0. Then we can find an interval J such
that |J ∩ K | ≥ 0.9|J | (Lemma 4). Let ε = |J |/(2 diam(K )). By assumption, there
exist an index � in N and distinct u and v in A� such that the cylinders Ku and Kv are
ε-relatively close. If Ju = du + m−� J and Jv = dv + m−� J , then

Ju = Jv + (du − dv)

and

|du − dv| ≤ εm−� diam(K ) = 0.5|Ju|.
This means that Ju and Jv have a large overlap—at least half of Ju lies in Jv. Since
J was chosen to ensure that at least 90 percent of its length belongs to the set K , this
property carries over to Ju and Ku . To be more precise,

|Ju ∩ Ku| = |(du + m−� J ) ∩ (du + m−�K )| = m−�|J ∩ K | ≥ 0.9m−�|J | = 0.9|Ju|.
Similarly,

|Jv ∩ Kv| ≥ 0.9|Jv|.
Since at least 90 percent of Jv is in Kv and at least 50 percent of Ju is in Jv, we find
that at least 40 percent of Ju is in Kv. But at least 90 percent of Ju is in Ku , so at least
30 percent of Ju is in Ku ∩ Kv. This is in contradiction with (10), and the lemma is
proved.

Proof of Proposition 3. Recall that � is a planar Cantor set of description (8). If we
again write �θ = Pθ (�), then

�θ =
m⋃

i=1

(Pθ (bi) + m−1�θ),

so all the foregoing discussion (in particular, Lemma 8) applies to �θ . Let

Vε :=
⋃
�≥1

{θ ∈ [0, π) : there exist distinct u and v in A�

with �θ
u and �θ

v ε-relatively close}.
Note that if θ lies in

⋂
ε>0 Vε, then |�θ | = 0 by Lemma 8. The proposition will be

proved if we are able to show that |[0, π) \ ⋂
ε>0 Vε| = 0. But

⋂
ε>0 Vε = ⋂∞

n=1 V1/n,
and by DeMorgan’s law,

[0, π) \
∞⋂

n=1

V1/n =
∞⋃

n=1

([0, π) \ V1/n).

Thus, it remains to verify that

|[0, π) \ Vε| = 0 (12)

for a fixed ε.
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We would like to show that any subinterval of [0, π) has at least a fixed percentage
of its length (depending on ε but not on the subinterval’s size) lying in Vε. In view
of Lemma 4, this will imply (12). The desired conclusion will follow if we can find
positive constants C1 and C2 such that for any θ in (0, π) and any � in N there is a θ0

satisfying

|θ − θ0| ≤ C1m−�, (θ0 − C2εm−�, θ0 + C2εm−�) ⊂ Vε. (13)

(There is a minor technical issue when the interval in (13) is not contained in [0, π),
but it is easy to handle.)

We fix θ in (0, π) and � in N. Appealing to Lemma 6, we choose i and j with i �= j
for which �θ

i ∩ �θ
j �= ∅. Since

�θ
i =

⋃
u∈A�, u1=i

�θ
u, �θ

j =
⋃

v∈A�, v1= j

�θ
v,

there exist u and v in A�, with u1 = i and v1 = j , such that �θ
u ∩ �θ

v �= ∅. This means
that there are points yu in �u and zv in �v such that Pθ (yu) = Pθ (zv). Denote by
zu the point in �u corresponding to zv (i.e., �v − zv = �u − zu), and let θ0 be the
angle such that Pθ0(zu) = Pθ0(zv), whence �

θ0
u = �θ0

v . Then |θ − θ0| is the angle at zv

for the triangle with vertices zu, zv , and yu (see Figure 4), and therefore |zu − yu| ≥
|yu − zv| sin |θ − θ0|. This implies that

sin |θ − θ0| ≤ diam(�u)

dist(�u, �v)
.

Λ

Λ

v

u

P
u

θ

Pθ0

yu

z

vz

Figure 4. Finding θ0.

Note that diam(�u) = m−� diam(�) and dist(�u, �v) ≥ dist(�i , � j ) ≥ δ > 0 for
some δ = δ(�) > 0 by the hypothesis of pairwise disjointness in Proposition 3. Thus
the first condition in (13) holds with the constant C1 = π diam(�)/(2δ). By the choice
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of θ0 we have θ0 in V0, which is a subset of Vε. Using (7), we conclude that

|(Pα − Pθ0)(z − w)| ≤ |α − θ0| · |z − w|
for any two vectors z and w and any α ∈ [0, π). Consequently, the projected set �α

u
can be obtained from �α

v by a translation of at most |α − θ0| · diam(�). On the other
hand, the diameter of �α

u is at least m−� · width(�), where width(�) signifies the
minimal width of a strip that contains �; it is nonzero because the assumption that
the sets �i are disjoint prevents � from being contained in a straight line (recall
Lemma 6). Set C2 = width(�)/ diam(�). Then by Definition 7 the cylinders �α

u and
�α

v are ε-relatively close for all α in the C2εm−�-neighborhood of θ0. It follows that
this neighborhood lies in Vε, so the second condition in (13) is verified. This completes
the proof.

3. CONCLUDING REMARKS. First we explain what we meant by “quantitative
estimates” alluded to after the statement of Theorem 2. Recall that the Favard length
of a planar set F is defined by Fav(F) = ∫ π

0 |Pθ (F)| dθ . Denote by K the Cantor
middle-half set. By Proposition 3, Fav(K 2) = 0. Now consider the nth stage of the
Cantor set construction for K :

Kn =
{ ∞∑

k=1

ak4−k : ak ∈ {0, 3} for 1 ≤ k ≤ n and ak ∈ {0, 1, 2, 3} for k > n
}
.

Then K 2
n is a union of 4n squares of side-length 4−n . Clearly, Fav(K 2) = 0 implies that

limn→∞ Fav(K 2
n ) = 0, but it does not yield an estimate for the rate of convergence. A

lower bound Fav(K 2
n ) ≥ c/n for some c > 0 follows from Theorem 4.1 in [14]. The

elementary method described in the present article can be refined to yield a quantitative
upper bound [17]. For y ≥ 1 we employ the notation

log∗ y = min


n ≥ 0 : log log . . . log︸ ︷︷ ︸

n

y ≤ 1


 . (14)

Theorem 9 (Peres and Solomyak). There exist positive constants C and a such that

Fav(K 2
n ) ≤ C exp[−a log∗ n]

for all n in N.

The convergence of the upper bound in Theorem 9 to zero is extremely slow, but it is
the best estimate currently known. It is a challenging unsolved problem to determine
the correct asymptotics. We would guess that the lower bound c/n is closer to the truth.

We make a few additional comments.

• It follows from results of Kenyon [12] and Lagarias and Wang [13] that |Pθ (K 2)| =
0 for all θ such that tan θ is irrational. (This is, of course, much stronger than Propo-
sition 3!) However, this information does not seem helpful in obtaining an upper
bound for Fav(K 2

n ).
• Using polar duality, one can infer from the properties of the four-corner set K 2 the

existence of Kakeya sets, i.e., compact planar sets of zero area that contain line
segments in every direction. This connection was discovered by Besicovitch [4]; see
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also Besicovitch [2], [3] and Kahane [11]. Note that the latter paper does not really
prove that almost every projection of K 2 has zero length.

• The approach of this paper was originally developed in [16] to study the Hausdorff
measure of certain parameterized families of fractals.
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Prof. [Manindra] Agrawal is a 36-year old theoretical computer scientist at the
Indian Institute of Technology in Kanpur, India. In August, he solved a problem
that had eluded millennia of mathematicians: developing a method to determine
with complete certainty if a number is prime . . . . Besides being a show stopping
bit of mathematics, the work was big news for the Internet. Very large prime
numbers are the bedrock of Internet encryption, the sort your browser uses when
you are shopping online.
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called identity testing, when he noticed the solution hinted at a potential fresh
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on the more recondite aspects of number theory. His Eureka! moment came in
July. As he was driving his daughter to school on his motor scooter, a particularly
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——Lee Gomes, “One Beautiful Mind From India
Is Putting The Internet on Alert,”
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April 2003] FRACTALS AND PROJECTIONS 325


