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THE ALGEBRAIC DIFFERENCE OF TWO RANDOM
CANTOR SETS: THE LARSSON FAMILY

MICHEL DEKKING, KÁROLY SIMON, AND BALÁZS SZÉKELY

Abstract. In this paper we consider a family of random Cantor
sets on the line and consider the question whether the condition
that the sum of the Hausdorff dimensions is larger than one im-
plies the existence of interior points in the difference set of two
independent copies. We give a new and complete proof that this
is the case for the random Cantor sets introduced by Per Larsson.

1. Introduction

Algebraic differences of Cantor sets occur naturally in the context of
the dynamical behavior of diffeomorphisms. From these studies a con-
jecture by Palis and Takens ([7]) originated, relating the size of the
arithmetic difference

C2 − C1 = {y − x : x ∈ C1, y ∈ C2}

to the Hausdorff dimensions of the two Cantor sets C1 and C2: if

dimH C1 + dimH C2 > 1

then generically it should be true that

C2 − C1 contains an interval.

For generic dynamically generated non-linear Cantor sets this was
proved in 2001 by de Moreira and Yoccoz ([1]). The problem is open
for generic linear Cantor sets. The problem was put into a probabilistic
context by Per Larsson in his thesis [5], (see also [6]). He considers a
two parameter family of random Cantor sets Ca,b, and claims to prove
that the Palis conjecture holds for all relevant choices of the parame-
ters a and b. Although the main idea of Larsson’s argument is brilliant,
unfortunately the proof contains significant gaps and incorrect reason-
ings. The aim of the present paper is to give a correct proof of this
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theorem. The most important error made by Larsson is as follows: dur-
ing the construction a multitype branching process with uncountably
many types appears naturally. The number of individuals in the n-th
generation having types which fall into the set A is denoted Zn(A) and
the probability measure describing the branching process starting with
a single type x individual is denoted Px. The argument presented in
Larsson’s paper requires that for some positive δ, q and ρ > 1 we have
that uniformly both in x and in n the following holds:

(1) Px(Zn(A) > δ · ρn) > q.

However, the main result in the theory of general multitype branch-
ing processes [4, Th.14.1] invoked by Larsson implies (1) without any
uniformity.
Further, (as shown in [3]) the idea presented in Larsson’s paper works
only in the region (see also Figure 1) where

(2) 1 − 4a − 2b + 3a2 − 6ab > 0.

 0

 0.05

 0.1

 0.15

 0.2

 0.23  0.25  0.27  0.29  0.31  0.33  0.35 a

b

1 − 2b − 3a > 0
a > 0.25 1 − 4a − 2b + 3a2 − 6ab > 0

Figure 1. Regions described by equations (2) and (3).

Although we use a different setup, the main idea presented here follows
the stream of Larsson’s proof. We remark that for linear Cantor sets of
a different nature the first two authors investigated the same problem
in [2].

1.1. Larsson’s random Cantor sets. It is assumed throughout this
paper that

(3) a >
1

4
and 3a + 2b < 1.

The first condition is a growth condition and we will see its importance
in Section 7. The second condition is a geometric condition: Larsson’s
Cantor set is a natural randomization of the classical Cantor set; see
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Figure 2: in the first step of the construction intervals of length a are
put into the intervals [b, 1
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2
] and [1

2
+ a

2
, 1−b]. This obviously requires

3a+2b < 1. We remark that it is useful to force a gap of length at least
a in the middle, since otherwise the Newhouse thickness of the Cantor
set would be larger than 1, which yields an interval in the difference
set by Newhouse’s theorem (see [7, p. 63]).
The construction is as follows: first remove the middle a part, then the
b parts from both the beginning and the end of the unit interval. Then
put intervals of length a according to a uniform distribution in the re-
maining two gaps

[
b, 1

2
− a

2

]
and

[
1
2

+ a
2
, 1 − b

]
. These two randomly

chosen intervals of length a are called the level one intervals of the ran-
dom Cantor set Ca,b. We write C1

a,b for their union. In both of the two
level one intervals we repeat the same construction independently of
each other and of the previous step. In this way we obtain four disjoint
intervals of length a2. We emphasize that, because of independence,
the relative positions of these second level intervals in the first level
ones are in general completely different. Similarly, we construct the 2n

level n intervals of length an. We call their union Cn
a,b. Then Larsson’s

random Cantor set is defined by

Ca,b :=
∞⋂

n=1

Cn
a,b.

See Figure 2.
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Figure 2. The construction of the Cantor set Ca,b. The
figure shows C1

a,b, . . . , C
4
a,b.

The next theorem was stated by P. Larsson.

Theorem 1. Let C1, C2 be independent random Cantor sets having the
same distribution as Ca,b defined above. Then the algebraic difference
C2 − C1 almost surely contains an interval.

Our paper is organized as follows: In the next section we give an el-
ementary proof of the fact that the probability that C2 − C1 contains
an interval is either 0 or 1. For the main part of the proof our starting
point is the observation that C2−C1 can be viewed as a 45◦ projection
of the product set C1 × C2. This leads in Section 3.1 to the introduc-
tion of the level n squares formed as the product of level n intervals
of the Cantor sets C1, C2. We remark that Larsson does not use these
squares at all. Then based on the family of these squares we will build
up the intrinsic branching process, and we state our Main Lemma which
will replace (1). In Section 4 we prove Theorem 1 assuming the Main
Lemma. In Sections 5-10 we give a proof of the Main Lemma.
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2. A 0-1–law

In the following we will use that the property of containing an interval
is invariant for translations and scalings, and we will write “C2 − C1

contains an interval” also equivalently as “C2 − C1 has non-empty in-
terior”. It follows from translation invariance and the statistical self
similarity of the Cantor set construction that

P (Int(C2 − C1) 6= ∅) = P
(
Int(C1,1

2 − C1,1
1 ) 6= ∅

)
,

where C1,1
i = Ci ∩ [0, 1

2
], and C1,2

i = Ci ∩ [1
2
, 1]. This observation is

the basis for the following simple proof of the 0-1-law of the ‘interval
property’.

Proposition 1. P (C2 − C1 ⊃ I) = 0 or 1.

Proof. Note that

p := P (C2 − C1 ⊃ I) = 1 − P (Int(C2 − C1) = ∅)

≥ 1 − P
(
Int(C1,1

2 − C1,1
1 ) = ∅, Int(C1,2

2 − C1,2
1 ) = ∅

)

= 1 − P
(
Int(C1,1

2 − C1,1
1 ) = ∅

)
P
(
Int(C1,2

2 − C1,2
1 ) = ∅

)

= 1 − (1 − p)2.

This implies p ≤ p2, and hence p = 0 or 1. �

3. Notation and the Main Lemma

In the rest of the paper we fix a pair (a, b) satisfying condition (3) and
we always deal with Larsson’s Cantor sets so we will suppress the labels
a, b.

3.1. The geometry of the algebraic difference C2 − C1. The 45◦

projection of a point (x1, x2) ∈ R
2 to the x2-axis, is denoted by Proj45◦ .

That is

Proj45◦(x1, x2) := x2 − x1.

The following trivial fact is the motivation for constructing our branch-
ing process of labelled squares:

x ∈ Proj45◦ (C1 × C2) if and only if x ∈ C2 − C1.

So,

C2 − C1 =
∞⋂

n=0

Proj45◦ (Cn
1 × Cn

2 )

We can naturally label the squares in Cn
1 × Cn

2 as follows: We call
the top left first level square Q1 and we continue labeling the first level
squares Q2, Q3, Q4 in the clockwise direction. Then within each of these
squares we continue in this way. See Figure 3.
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Figure 3. The first level squares Q1, . . . , Q4 and four
second level squares Q21, Q22, Q23, Q24.

For an x ∈ [−1, 1] we write e(x) for that line with slope 1 which inter-
sects the vertical axis at x. As we observed above

(4) x ∈ C2 − C1 if and only if e(x) ∩ (C1 × C2) 6= ∅.

Fix x and an arbitrary n. Let Sn be the set of all an × an squares
contained in [0, 1]2. Note that for every Q ∈ Sn by the statistical
self-similarity of the construction the probability of the event e(x) ∩
(Q ∩ (C1 × C2)) 6= ∅ is equal to the probability of the event e(Φ) ∩
(C1 ×C2) 6= ∅, where we construct Φ = Φ(Q, x) as follows: We rescale
the square Q (which is an an ×an square) by the factor 1/an. Then we
choose Φ such that the line segment e(Φ) ∩ [0, 1]2 is the rescaled copy
of e(x) ∩ Q. See Figure 4. More precisely, if (u, v) is the left bottom
corner of Q, that is Q = [u, u + an] × [v, v + an] then we define

(5) Φ(Q, x) :=

{
u−v+x

an if e(x) intersects Q
Θ otherwise.

Observe that Φ(Q, x) > 0 if and only if the center of Q is located
below the line e(x). Further, Φ(Q, x) = 1, if e(x) intersects Q at the
left upper corner and Φ(Q, x) = −1 if e(x) intersects Q at the right
bottom corner.

3.2. The probability space. Let us define the dyadic tree T :=⋃∞
n=0 {1, 2}

n. We will write in = i1i2 . . . in with ik is 1 or 2 for the
nodes of the tree, and Λ for the root of T . For the construction of

Larsson’s Cantor set the probability space is Ω1 =
[
0, 1−3a−2b

2

]T
. An
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Figure 4. A level n square Q, and the function Φ(Q, x)

element of Ω1 is denoted U , i.e., the value at node i1i2 . . . in is Ui1i2...in .
The corresponding σ-algebra is B1 :=

∏
T B

[
0, 1−3a−2b

2

]
. Finally, the

probability measure for Larsson’s Cantor set is

P1 := δ0 ×
∏

T \{Λ}

Uniform

[
0,

1 − 3a − 2b

2

]
.

So the probability space for C1 × C2 is as follows:

(6) Ω := Ω1 × Ω1, B := B1 × B1, P := P1 × P1.

An element of Ω is a pair of labelled binary trees. The 4n level n
pairs (i1i2 . . . in, j1j2 . . . jn) are naturally associated with level n squares
Q′

(i1i2...in,j1j2...jn) of size an × an whose relative positions are given by by

Ui1i2...in and Uj1j2...jn
. Note however that (to simplify the notations)

we have given new indices to these squares and positions: Q′
1,1 =:

Q4, Q
′
1,2 =: Q1, Q

′
2,1 =: Q3, Q

′
2,2 =: Q2, and similarly for higher order

squares, and their positions.

3.3. The branching process. On the probability space Ω we define
a multi type branching process Z = (Zn)∞n=0. For a Borel set A the
natural number Zn(A) represents the number of objects in generation
n whose type falls into the set A. The type space T is a subset of
[−1, 1], for the moment think of T = [−1, 1]. The objects of the nth

generation are squares Q ∈ Sn, and given a fixed x ∈ [−1, 1], their type
is Φ(Q, x), as defined in (5). Note that although we speak of Θ as a
type, it is not an element of T .
The process (Zn) is a Markov chain whose states are collections of
squares labelled with their types. The transition mechanism is as de-
scribed in Section 3.1. The initial condition of the chain is the square
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[0, 1] × [0, 1], with type x (also called the ancestor of the branching
process). As usual we then write for n ≥ 1

Px (Zn(A1) = r1, . . . ,Zn(Ak) = rk) =

P (Zn(A1) = r1, . . . ,Zn(Ak) = rk|Z0({x}) = 1) ,

for all k ≥ 1, A1, . . . , Ak ⊂ T and non-negative integers r1, . . . , rk. A
collection of squares all with type Θ is an absorbing state: it only
generates squares with type Θ. This is obvious from the definition of
Φ(Q, x), but we will extend this property to the case of smaller type
spaces T , where by definition a square has type Θ if its type is not in
T (this will be further explained in Section 6.1).
A major role in our analysis is played by the expectations Ex[Zn(A)],
for A ⊂ T , n ≥ 1. Let us define for i = 1, 2, 3, 4

Z i
1(A) =

{
1 if Φ(Qi, x) ∈ A
0 otherwise.

(7)

Then Z1(A) = Z1
1 (A) + · · · + Z4

1 (A), and so

Ex[Z1(A)] =

∫

Ω

Z1(A) dPx =

∫

Ω

4∑

i=1

Z i
1(A) dPx

=

4∑

i=1

Px(Φ(Qi, x) ∈ A) =

4∑

i=1

∫

A

fx,i(y) dy,

where the fx,i are the densities of the random variables Φ(Qi, x) (apart
from an atom in Θ). In Section 5.2 these densities will be determined
explicitly. It follows that for n = 1

Mn(x, A) := Ex[Zn(A)]

has a density m1(x, y), called the kernel of the branching process, given
by

(8) m(x, y) := m1(x, y) =

4∑

i=1

fx,i.

We remark that if M1 has a density then Mn also has a density. Let
us write mn(x, ·) for the density of Mn(x, ·). The branching structure
of Z yields (see [4, p.67])

(9) mn+1(x, y) =

∫

T

mn(x, z)m1(z, y) dz.

The main problem to be solved is that the natural choice of T = [−1, 1]
as type space does not work because of condition C below, and because
we need the uniformity alluded to in Equation (1).
Since the definition of T is complicated we postpone it to Section 6.
However, here we collect the most important properties of T :

A: T is the disjoint union of finitely many closed intervals.
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B: There exists a K > 0 such that [−K, K] ⊂ T .
C: The kernel mn(x, y) defined in (9) is uniformly positive on

T × T (see Condition (C1) below) and it has Perron-Frobenius
eigenvalue greater than 1 (see Condition (C2)below).

3.4. The asymptotic behavior of the branching process Z. We
will prove later that there exists an integer n0 such that mn0

is a uni-
formly bounded function, that is, there exist 0 < a < b such that for
all x, y ∈ T we have

(C1) 0 < a ≤ mn0
(x, y) ≤ b < ∞.

In the next step we consider the following two operators:

(10) g(x) 7→

∫

R

m1(x, y) · g(y) dy, h(y) 7→

∫

R

h(x) · m1(x, y) dx.

We use the following theorem proved in [4, Theorem 10.1]:

Theorem 2 (Harris). It follows from (C1) that the operators in (10)
have a common dominant eigenvalue ρ. Let µ(x) and ν(y) be the corre-
sponding eigenfunctions of the first and second operator in (10) respec-
tively. Then the functions µ(x) and ν(y) are bounded and uniformly
positive. Moreover, apart from a scaling, µ and ν are the only non-
negative eigenfunctions of these operators. Furthermore, if we nor-
malize µ and ν so that

∫
µ(x)ν(x) dx = 1, which will be henceforth

assumed, then for al x, y ∈ T as n → ∞

mn(x, y) = ρnµ(x)ν(y)[1 + O(∆n)], 0 < ∆ < 1,

where the bound ∆ can be taken independently of x and y.

Later in this paper we will prove that this Perron-Frobenius eigenvalue
is greater than one:

(C2) ρ > 1.

Using this, Harris proves that Zn(A) grows in fact exponentially with
rate ρ. Introducing

Wn(A) :=
Zn(A)

ρn
.

he obtains (see [4, Theorem 14.1])

Theorem 3 (Harris). If

(C3) sup
x∈T

Ex[Z1(T )2] < ∞,

then it follows from (C1), (C2) that for all x ∈ T

(11) Px

(
lim

n→∞
Wn(A) =: W (A)

)
= 1.

Further, for every Borel measurable A ⊂ T with Leb1(A) > 0 we have

(12) Px (W (A) > 0) > 0.
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Moreover, let A and B be subsets of T such that their Lebesgue measures
are positive. Then the relation

W (B) =

∫
B

ν(y) dy∫
A

ν(y) dy
W (A)

holds Px almost surely for any x ∈ T .

We are going to use this theorem to prove our Main Lemma which
summarizes all that we need about our branching process. Roughly
speaking, the Main Lemma says that for the branching process as-
sociated to Larsson’s Cantor set the statement in Theorem 3 holds
uniformly both in n and x for an appropriately chosen small interval
of x’s.

Main Lemma. There exist positive numbers δ and q and there exists
an N ∈ N and a small interval [−K, K] ⊂ T centered at the origin
such that the following inequality holds

(13) inf
n≥N

inf
x∈[−K,K]

Px (Zn([−K, 0]) > δρn,Zn([0, K]) > δρn) ≥ q.

4. The proof of Theorem 1

In Section 3.1 we defined the type of a square Q by means of its inter-
section with a line e(x). Here we will elaborate on this intersection.

4.1. Nice intersection of a square with a line e(x). We say that
a square Q has a nice intersection with e(x) if

Φ(Q, x) ∈ [−K, K],

where K comes from the Main Lemma. For small K this means that
the center of Q is close to the line e(x).
Let An

x be the set of squares from Cn
1 × Cn

2 having nice intersection
with e(x). That is for x ∈ T and n ≥ 1 we define

An
x := {Q ∈ Sn : |Φ(Q, x)| ≤ K} .

Moreover, for m ≥ 0 for a square Q ∈ Sm we write l+n (Q, x), (l−n (Q, x))
for the number of level m + n squares contained in Q which have nice
intersection with e(x) with center below (above) the line e(x) respec-
tively. That is for a Q = Qi1...im let

l+n (Q, x) = # {Qi1...imj1...jn
∈ Sm+n : 0 ≤ Φ(Qj1...jn

, x) ≤ K} .

similarly, let

l−n (Q, x) = # {Qi1...imj1...jn
∈ Sm+n : −K ≤ Φ(Qj1...jn

, x) ≤ 0} .

Finally, for every n ≥ N , x ∈ T and Q ∈ Sm we define the event

An(Q, x) :=
{
l−n (Q, x) > δρn, l+n (Q, x) > δρn

}
,

where δ and N come from the Main Lemma. Note that the self-
similarity of the construction of the squares and the Main Lemma for
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the underlying branching process imply the following: for n ≥ N and
a square Q ∈ Sm having nice intersection with e(x) we have

P (An(Q, x)) = PΦ(Q,x)(Zn([−K, 0]) > δρn, Zn([0, K]) > δρn) ≥ q.

4.2. The difference set C2−C1 contains an interval with positive
P probability. We introduce the interval

I :=
[
−KaN , KaN

]

with N and K from the Main Lemma. Note that |I| := Leb1(I) =
2KaN .
Our goal is to prove that

P(C2 − C1 ⊃ I) > 0.

First we divide the interval I into 42N intervals Ii1 of equal length.
Then we divide all of these intervals into 43N intervals Ii1i2 of equal
length. If we have already defined the (k − 1)-th level intervals then
we define the k-th level intervals Ii1...ik by subdividing each (k − 1)-th
level interval Ii1...ik−1

into 4(k+1)N intervals of equal length. We denote
the center of Ii1...ik by zi1...ik . That is

Ii1...ik =
[
zi1...ik − KaN4−[2+···+(k+1)]N , zi1...ik + KaN4−[2+···+(k+1)]N

]

where the zi1...ik are equally spaced in Ii1...ik−1
.

Note that the interval Ii1...ik has length

|Ii1...ik | = 2KaN4−[2+···+(k+1)]N < 2Kagk

where we put

gk := (1 + . . . + (k + 1))N =
1

2
(k + 1)(k + 2)N.

In the following we will go from generation gk−1 to generation gk.

Definition 1. We say that the event Bk(zi1...ik) occurs, if there exists
some square Q ∈ Sgk−1

, Q ⊂ C
gk−1

1 × C
gk−1

2 having itself nice intersec-
tion with e(zi1...ik), such that A(k+1)N (Q, zi1...ik) holds. In formulae:

(14) Bk(zi1...ik) =
⋃

Q∈A
gk−1
zi1...ik

A(k+1)N (Q, zi1...ik) .

The following lemma is one of the key statements of the argument.

Lemma 1. Assume that Bk(zi1...ik) occurs with the square Q. Let Q+

and Q− be the collections of level gk squares within Q having nice in-
tersection with e(zi1...ik) with center below and above the line e(zi1...ik)
respectively. Then

(1)

Proj45◦

(
⋃

eQ∈Q+

Q̃

)
⊃ Ii1...ik , P roj45◦

(
⋃

eQ∈Q−

Q̃

)
⊃ Ii1...ik .
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Figure 5. Event Bk(zi1...ik
): there is a level gk−1 square Q in

which the number of striped level gk squares (the nicely intersecting
ones) is at least δρN(k+1), both for the squares with center above
and the squares with center below the line e(zi1...ik

).

(2) For every ik+1 = ±1, . . . ,±1
2
4(k+2)N the line e(zi1...ikik+1

) has nice
intersection with all squares from either Q+ or Q−. Thus the line
e(zi1...ikik+1

) has nice intersection with at least δρ(k+1)N squares con-
tained in Q such that either all have center below the line e(zi1...ik)
or all have center above the line e(zi1...ik).

Proof. Pick an arbitrary y ∈ Ii1...ik . Without loss of generality we may
assume that y ≤ zi1...ik . Then it is enough to prove that e(y) has
nice intersection with all squares from Q+. Fix an arbitrary Q ∈ Q+.
By the definition of Q+ the square Q is a level gk square such that
its left bottom corner is in between the parallel lines e(zi1...ik) and
e(zi1...ik −Kagk). So for every point y∗ ∈ [zi1...ik −Kagk , zi1...ik ] the line
e(y∗) has nice intersection with Q—see Figure 6.

e(
z i1

...
i k
)

e(
z i1

...
i k
−

K
a
g k )

agk

K · agk

zi1...ik

zi1...ik − Kagk

Figure 6.
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The only thing that remains to be proved is that y ∈ [zi1...ik−Kagk , zi1...ik ].
This is so because we have assumed that y ≤ zi1...ik and

1

2
|Ii1...ik | = KaN4−[2+···+(k+1)]N < KaNa[2+···+(k+1)]N = Kagk .

�

Definition 2. Let E0 := AN([0, 1]2, 0), and let Ek :=
⋂

i1...ik

Bk(zi1...ik).

Lemma 2. The following inequality holds

(15) P(C2 − C1 ⊃ I) ≥ q
∏

k≥1

P (Ek|Ek−1) .

Proof. Using that I =
[
−KaN , KaN

]
=

⋃
i1...ik

Ii1...ik it follows immedi-

ately from Lemma 1 that if the event Ek holds then the event

Sk := {Proj45◦ (Cgk

1 × Cgk

2 ) ⊃ I}

will hold. Therefore Ek ⊂ Sk. Since the sets Cgk

1 × Cgk

2 are decreasing
we obtain that Sk ⊃ Sk+1. Thus

P(C2 − C1 ⊃ I) = P (∩k≥1Sk) = lim
k→∞

P(Sk) ≥ inf
k≥1

P(Ek)

≥ P(E0)
∏

k≥1

P (Ek|Ek−1) .

The last inequality holds since

P(E0)
∏

i≥1

P (Ei|Ei−1) ≤ P(E0)P(E1|E0) · · ·P(Ek|Ek−1)

= pP(EkEk−1) ≤ P(Ek)

where

p =
P(E0)

P(E0)

P(E1E0)

P(E1)
· · ·

P(Ek−1Ek−2)

P(Ek−1)
≤ 1.

Since the Main Lemma yields P(E0) ≥ q one obtains the statement of
the lemma. �

In the next Lemma 3 we give a lower bound for P (Ek|Ek−1) for every
k.

Lemma 3. For any k ≥ 1 we have

P (Ek|Ek−1) ≥ 1 − 42N+...+(k+1)N (1 − q)δρkN

.

Proof. We recall that Ek was defined as

Ek :=
⋂

i1...ik

Bk(zi1...ik).

So we have to prove that

P

( ⋃

i1...ik

Bc
k(zi1...ik)

∣∣∣Ek−1

)
≤ 42N+...+(k+1)N (1 − q)δρkN

.
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Note that the number of indices i1 . . . ik on the left hand side is equal
to 42N+...+(k+1)N . Therefore it is enough to show that for each index
i1 . . . ik we have

P (Bc
k(zi1...ik)|Ek−1) ≤ (1 − q)δρkN

.

By Definition 1 to see this we have to prove that

(16) P

( ⋂

Q∈A
gk−1
zi1...ik

Ac
(k+1)N (Q, zi1...ik)

∣∣∣Ek−1

)
≤ (1 − q)δρkN

.

We assume Ek−1 so in particular we know that Bk−1(zi1...ik−1
) holds.

That is, there exists a level gk−2 square Qbig such that the event
AkN

(
Qbig, zi1...ik−1

)
holds. By definition this means that we can find

level gk−1 squares Q+
1 , . . . , Q+

δρkN ⊂ Qbig having center below the line

e(zi1...ik−1
) and similarly level gk−1 squares Q−

1 , . . . , Q−
δρkN ⊂ Qbig having

center above the line e(zi1...ik−1
) such that all of these squares have nice

intersection with the line e(zi1...ik−1
). Using the second part of Lemma

1 (for k instead of k + 1) we obtain that for all ik the line zi1...ik has
nice intersection either with all the squares Q+

1 , . . . , Q+
δρkN or with all

the squares Q−
1 , . . . , Q−

δρkN . Without loss of generality we may assume

the first. That is

Q+
1 , . . . , Q+

δρkN ∈ Agk−1

zi1...ik
.

So, to verify (16) it is enough to show that

(17) P

(
δρkN⋂

j=1

Ac
(k+1)N

(
Q+

j , zi1...ik

)
∣∣∣∣∣Ek−1

)
≤ (1 − q)δρkN

.

Observe that all the events in the intersection are conditionally inde-
pendent. Thus it is enough to verify that

δρkN∏

j=1

P
(
Ac

(k+1)N

(
Q+

j , zi1...ik

)
|Ek−1

)
≤ (1 − q)δρkN

.

This holds because Ac
(k+1)N(Q+

j , zi1...ik) is independent of Ek and there-
fore the left hand side is equal to

δρkN∏

j=1

P
(
Ac

(k+1)N

(
[0, 1]2, Φ(Q+

j , zi1...ik)
))

≤ (1 − q)δρkN

,

where the last inequality follows from the Main Lemma. �

Lemma 4. For all n ≥ 1:

(18)

∞∏

j=1

(
1 − 4[2+···+(j+1)]n(1 − q)δρjn

)
> 0.
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Proof. We have to show that
∑∞

j=1 aj converges, where

aj = 4
1

2
j(j+1)n(1 − q)δρjn

.

It is therefore sufficient that aj ≤ e−j for all large j. This is true since

1

j
log aj =

1

2
(j + 1)n log 4 +

1

j
δ (ρn)j log(1 − q) ≤ −1,

which holds for j large enough, since ρn > 1 and log(1 − q) < 0. �

Therefore, using Lemma 2 and 3, 4 we obtain that

P(C2 − C1 ⊃ I) ≥ q

∞∏

k=1

(
1 − 4[2+···+(k+1)]N(1 − q)δρkN

)
> 0.

Combining this with Proposition 1 from Section 2 this completes the
proof of Theorem 1.
In the next six sections we prove our Main Lemma.

5. Distribution of types

In this section the density function of Φ(Q, x) will be determined if
Q ∈ S1.

5.1. The distribution of Φ(Q, x). Let U1, U2, U3, U4 be independent
Uniform

(
1−3a−2b

2

)
distributed random variables. The left corners of

the two level one intervals of the random Cantor set Ci are determined
by U2i−1, U2i for i = 1, 2. Let (ui, vi) be the left bottom corner of the
squares Qi, i = 1, . . . , 4 (see Figure 7). Then

(u1, v1) =

(
b + U1,

1

2
+

a

2
+ U4

)

(u2, v2) =

(
1

2
+

a

2
+ U2,

1

2
+

a

2
+ U4

)

(u3, v3) =

(
1

2
+

a

2
+ U2, b + U3

)

(u4, v4) = (b + U1, b + U3)
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For an x ∈ [−1, 1] we define Φi(x) := Φ(Qi, x). From (5) simple com-
putations yield

Φ1(x) =





1
a

(
−1

2
− a

2
+ b + U1 − U4 + x

)

if 1
a

(
−1

2
− a

2
+ b + U1 − U4 + x

)
∈ [−1, 1]

Θ otherwise

Φ2(x) =





1
a
(U2 − U4 + x) if 1

a
(U2 − U4 + x) ∈ [−1, 1]

Θ otherwise

Φ3(x) =






1
a

(
1
2

+ a
2
− b + U2 − U3 + x

)

if 1
a

(
1
2

+ a
2
− b + U2 − U3 + x

)
∈ [−1, 1]

Θ otherwise

Φ4(x) =





1
a
(U1 − U3 + x) if 1

a
(U1 − U3 + x) ∈ [−1, 1]

Θ otherwise

(19)

To get a better geometric understanding of the distribution of the ran-
dom variables Φi(x) we define the three slanted stripes Sk, k = 1, 2, 3
(see Figure 8) in such a way that Sk ⊂ [−1, 1]2 is bounded by the lines
ℓ2k−1, ℓ2k, where
(20)

ℓ1(x) =
1

a
x +

1

a
(1 − a − 2b), ℓ2(x) =

1

a
x + 2,

ℓ3(x) =
1

a
x +

1

2a
(1 − 3a − 2b), ℓ4(x) =

1

a
x −

1

2a
(1 − 3a − 2b),

ℓ5(x) =
1

a
x − 2, ℓ6(x) =

1

a
x −

1

a
(1 − a − 2b).

An immediate calculation shows that

Lemma 5. For every x ∈ [−1, 1] and for every i = 1, . . . , 4 if Φi(x) 6=
Θ then

(x, Φi(x)) ∈ S1 ∪ S2 ∪ S3.

Let us call ℓj the graph of the function ℓj(x). Observe that the reflection
in the origin of ℓj is ℓ7−j for j = 1, . . . , 6. For a point (x1, x2) ∈ R

2 we
write πm(x1, x2) := xm, m = 1, 2. Then we define c > 0 by

−1 + c := π1 (ℓ1 ∩ {y = x}) ,

and obtain c = 2b
1−a

. By symmetry it follows that

1 − c = π1 (ℓ6 ∩ {y = x}) .
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−1

1
1 − 2b

2b − 1

3a

−3a

1 − 2a − 2b

−1 + 2a + 2b

1

2
− a

2
− b

− 1

2
+ a

2
+ b

a

−a

− 1

2
+ 5a

2
+ b

1

2
− 5a

2
− b

U1 U2

U3

U4

Q1 Q2

Q3Q4

A3

A+
2

A−
2

A+
1

A−
1

Figure 7. If x is an element of the plain bold vertical line then
the line e(x) intersects exactly two squares. If x is an element of
one of the two plain vertical lines then e(x) intersects one square.
If x is an element of one of the four dotted vertical lines then e(x)
intersects at most 1 square. If x is such that a ≤ x ≤ 1 − 2a − 2b

or −1+2a+2b ≤ x ≤ −a then e(x) intersects at most two squares
with probability one. If x is such that − 1

2 + 5a
2 + b ≤ x ≤ a or

−a ≤ x ≤ 1
2 − 5a

2 − b then e(x) intersects exactly two squares.

Using that −1 + 2b = π1 (ℓ1

⋂
{y = −1}) it follows from the symmetry

mentioned above that
(21)
x /∈ (−1 + 2b, 1 − 2b, 1) =⇒ e(x) does not intersect any level 1 square.
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−

ℓ1 ℓ2

ℓ3 ℓ4

ℓ5 ℓ6

1

1

−1

−1

y = x

{y = 1 − c}

{y = −1 + c}

c
u1 u2v1 v2

Figure 8. The support of the density functions in the simple case.

The functions ℓ1(x), ℓ6(x) have repelling fixed point −1 + c, 1 − c re-
spectively. Therefore

(22) x ∈ [−1,−1 + c)∪ (1 − c, 1] =⇒ ∃n; e(x)∩Q = ∅ for all Q ∈ Sn.

With probability 1 no line e(x) can intersect more than two descen-
dants, in fact, T can be partitioned into five sets according to which
descendants can be produced, where (see also Figure 7)

A−
1 =

[
− 1 + 2b,−

1

2
+

a

2
+ b
)
∩ T, A+

1 =
(1

2
−

a

2
− b, 1 − 2b

]
∩ T,

A−
2 =

[
−

1

2
+

a

2
+ b,−a

)
∩ T, A+

2 =
(
a,

1

2
−

a

2
− b
]
∩ T,

A3 =
[
− a, a

]
∩ T.

Lemma 6. If x ∈ A3 then x can only produce descendants with type
X2(x) and/or X4(x). If x ∈ A+

1 (x ∈ A−
1 ) then x can produce at most

one descendant with type X1(x) (X3(x)). If x ∈ A+
2 then there are two

possibilities. First, if x produces X1(x) then X2(x) and X4(x) can not
be born. Second, if x produces any of X2(x) and X4(x) then X1(x) can
not be born. If x ∈ A−

2 then there are two similar possibilities.

Proof. Using Figure 7 observe that Proj45◦(Q1)∩Proj45◦(Q4) 6= ∅ can
happen only in the extreme situation if the bottom of the square Q1

is the same as the bottom of the dotted square which contains Q1 on
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Figure 3. This means that U4 = 0 which happens with probability
zero. Similarly Proj45◦(Q3) ∩ Proj45◦(Q4) 6= ∅ happens only if U2 = 0
which also has probability zero. Proj45◦(Q1)∩Proj45◦(Q3) = ∅ always
holds which completes the proof of our Lemma. �

5.2. The density functions. We will determine the density functions
fΦi(x)(y) of the random variables Φi(x), i = 1, 2, 3, 4 given explicitly by
(19). We do not call them probability density functions since the Φi(x)
may be equal to Θ with positive probability for some x. The probability
density function f of the difference of two independent Uniform (t)
distributed random variables is the triangular distribution given by
f(z) = 0 if |z| > t and for 0 ≤ |z| ≤ t by

(23) f(z) =
1

t2
(t − |z|).

To get fΦi(x)(y) we apply simple transformations to f(z) with t =
(1 − 3a − 2b)/2 and find:

fΦ1(x)(y) = af
(
ay +

1

2
+

a

2
− b − x

)
1[−1,1](y)

fΦ2(x)(y) = fΦ4(x)(y) = af(ay − x) 1[−1,1](y)

fΦ3(x)(y) = af
(
ay −

1

2
−

a

2
+ b − x

)
1[−1,1](y)(24)

From the definition

P(Φi(x) = Θ) = 1 −

∫

[−1,1]

fΦi(x)(y) dy.

6. A uniformly positive kernel

Here and also in the next two sections we are going to define the type
space T of the branching process introduced in Section 3.3. In order to
ensure that conditions C1, C2, C3 of Section 3.4 hold we introduce a
type space T which also satisfies properties A, B, C of Section 3.3. It
follows from (22) that we must choose our type space T ⊂ [−1+c, 1−c].

Unfortunately, the construction of the typespace T satisfying the above
conditions is quite involved and technical for those values of the pa-
rameters a, b which do not satisfy (2). Therefore, we split the presen-
tation into two parts. In this section we present the construction of T
throughout three lemmas: Lemmas 7A, 8A and 9A. In the next section
we present the general case with the corresponding Lemmas 7, 8 and 9.
The main difference between these lemma lies in the proof of Lemma 7
and Lemma 7A. Lemma 8 is almost literally the same as Lemma 8A.
Finally, the proof of Lemma 9 follows the same trace as the proof of
Lemma 9A but it is more technical.
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6.1. Descendant distributions and the kernel of the branching
process. We introduce the random variables X1(x), X2(x), X3(x), X4(x)
for 1 ≤ i ≤ 4 by

Xi(x) =

{
Φi(x) if Φi(x) ∈ T
Θ otherwise.

So the density of Xi(x) is

fx,i(y) := fΦi(x)(y)1T (y)

for i = 1, . . . , 4. In general Xi(x) also has an atom: P(Xi(x) = Θ) =
1 −

∫
T

fx,i(y) dy.
Recall (see Equation (8)) that the kernel of the branching process can
be expressed as the sum of the density functions of the random variables
Xi(x), i = 1, . . . , 4:

m(x, y) = fx,1(y) + fx,2(y) + fx,3(y) + fx,4(y).

The structure of the support of this kernel is very important for the
sequel. Since the functions fx,i(y) (i = 1, 2, 3, 4) are piecewise continu-
ous on [−1, 1], m(·, ·) is piecewise continuous on [−1, 1] × [−1, 1]. The
support of m(·, ·) is a subset of the three slanting stripes Sk, k = 1, 2, 3
introduced earlier, see also Figure 8.

6.2. The possible holes in the support of the kernel of Z. We
have seen in (22) that the branching process with ancestor type in the
set [−1,−1 + c] or [1 − c, 1] dies out in a finite number of generations
almost surely. Therefore, it is reasonable to restrict the type space to
[−1+ c+ ε, 1− c−ε] for some small positive ε. However, in some cases
we have to make further restrictions. Namely, for i = 1, 2 we define

(25) ui := π1 (ℓ2i ∩ {y = 1 − c}) , vi := π1 (ℓ2i+1 ∩ {y = −1 + c}) ,

see Figure 8. Clearly u1 − v1 = u2 − v2 and an easy calculation shows
that

(26) v1 < u1 ⇐⇒ c <
1 − 3a − 2b

4a
.

We remark that this condition is equivalent to the condition in Equa-
tion (2) (see also Figure 1). On the other hand, if ui < vi, i = 1, 2
holds then for x ∈ [ui, vi] the set

(27) E1(x) := {y : m(x, y) > 0}

is contained in [−1,−1 + c] ∪ [1 − c, c]. This implies that the process
dies out in finitely many steps for x ∈ [ui, vi] (see Figure 9). Therefore
if the condition stated in (26) does not hold, then we have to make
more restrictions on our type space [−1+ c+ ε, 1− c− ε]. This is what
we are going to do in Section 8. For the convenience of the reader we
treat in Section 7 the simpler case when (26) holds.
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7. A uniformly positive kernel in the simple case

In the rest of this section we will prove that if (26) holds, i.e., v1 < u1

then we can choose a sufficiently small ε0 > 0 such that

T = [−1 + c + ε0, 1 − c − ε0].

satisfies conditions (C1), (C2) and (C3) (and also properties A, B,
C).

Lemma 7A. Assume that v1 < u1. Fix an ε > 0 satisfying

(28) ε <
1 − 3a − 2b

4a
− c.

Further, in this simpler case let

(29) T = T (ε) = [−1 + c + ε, 1 − c − ε].

Then the kernel m(x, y) of the branching process Z has the following
property:
(30)
∃κ > 0 such that ∀x ∈ T the set E1(x) contains an interval of length κ.

Proof. There are two possibilities for the shape of E1(x) (defined in
(27)):

1) E1(x) consists of two intervals:
[−1 + c + ε, ℓ2k+1(x)) ∪ (ℓ2k(x), 1 − c − ε] (for k = 1 or k = 2). The
length of one of these intervals is at least half of ℓ3(u1)−(−1+c+ε),

that is, κ1 =
1

2
·

(
1 − 3a − 2b

2a
− 2c

)
.

2) E1(x) = (ℓ2k−1(x), ℓ2k(x)) (for some 1 ≤ k ≤ 3) is an open interval
with length κ2 = 2

a
(1 − 3a − 2b).

Summarizing these cases, define κ = min{κ1, κ2}.
�

Lemma 8A. Let mε be the kernel in Lemma 7A with type space T =
T (ε) (29). One can choose ε > 0 which satisfies (28) such that the
largest eigenvalue of mε is larger than 1. From now on we fix such an
ε and we call it ε0.

Proof. Let T (0) := [−1+c, 1−c], with corresponding kernel m0. Define
the operator Tε for all ε ≥ 0 by

Tεf(x) =

∫

R

mε(x, y)f(y) dy

for functions with supp(f) ⊂ T (ε).
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Note that 4a is an eigenvalue of T0 with eigenfunction ν(x) = 1T (0)(x):

T0ν(y) =

∫

R

ν(x)m0(x, y) dx

=

∫

R

ν(x) (fx,1(y) + fx,2(y) + fx,3(y) + fx,4(y))1T (0)(x) dx

= 4ν(y)

∫

R

af(ay − x) dx = 4aν(y).

since f is probability density.
The conclusion of the lemma follows from a simple fact noted by Lars-
son [6]: If the two kernels m0 and mε are close to each other in L2

sense, then the eigenvalues of the operators T0 and Tε are close to each
other. �

Lemma 9A. Let T be as in Lemma 8A. There exists an index n such
that for all x ∈ T , {y : mn(x, y) > 0} = T .

Since the function mn(·, ·) is piecewise continuous on the compact set T ,
Lemma 9 implies that m(x, y) ≥ a > 0 for any x, y ∈ T . Further, using
that m(x, ·) is bounded we immediately obtain that supx∈T ExZ

2
1 (T ) is

finite. So we have

Corollary 1. Let T be as in Lemma 8. The branching process Z with
type space T satisfies the conditions C1 and C3.

Proof of Lemma 9A. Basically, we will prove that if (30) holds then
Lemma 9A also holds since the slope of the lines ℓi is equal to 1

a
which

is bigger than one. Let En(x) = {y : mn(x, y) > 0}. We will prove
that in both cases of the proof of Lemma 7A the sequence (En(x))
reaches the whole type space in finite number of steps uniformly in n
and x ∈ T .
We can derive En+1(x) from En(x) by means of the equation

mn+1(x, y) =

∫

T

mn(x, z)m1(z, y) dz

which implies the following:

(31) En+1(x) =
⋃

y∈En(x)

E1(y)

In the proof of Lemma 7A we separated two cases. We continue the
proof according to these two cases:

1) E1(x) consists of two intervals. Take the longer one, so its length

is at least κ1 =
1

2
·

(
1 − 3a − 2b

2a
− 2c

)
. The following two facts

hold. This interval contains either −1 + c + ε or 1 − c − ε and if
En(x) contains one of these point then En+1(x) also contains the
same point because of (31). Therefore, if En(x) 6= T and is of the
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form e.g. [−1 + c + ε,−1 + c + ε + s) for some positive s then
En+1(x) ⊃

[
−1 + c + ε,−1 + c + ε + 1

a
s
)

or En+1(x) = T . Hence,
if E1(x) = [−1 + c + ε,−1 + c + ε + s) then in

n1(x) =

⌈
log 1

a

(
2(1 − c − ε)

s

)⌉

number of steps En(x) reaches T , that is, En1(x)(x) = T . s ≥ κ1

implies n1(x) ≤
⌈
log 1

a

(
2(1−c−ε)

κ1

)⌉
= n∗

1.

2) E1(x) = (ℓ2k−1(x), ℓ2k(x)) (for some 1 ≤ k ≤ 3) is an open interval
with length κ2 = 2

a
(1−3a−2b). If for some n En(x) does not contain

neither −1 + c + ε nor 1 − c − ε then we have three possibilities for
En+1(x): it does not contain any of these two points; or it contains
one of them; or it equals T . In the first case the length of En+1(x)
equals 1

a
|En(x)|+ 1−3a−2b

a
; in the second case we have En+n∗

1
(x) = T

by case 1). So we estimate the number of necessary iterations from
below if we suppose the first case happens in each step then the
second in n∗

1 number of steps. As in case 1) we have a uniform bound

for the first number in 2): n∗
2 =

⌈
log 1

a

(
2(1−c−ε)

κ2

)⌉
. Therefore, in this

case we have En∗
1
+n∗

2
(x) = T for any x.

Summarizing these considerations one obtains that for n ≥ n∗
1 +n∗

2 one
has En(x) = T .

�

8. A uniformly positive kernel in the general case

The construction of T consists of two steps. We will call any open
subset of [−1, 1] a pre-type space. First we inductively construct a
sequence of pre-type spaces T 0 ⊃ T 1 ⊃ · · · ⊃ T l and we prove that T r,
r = 0, . . . , l consists of 3r disjoint open intervals of equal length. Those
elements of T l which are “far” from the endpoints of the components of
T l satisfy (32). Unfortunately, the same does not hold for the points
close the the boundary of the components of T l. So, as a second step of
the construction of T we remove a small neighborhood of the boundary
of T l from T l.

Lemma 7. There exists a restriction of the pre-type space (−1+c, 1−c)
to a closed set T such that the kernel m of the branching process Z with
type space T satisfies
(32)
∃κ > 0 such that ∀x ∈ T the set E1(x) contains an interval of length κ.

Further, T consists of 3l disjoint closed intervals of equal length for
some l ∈ N. Moreover, 0 is contained in the interior of T .

Proof of Lemma 7. We recall that u1, v1 were defined in (25) and we
take the pre-type space T 0 := (−1 + c, 1 − c). If vk < uk then we
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Figure 9. Some points and lines related to the kernel m(x, y) if l = 1

define l := 0 and the proof of (32) was settled in Lemma 7A. So, we
can assume that uk ≤ vk, k = 1, 2. To insure that (32) holds we need
to remove the intervals [u1, v1] and [u2, v2] from the pre-type space T 0

(cf. Figure 9). So, we restrict ourselves to the next level pre-type space:
T 1 = T 0\{[u1, v1] ∪ [u2, v2]}. The size of each of the intervals removed
is ̺1 := v1 − u1 = v2 − u2. We define the second generation endpoints
ui1k and vi1k as follows

ui1k = π1({y = ui1} ∩ ℓ2k) and vi1k = π1({y = vi1} ∩ ℓ2k−1),

where i1 = 1, 2 and k = 1, 2, 3, see Figure 9. If vi1k < ui1k then
we define l := 1. Otherwise, we continue defining the sets T r and
the endpoints of the subtracted intervals vi1...ir and ui1...ir (i1 = 1, 2,
i2, . . . , ir = 1, 2, 3) as follows: Assuming that ui1...ir−1 ≤ vi1...ir−1 then
define the level r endpoints as

ui1...ir−1k = π1({y = ui1...ir−1} ∩ ℓ2k), and

vi1...ir−1k = π1({y = vi1...ir−1} ∩ ℓ2k−1).
(33)
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for i1 = 1, 2, i2, . . . , ir−1, k = 1, 2, 3. Put

Tr = Tr−1 \
{
[ui1i2...ir , vi1i2...ir ], i1 = 1, 2, i2, . . . , ir = 1, 2, 3

}
.

The size of each of the intervals removed is ̺r := vi1i2...ir −ui1i2...ir . One
can easily check that

(34) ∀r ≥ 1, ρr+1 = aρr − (1 − 3a − 2b) and ρ1 = v1 − u1.

Consider the smallest r ≥ 1 for which vi1...ir+1 < ui1...ir+1 or equivalently
ρr+1 < 0. Then we set l = r − 1 and the recursion ends. The fact that
l is finite is immediate from (34) (see Figure 10).

{y = ui1...ir}

{y = vi1...ir}

ui1...irk

vi1...irk

{y = ui1...il}

{y = vi1...ilr}

ui1...ilk

vi1...ilk

ρr

ρr+1

ρl

−ρl+1

ℓ2k−1 ℓ2k−1ℓ2k ℓ2k

Figure 10. The recursion of {ρr}r. On the left hand side r ≤ l − 1.

We can represent T l−1 and T l as follows

T l−1 =
3l−1⋃

j=1

(γj, δj), T l =
3l⋃

i=1

(αi, βi).

Using (33) it follows from elementary geometry (see Figure 12) that

∀i, ∃j, ∃k : αi = π1 ({(x, y) : y = γj} ∩ ℓ2k−1) ,

βi = π1 ({(x, y) : y = δj} ∩ ℓ2k) .
(35)

We need further restrictions because around the endpoints αi, βi con-
dition (32) is not satisfied. Therefore we remove sufficiently small in-
tervals from both ends of each of the 3l intervals of T l. Namely, we
define the type space of the process by

(36) T (ε) :=
3l⋃

i=1

[αi + ε, βi − ε],

where

(37) 0 < ε < min

{
−

ρl+1

2a
,
1 − 3a − 2b

2

}
.
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For any j ∈
{
1, . . . , 3l−1

}
we can find i′ ∈

{
1, . . . , 3l

}
such that

(38) [γj + ε, δj − ε] =

2⋃

m=0

[αi′+m + ε, βi′+m − ε] ∪
2⋃

h=1

R
(j)
h ,

where R
(j)
h , h = 1, 2 are intervals of length ρl + 2ε, see Figure 12.

Further, for every 1 ≤ i ≤ 3l, 1 ≤ j ≤ 3l−1 the set (αi + ε, βi − ε) ×
(γj +ε, δj −ε)∩T (ε)×T (ε) consists of three congruent squares aligned
on top of each other of side

s := βi − αi − 2ε.

The distance between two neighboring squares is ρl + 2ε.
Now, we prove that (32) holds. That is, we want to estimate the length
of the longest interval in E1(x) from below. The argument uses only
elementary geometry.
For any x ∈ T (ε) there is a unique k ∈ {1, 2, 3} such that E1(x) ⊆
(ℓ2k(x), ℓ2k−1(x)) holds. Using (20) one can immediately see that the
length of the interval (ℓ2k(x), ℓ2k−1(x)) is 1

a
(1−3a−2b). Geometrically

this means that the vertical line through x intersects the stripe Sk in
a (vertical) interval of length 1

a
(1 − 3a − 2b).

Since there are many holes in T (ε), for some x ∈ T (ε), the set E1(x)
consists of at most three subintervals of (ℓ2k(x), ℓ2k−1(x)), see Figure
12. We prove that the maximum length of these intervals is uniformly
bounded away from zero.
Fix a component [αi + ε, βi − ε] ⊂ T (ε) and let x ∈ [αi + ε, βi − ε].
For this i we choose j and k according to the formula (35). Now we
distinguish three possibilities:

(a): First we assume that the intersection of the vertical line
through x with the stripe Sk is not contained in the rectangle
[αi + ε, βi − ε] × [γj + ε, δj − ε] (see Figure (12)). Then using
that the slope of the lines ℓm, m = 1, . . . , 6 is 1/a > 3 by el-
ementary geometry we obtain that the set E1(x) contains an
interval of length κ := 1

a
ε − ε > 2ε > 0 (see Figure 12 B).

(b): Next we assume that there exists m ∈ {0, 1, 2} such that the
intersection of the vertical line through x with the stripe Sk is
contained in the square
[αi + ε, βi − ε] × [αi′+m + ε, βi′+m − ε], where i′ is defined as in
(38). In this case the set E1(x) = (ℓ2k(x), ℓ2k−1(x)) and then
the assertion holds with the choice of κ := 1

a
(1 − 3a − 2b) > 0

(see (37)).
(c): Finally, we assume that the intersection of the vertical line

through x with the stripe Sk has a non-empty intersection with

one of the rectangles [αi + ε, βi − ε] × R
(j)
h , h = 1, 2. In this

case, by elementary geometry (see Figure 12) E1(x) contains
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Figure 11. Stripe Sk and level l squares.
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Figure 12. Stripe Sk and level l squares.

an interval of length at least

κ := min

{
s,

1

2
· (ℓ2k−1(x) − ℓ2k(x)) − (ρl + 2ε)

}

= min

{
s,

1

2

(
1

a
(1 − 3a − 2b) − (ρl + 2ε)

)}
.

It follows from (37) that κ > 0.

�
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We will now deal with the problem of still having a kernel with largest
eigenvalue larger than 1.

Lemma 8. Let mε be the kernel in Lemma 7 with type space T = T (ε).
One can choose ε so small that the largest eigenvalue of mε is larger
than 1.

Proof. Changing T 0 to T l in the proof of Lemma 8A we obtain the
proof of Lemma 8. �

Lemma 9. Let T be as in Lemma 8. Then there exists an n such that
for all x ∈ T , {y : mn(x, y) > 0} = T .

Since the function mn(·, ·) is piecewise continuous on the compact set T ,
Lemma 9 implies that m(x, y) ≥ a > 0 for any x, y ∈ T . Further, using
that m(x, ·) is bounded we immediately obtain that supx∈T Ex[Z

2
1 (T )]

is finite. So we have

Corollary 2. Let T be as in Lemma 8. The branching process Z with
type space T satisfies the conditions C1 and C3.

Proof of Lemma 9. We recall the definition of En(x): En(x) = {y :
mn(x, y) > 0}. We will prove the lemma in two steps.

dStep 1 ∀x ∈ T, ∃i, n such that [αi + ε, βi − ε] ⊂ En(x) implies that
En+l(x) = T .

dStep 2 There exists an N such that for every x ∈ T we can find a
positive integer n(x) ≤ N such that the following holds

∃i, [αi + ε, βi + ε] ⊂ En(x)(x).

As a corollary of these two statements we obtain the assertion of the
lemma holds with the choice of n = N + l. Namely, for any x ∈ T we
have EN+l(x) = T .

To verify Step 1 first we observe that by (31) we have

En+1(x) =
⋃

y∈En(x)

E1(y)

=
⋃

y∈En(x)

((ℓ2(y), ℓ1(y)) ∪ (ℓ4(y), ℓ3(y)) ∪ (ℓ6(y), ℓ5(y))) ∩ T.

(39)

Fix an i ∈
{
1, . . . , 3l

}
. First we define αi,l−r and βi,l−r for r = 0, . . . , l

inductively. For r = 0 let (αi,l, βi,l) := (αi, βi). Assume that we
have already defined (αi,l−r, βi,l−r). Using (33) we define αi,l−(r+1) and
βi,l−(r+1) as the unique numbers satisfying:

αi,l−r = π1

({
(x, y) : y = αi,l−(r+1)

}
∩ ℓ2k(r)−1

)
,

βi,l−r = π1

({
(x, y) : y = βi,l−(r+1)

}
∩ ℓ2k(r)

)
,

(40)
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where k(r) = 1, 2, 3. Then by the construction we have (αi,0, βi,0) =
(−1 + c, 1 − c). Let x ∈ T . According to the assumption of Step 1 we
can find i, n such that

(41) [αi + ε, βi − ε] = (αi, βi) ∩ T ⊂ En(x)

holds. Using induction we prove that

(42) En+r(x) ⊃ (αi,l−r, βi,l−r) ∩ T for 0 ≤ r ≤ l.

Namely, for r = 0 the assertion in the induction is identical to (41).
Now we suppose that (42) holds for r < l. By (39) and (40) we have

En+r+1(x) =
⋃

y∈En+r(x)

E1(y) ⊃
⋃

y∈(αi,l−r ,βi,l−r)∩T

(ℓ2k(r)(y), ℓ2k(r)−1(y)) ∩ T

= (αi,l−(r+1), βi,l−(r+1)) ∩ T,

which completes the proof of (42). We apply (42) for r = l. This yields
that En+l = (−1 + c, 1 − c) ∩ T = T holds.

Next, we prove Step 2. First, observe that the largest interval in E1(x)
either has an endpoint that is an endpoint of a connected component
of T (this happens in case (a) and (c) in the end of the proof of Lemma
7) or E1(x) = (ℓ2k1

(x), ℓ2k1−1(x)) (which is case (b) in the same proof).
However, in the last case using (39), after N1 steps, where N1 is the

smallest solution of the inequality
(

2
a

)N1 · 1
a
(1−3a−2b) > s, we obtain

that the largest interval contained in EN1
(x) has and endpoint of a

connected component of T (see Figure 12) and its length is longer
than κ. In this way because of the symmetry between the endpoints
of the connected components of T from now on we may assume that
[αi + ε, αi + ε + z1) ⊂ E1(x) where z1 ≥ κ. Using (39) we can write

(43) E2(x) ⊃
⋃

y∈[αi+ε,αi+ε+z1)

(ℓ2k1
(y), ℓ2k1−1(y)) ∩ T =

(ℓ2k1
(αi + ε), ℓ2k1−1(αi + ε + z1)) ∩ T = [α(2) + ε, α(2) + ε + z2) ∩ T

for some k1 ∈ {1, 2, 3}, endpoint α(2) ∈ T and z2 > 1
a
z1 ≥ 1

a
κ. If

z2 < s then the largest connected component of E2(x) has an endpoint
of one of the connected components of T , let us say α(2), but the other
endpoint is in the interior of the same connected component of T . If
z2 ≥ s then E2(x) clearly contains a connected component of T . For
En(x), n ≥ 3 we can define inductively kn, α(n), zn in the same way as
above. Observe that zn >

(
1
a

)n
κ. Let N2 the smallest solution of the

inequality
(

1
a

)N2κ > s. Then EN2
(x) contains a connected component

of T .
Let N = N1 + N2. Then EN(x) contains a connected component of
T . �
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9. Uniform exponential growth

In this section we want to prove an extension of Theorem 3 stating
that the population can grow uniformly exponentially starting from
any element of a special interval. For the precise statement see Lemma
12.
First, we will determine the density of the measure Px(Z1(A) ∈ ·). We
use the notations of Lemma 6, and define for x1, x2 ∈ T

Px1,x2
:= Px1

⊗ Px2
,

the convolution of the measures Px1
and Px1

.

Lemma 10. For x ∈ T, A ⊂ T and a natural number L we have the
following equation for any n ≥ 1

(44) Px(Zn+1(A) = L) =
∫

T

Pz (Zn(A) = L)h1(x, z) dz+

∫

T

∫

T

Pz1,z2
(Zn(A) = L) h2(x, z1, z2) dz1 dz2.

where h1(x, z) : T × T → R+ and h2(x, z1, z2) : T × T × T → R+ are
defined as follows

h1(x, z) =





fx,1(z) if x ∈ A+
1

fx,1(z) + 2fx,2(z)
(
1 −

∫
T

fx,4(y) dy
)

if x ∈ A+
2

2fx,2(z)
(
1 −

∫
T

fx,4(y) dy
)

if x ∈ A3

fx,3(z) + 2fx,2(z)
(
1 −

∫
T

fx,4(y) dy
)

if x ∈ A−
2

fx,3(z) if x ∈ A−
1

,

h2(x, z1, z2) =

{
2fx,2(z1)fx,4(z2) if x ∈ A3 ∪ A+

2 ∪ A−
2

0 otherwise
.

Both are bounded and piecewise uniformly continuous functions in x
on T for any fixed z, z1, z2 ∈ T .

Proof. The decomposition (44) is obtained from the Chapman-Kolmo-
gorov equation, i.e., by conditioning on the first generation. In the
following formula we use one of the conclusions of Lemma 6, i.e., that
exactly two squares in generation 1 can only be generated by Q2 and
Q4.

(45) Px(Zn+1(A) = L) =

∫

T

Pz(Zn(A) = L)Px(Z1( dz) = 1)+

∫

T

∫

T

Pz1,z2
(Zn(A) = L)Px(Z

2
1 ( dz1) = 1,Z4

1 ( dz2) = 1).

We have to determine the density function h1(x, z) of exactly one de-
scendant with type dz and h2(x, z1, z2) the density function of exactly
two descendants with type dz1 dz2. One can decompose the probability
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of having exactly one descendant such that the type of this descendant
falls into the set (−∞, z] (for any real z) as follows

Px (Z1((−∞, z]) = 1) =

4∑

i=1

P(Xi(x) ∈ (−∞, z], Xj(x) = Θ, j 6= i).

The decomposition in Lemma 6 implies {X2(x) 6= Θ} ∪ {X4(x) 6= Θ},
{X1(x) 6= Θ}, and {X3(x) 6= Θ} are disjoint events for any x ∈ T .
Therefore, one obtains

Px(Z1((−∞, z]) = 1) = P(X1(x) ∈ (−∞, z])+

2P(X2(x) ∈ (−∞, z])P(X4(x) = Θ) + P(X3(x) ∈ (−∞, z])

using that X2(x) and X4(x) are independent and identically distributed.
Since Xi(x) has density fx,i one gets that this equals

∫

(−∞,z]

fx,1(y) dy · 1A+

1
∪A+

2
(x) +

2

∫

(−∞,z]

fx,2(y) dy

(
1 −

∫

T

fx,4(y) dy

)
· 1A3∪A+

2
∪A−

2
(x) +

∫

(−∞,z]

fx,3(y) dy · 1A−
1
∪A−

2
(x) =

∫

(−∞,z]

h1(x, y) dy.

Let us next deal with exactly two descendants with types falling into
(−∞, z1], respectively (−∞, z2]. This probability equals

2P(X2(x) ∈ (−∞, z1], X4(x) ∈ (−∞, z2]).

Since X2(x) and X4(x) are independent and identically distributed one
obtains that this equals

2

∫

(−∞,z1]

fx,2(y) dy

∫

(−∞,z2]

fx,4(y) dy · 1A3∪A+

2
∪A−

2
(x) =

∫

(−∞,z1]

∫

(−∞,z2]

h2(x, y1, y2) dy1 dy2.

Summarizing these considerations one obtains (44).
Now, we will prove that h1(x, z) and h2(x, z1, z2) are piecewise uni-
formly continuous in x on T . By the definition of f (23) and fx,i (24),
for i (1 ≤ i ≤ 4), if x1, x2 ∈ [αj, βj ] for some 1 ≤ j ≤ 3l and |x1−x2| ≤ δ
we have

sup
z∈T

|fx1,i(z) − fx2,i(z)| ≤ δ
(

1−3a−2b
2

)−2
,

∣∣∣∣
(

1 −

∫

T

fx1,3(y) dy

)
−

(
1 −

∫

T

fx2,4(y) dy

)∣∣∣∣ ≤ |T |
1

δ

(
1−3a−2b

2

)−2
.
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Therefore,

sup
z∈T

|h1(x1, z) − h1(x2, z)| ≤ (|T | + 1) δ
(

1−3a−2b
2

)−4
,(46)

sup
z1,z2∈T

|h2(x1, z1, z2) − h2(x2, z1, z2)| ≤ 4δ
(

1−3a−2b
2

)−3

for x1, x2 ∈ [αj , βj] for some 1 ≤ j ≤ 3l and |x1 − x2| ≤ δ. �

Let A ⊂ T such that the Lebesgue measure of A is positive. Let
Wn(A) = Zn(A)ρ−n and W (A) = limn→∞ Wn(A) which almost surely
exists by Theorem 3. We need a stronger result: the random variable
W (A) is strictly separated from 0 with uniformly positive probability
for some neighborhood of the initial type 0. This is shown in the next
lemma.

Lemma 11. For some neighborhood J ⊂ T of 0 and positive numbers
y and r we have

(47) inf
x∈J

Px(W (A) > y) ≥ r.

Proof. Lemma 10 implies

(48) Px(Wn+1(A) ≤ y) = Px(Zn+1(A) ≤ ρn+1y) =
∫

T

Pz (Wn(A) ≤ ρy)h1(x, z) dz+

∫

T

∫

T

Pz1,z2
(Wn(A) ≤ ρy)h2(x, z1, z2) dz1 dz2.

We will investigate the convergence of the last two terms in (48).
Theorem 3 implies that we have for all z ∈ T

(49) lim
n→∞

Pz(Wn(A) ≤ y) = Pz(W (A) ≤ y)

if y ∈ Cont(Pz,A) where Cont(Pz,A) denotes the set of continuity points
of the distribution function on the right side of (49).
Next, we seek the weak convergence of the measure Pz1,z2

(Wn(A) ∈ ·).
This measure is the convolution of the measures Pz1

(Wn(A) ∈ ·) and
Pz2

(Wn(A) ∈ ·). Since they are weakly convergent the convolution is
also weakly convergent. So

(50) lim
n→∞

Pz1,z2
(Wn(A) ≤ y) = Pz1,z2

(W (A) ≤ y).

if y ∈ Cont(Pz1,z2,A).
Let t(z, z1, z2; y, ε) for z, z1, z2 ∈ T , y > 0, ε > 0 be a real num-
ber such that y ≤ t(z, z1, z2; y, ε) < y + ε and ρ t(z, z1, z2; y, ε) ∈
Cont(Pz,A) ∩ Cont(Pz1,z2,A). In the sequel, we use the simplified nota-
tion yt = t(z, z1, z2; y, ε).
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Let us define the following two functions

βn+1(x, y, A) =

∫

T

Pz (Wn(A) ≤ ρyt)h1(x, z) dz +

∫

T

∫

T

Pz1,z2
(Wn(A) ≤ ρyt) h2(x, z1, z2) dz1 dz2

β(x, y, A) =

∫

T

Pz (W (A) ≤ ρyt) h1(x, z) dz +(51)

∫

T

∫

T

Pz1,z2
(W (A) ≤ ρyt)h2(x, z1, z2) dz1 dz2.

Using the decomposition (48) and the right continuity of distribution
functions we can derive the following bounds

Px(Wn+1(A) ≤ y) ≤ βn+1(x, y, A) ≤ Px(Wn+1(A) ≤ y + ε).

By using (49), (50) and the bounded convergence theorem we get that
βn(x, y, A) converges as n → ∞ so

(52) Px(W (A) ≤ y) ≤ β(x, y, A) ≤ Px(W (A) ≤ y + ε).

Using (46), piecewise continuity of h1 and h2 in x, and bounded con-
vergence one can see that βn(x, y, A) and β(x, y, A) are piecewise con-
tinuous on T in x.
Using Theorem 12 and the right continuity of distribution functions
we can find two positive numbers r, u such that P0(W (A) > u) >
2r or equivalently P0(W (A) ≤ u) ≤ 1 − 2r. Let y = u − ε for
some positive ε < u. Using the second inequality of (52) one gets
β(0, y, A) ≤ P0(W (A) ≤ y + ε) ≤ 1 − 2r. Since β(x, y, A) is piecewise
continuous on T there exist an interval J ⊂ T neighborhood of 0 such
that the bound β(x, y, A) is uniformly smaller that 1 on this interval,
that is, supx∈J β(x, y, A) ≤ 1 − r. The first inequality of (52) implies
supx∈J Px(W (A) ≤ y) ≤ supx∈J β(x, y, A) ≤ 1 − r which yields the
required bound in (47).

�

Lemma 12. There exist two positive numbers η, r, an integer N and
a number K with 0 < K < 1

8
such that the following inequality holds

inf
n≥N

inf
x∈[−K,K]

Px (Zn([−K, K]) > ηρn) >
r

2
.

Proof. We apply Lemma 11 with A = T and obtain the numbers y,
r, and the set J . Let K be a positive number such that K < 1

8
and

[−K, K] ⊂ J . So we have

inf
x∈[−K,K]

Px(W (T ) > y) ≥ r.

Using Theorem 3 one gets that

W ([−K, K]) = γW (T )
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holds Px almost surely for any x ∈ T , where

γ =

∫
[−K,K]

ν(z) dz
∫

T
ν(z) dz

.

Hence, we have the following bound

inf
x∈[−K,K]

Px(W ([−K, K]) > η + ε) > r,

where η + ε = γy for some positive η and ε. This and the second
inequality of (52) implies that β(x, η, [−K, K]) is uniformly smaller
than 1:
(53)

sup
x∈[−K,K]

β(x, η, [−K, K]) ≤ sup
x∈[−K,K]

Px(W ([−K, K]) ≤ η + ε) ≤ 1 − r.

We will show that βn(x, η, [−K, K]) defined in (51) converges uniformly
to β(x, η, [−K, K]) on [−K, K] as n tends to infinity. Using trivial
estimations one gets the following chain of inequalities:

sup
x∈[−K,K]

|βn+1(x, η, [−K, K]) − β(x, η, [−K, K])| ≤

sup
x∈[−K,K]

∫

T

|Pz (Wn([−K, K]) ≤ ρηt) −

Pz (W ([−K, K]) ≤ ρηt)|h1(x, z) dz +

sup
x∈[−K,K]

∫

T

∫

T

|Pz1,z2
(Wn([−K, K]) ≤ ρηt)−

Pz1,z2
(W ([−K, K]) ≤ ρηt)| h2(x, z1, z2) dz1 dz2 ≤

sup
x,z∈T

h1(x, z)

∫

T

|Pz (Wn([−K, K]) ≤ ρηt)−

Pz (W ([−K, K]) ≤ ρηt)| dz +

sup
x,z1,z2∈T

h2(x, z1, z2) ·

∫

T

∫

T

|Pz1,z2
(Wn([−K, K]) ≤ ρηt)−

Pz1,z2
(W ([−K, K]) ≤ ρηt)| dz1 dz2.

By bounded convergence both integrals in the last expression converge
to 0. The suprema are finite since h1 and h2 are bounded (see Lemma
11). So βn(x, η, [−K, K]) uniformly converges to β(x, η, [−K, K]) on
[−K, K]. Therefore, there exist an index N such that for n ≥ N

sup
x∈[−K,K]

|βn(x, η, [−K, K]) − β(x, η, [−K, K])| ≤
r

2
.
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Using first inequality of (52), the triangular inequality, (53), and Lemma
11 one can write

sup
x∈[−K,K]

Px(Wn([−K, K]) ≤ η) ≤ sup
x∈[−K,K]

βn(x, η, [−K, K]) ≤

sup
x∈[−K,K]

β(x, η, [−K, K])+ sup
x∈[−K,K]

|βn(x, η, [−K, K])−β(x, η, [−K, K])| ≤

1 − r +
r

2
= 1 −

r

2

for n ≥ N . This gives the conclusion of the lemma. �

10. The proof of the Main Lemma

We repeat the Main Lemma:

Main Lemma. There exist three positive numbers δ, q, K and an
index N such that the following inequality holds

inf
n>N

inf
x∈[−K,K]

Px (Zn([0, K]) > δρn & Zn([−K, 0]) > δρn) > q.

Proof. Take K as defined in Lemma 12. Since [−K, K] = [−K, 0] ∪
[0, K], and type 0 has probability 0 to occur, it follows directly from
Lemma 12 that one of Px (Zn([0, K]) > δρn) and Px (Zn([−K, 0]) > δρn)
is larger than r/4 for all x ∈ [−K, K], and n > N . But then, by sym-
metry, both of these probabilities are larger than r/4.
Now take any x ∈ [−K, K]. Since K < 1

8
, it follows that with a

positive probability, denoted p2,4, in the first generation the squares Q2

and Q4—with types x2 and x4 from a subinterval of [−K, K]—will be
present. But by the above, these two squares will, independently of
each other and with probability at least r/4, generate more than δρn

squares with type in [0, K], respectively [−K, 0] in generation n + 1.
Thus for all x ∈ [−K, K], and n > N

Px (Zn+1([0, K]) > δρn & Zn+1([−K, 0]) > δρn) > p2,4 ·
r

4
·
r

4
.

So replacing δ by δ/ρ, N by N + 1, and defining q = p2,4r
2/16 this

proves the Main Lemma. �
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