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THE ABSOLUTE CONTINUITY OF THE
DISTRIBUTION OF RANDON SUMS WITH

DIGITS {0, 1, . . . ,m− 1}

Abstract

Let m ≥ 2 be a natural number. Let νm
λ be the distribution of the

random sum
∞P

n=0

θnλn, where θn are i.i.d. and for every n the random

variable θn takes value in the set {0, . . . , m−1} with equal probabilities.
As a generalization of Solomyak Theorem we prove that for Lebesgue
a.e. λ ∈ (1/m, 1) the measure νm

λ is absolute continuous w.r.t. the
Lebesgue measure. (For smaller λ, the measure νm

λ is supported by a
Cantor-set, so if λ < 1/m then νm

λ is singular. )

1 Introduction

After some results of Erdős in 1930’s [3, 4] there have been a continuous
interest in the last 60 years about the absolute continuity of some infinite
Bernoulli convolutions. The major achievement was made by B. Solomyak in
1995. Answering an almost 60 years open problem he proved [9] the following
theorem:

Theorem 1 (Solomyak [9]). Let νλ be the distribution of the random series:

Yλ =
∞∑

n=0
θnλn, where θn are independent random variables taking values in
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{−1, 1} with 1/2, 1/2 probabilities. Then νλ is absolute continuous w.r.t. the
Lebesgue measure for almost all λ ∈ [1/2, 1].

Obviously this is equivalent to the case when θn takes values from {0, 1}
with 1/2, 1/2 probabilities. See [6, 10] for nice survey papers on this and re-
lated results about Bernoulli convolutions. Here we consider the more general
situation: Let

Y m
λ =

∞∑
n=0

θnλn,

where θn are i.i.d. and

Prob(θn = 0) = Prob(θn = 1) = . . . = Prob(θn = m− 1) =
1
m

.

Further we write νm
λ for the distribution of Y m

λ . Our aim is to prove

Theorem 2 (Main theorem). For all natural number m > 1 and for
Lebesgue almost all λ ∈

(
1
m , 1

)
the measure νm

λ is absolute continuous w.r.t.
the Lebesgue measure with L2-density.

Remark 1. The case when m = 2 is equivalent to Solomyak Theorem. So we
may assume in the rest of the paper that m ≥ 3.

The measures νm
λ are natural self-similar measures and they occur in var-

ious settings. They have been studied by Borwein and Girgensohn in connec-
tion with functional equations and they occurred in some examples related to
quasicrystals [2, p.33.]. Moreover, they arise in fractal geometry, in the inves-
tigation of self-affine sets with m pieces, similarly to the work of Przyticki and
Urbanski [11] where self-affine sets with 2 pieces were considered.

In the proof we use a theory about infinite Bernoulli convolution developed
in the papers of Solomyak and Peres. Roughly speaking, this theory says that
if a so called transversality condition holds then the Bernoulli convolution
measure is absolute continuous with L2 density for almost all parameters.
Our contribution is merely checking transversality, but this is not completely
trivial.

The paper is organized as follows: For the convenience of the reader, in the
next section we recall some notation and two important theorems from Peres
and Solomyak papers [9, Theorem 1.2] and [7, 8] and [10, Theorem 4.3] . We
get our result as an application of these theorems. To apply [9, Theorem 1.2]
and [10, Theorem 4.3] we have to verify their assumption, which is in both
cases a so called transversality condition. Actually this is what we do in the
last section of the paper.
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1.1 Some known results about νm
λ

As B. Solomyak pointed out [12], as a straight forward generalization of [5],
one can see that: if 1/λ is an algebric number, such that in the minimal
polynomial the constant term is ±m and all roots of the minimal polynomial
are outside of the unit disk, then νm

λ is absolute continuous w.r.t. Lebesgue
measure with density in at least L∞. Using this for xp−m one obtains that [1,
Theorem 3] for λ = m−1/p, p ∈ N, p ≥ 1 the measure νm

λ is absolute continuous
w.r.t. Lebesgue measure with density in at least L∞. Also in [1, Theorem 4]
it was proved that if λ is the reciprocal of an irrational Pisot number then the
measure νm

λ is singular.

2 Solomyak and Peres Theory on Bernoulli convolution

Since we do not use this theory in its full generality, we will quote only the
special cases of the theorems of Solomyak [9, Theorem1.2] and Solomyak, Peres
theorem which appeared first in [7] and [8], and in a form what is very close
to the way as we use it here, in [10, Theorem 4.3]. Then we prove a lemma
which is a slight generalization of [10, Lemma 5.2].

Throughout this section we always use the following notation: Given m ∈
N,m ≥ 2 (when we say N we mean that 0 ∈ N) and also given 0 < l ≤
n. Further, given a set I ⊂ N, with the following property: I consists of l
arithmetic progressions with difference equal to n, and the first elements of
these arithmetic progressions are in the set {0, 1, . . . , n− 1}. We denote

σkI = {i− k : i ∈ I, i ≥ k} .

In this paper I will be either N (most frequently) but in some important cases I
will be the set {i ∈ N : i 6= 3k + 2, k ≥ 0}. Then σI = {i ∈ N : i 6= 3k + 1, k ≥ 0}.
Finally given a probability vector p = (p0, . . . , pm−1).

For a λ ∈ (0, 1) we consider the random sum

Y m,I
λ,p :=

∑
i∈I

θiλ
i,

where the random variables θi are i.i.d. and

Prob(θi = 0) = p0; . . . ;Prob(θi = m− 1) = pm−1.

To make the notation simpler we omit the probability vector p from Y m,I
λ,p if

p = (1/m, . . . , 1/m). Similarly, we omit the set I from Y m,I
λ,p if I = N. So,

Y m
λ,p = Y m,N

λ,p and Y m,I
λ = Y m,I

λ,( 1
m ... 1

m )
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We write νm,I
λ,p for the distribution of Y m,I

λ,p . (We also omit I and p in the most
natural cases like above.) We will frequently use the following family of power
series:

Bm,I :=

1 +
∑

i∈I\{0}

aix
i : |ai| ≤ m− 1

 .

As usual if I = N we write simply Bm for Bm,N. Let J ⊂ (0, 1) be a closed
interval and δ > 0. After [7, 8] and [10] we define:

Definition 1. We say that the δ-transversality condition holds for Bm,I on
J , if for ∀k ∈ I, k < n and for ∀g ∈ Bm,σkI and for ∀λ ∈ J :

g(λ) < δ ⇒ g′(λ) < −δ. (2.1)

Remark 2. Let f be an arbitrary power series with integer coefficients smaller
than or equal to m − 1 in modulus, and f(0) 6= 0. Then it follows from the
expression (15) of [9], that: If the δ-transversality condition holds on J for
Bm,I then f has no double zero on J .

The following theorem is a combination of [9, Theorem 1.2], [7], [8, Theo-
rem 1.3] and see also [10, Theorem 4.3].

Theorem 3 (Peres, Solomyak). Assume that for some δ > 0 the δ-transversality
condition holds on a closed interval J ⊂ [0, 1) for Bm,I . Then:

1. For a.e. λ ∈ J ∩
(

m−1∑
i=0

p2
i , 1

)
, the measure νm,p

λ is absolutely continuous

with L2(R) density. (Here we assumed that I = N)

2. For a.e. λ ∈ J ∩
(
m−l/n, 1

)
the measure νm

λ,I is absolutely continuous
with L2(R) density. (Here we assumed that p = (1/m, . . . , 1/m).)

Remark 3. When p0 = . . . = pm−1 then the lower bound
m−1∑
i=0

p2
i in Theorem

(3) is 1/m.

The following is a slight modification of [10, Lemma 5.2]. The difference
is that here the summation is taken over I instead of N. Therefore the same
statement does not hold always. We define the family of the so called (*)
functions for Bm,I . The idea of (*) functions was developed by Solomyak [9]
and significantly further developed in [7, 8].
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Definition 2. We say that the function h(x) is a (*) function for Bm,I if
there is an a ∈ R (|a| > m− 1 is allowed here) such that

h(x) = 1− (m− 1)
∑

i<k,i∈I\{0}

xi + axk + (m− 1)
∑

i>k,i∈I\{0}

xi,

where k ∈ I. Notice that if h(x) is a (*) function then there is at most one
sign change in the coefficients of h′(x) an h′′(x). So, the functions h′(x), h′′(x)
have at most one positive zero.

Lemma 1. Suppose that for every j ∈ I, j < n, there exists a (*) function
hj(x) for Bm,σjI satisfying:

hj(x0) > δj and h′j(x0) < −δj (2.2)

for some x0 ∈ (0, 1) and δj > 0. Then for every 0 < ε < x0 there exists a
τ > 0 such that the τ -transversality condition holds on [ε, x0] for Bm,I .

The proof follows the idea of [10, Lemma 5.2] with the necessary modifi-
cations. Before we present the proof we need to prove the following:

Claim 1. Fix 0 < ε < x0. There exists τj > 0 (j < n, j ∈ I) such that

hj(x) > τj , ∀x ∈ [0, x0] and h′j(x) < −τj , ∀x ∈ [ε, x0]. (2.3)

Proof. Choose an arbitrary j ∈ I, j < n. We write I ′ := σjI. It is obvious
that (2.3) holds if k = 1 since in this case h′(x) is increasing. From now we
assume that k > 1. Let k0 = min {I ′ \ {∅}}. We distinguish two cases:

First we assume that k0 = 1. In this case the proof is the same as in [10,
Lemma 5.2]. We argue by contradiction. Since h′(0) = −(m−1) if there exists
u ∈ (0, x0) such that h′(u) > −δ then by the mean value theorem there exist
v1 ∈ (0, u) and v2 ∈ (u, x0) such that h′′(v1) > 0 and h′′(v2) < 0. Using that
lim
x→1

h′′(x) = ∞ we obtain that h′′ has two sign changes what is impossible.

Now we assume that k0 > 1. In this case h′(x) = 0. First we point out
that

h′(x) < 0 ∀x ∈ (0, x0). (2.4)

First we assume that k > k0 > 1. To see (2.4) we also argue by contradiction.
Assume that there exists w ∈ (0, x0) such that h′(w) ≥ 0. Notice that h′(x) <
0 for all x small enough. Let w1 ∈ (0, w) be chosen such that h′(w1) < 0.
Then there exist z1 ∈ (0, w1) and z2 ∈ (w1, w) such that h′′(z1) < 0 and
h′′(z2) > 0.Using that h′(x0) < −δ by the mean value theorem there exists
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z3 ∈ (w, x0) such that h′′(z3) < 0. In this way h′′ changes signs more then
one times. This contradiction proofs that (2.4) holds.

Now we assume that k = k0 > 1. In this case h′(0) = 0. To prove (2.4)
first observe that a < 0. Namely, if a ≥ 0 then h′(x) is increasing. What is
impossible since h′(0) = 0 and h′(x0) < 0. Notice that a < 0 implies that
for every x > 0 small enough h′(x) < 0 holds. Fix such an x. If there was a
w ∈ (0, x0) such that h′(w) ≥ 0 then using that limx→1 h′(x) = ∞, we obtain
that there exist z1, z2, z3 such that: z1 ∈ (x, w), z2 ∈ (w, x0), z3 ∈ (x0, 1) and
h′′(z1) > 0, h′′(z2) < 0, h′′(z3) > 0. That is h′′ should change signs at least
twice, what is impossible. This proves that (2.4) holds.

Let
τj := −1

2
max {h′(x) : ε < x < x0} .

It follows from (2.4) that τj > 0. Then h′(x) < τj for all x ∈ [ε, x0]. Since
h′(x) < 0 for all x ∈ (0, x0] we obtain that h(x) > δ ≥ τj holds for all
x ∈ [ε, x0].

The rest of the proof Lemma 1 proceeds exactly as that of [10, Lemma
5.2]. For the convenience of the reader we present it here.

Proof. [Proof of Lemma 1] As above, we choose an arbitrary j ∈ I, j < n
and we write I ′ = σjI and h(x) = hj(x). Let g ∈ Bm,I′ . Put f(x) =
g(x)− h(x). Then

f(x) =
∑

i<l,i∈I′\{∅}

cix
i −

∑
i≥l,i∈I′\{∅}

cix
i,

where either l = k or l = max{i ∈ I, i < k} and ci ≥ 0. Notice that

f(x) < 0 ⇒ f ′(x) < 0. (2.5)

Namely, if f(x) < 0 then ∑
i<l,i∈I′\{∅}

cix
i <

∑
i≥l,i∈I′\{∅}

cix
i

so, ∑
i<l,i∈I′\{∅}

icix
i−1 <

∑
i≥l,i∈I′\{∅}

icix
i−1

thus f ′(x) < 0.
Assume that for an x ∈ [ε, x0] g(x) < τj . Then from the Claim above

f(x) < 0. This implies, as we just saw that f ′(x) < 0. So, g′(x) < h′(x) < −τj .
Then τ := min {τj : j ∈ I, j < n} > 0 satisfies (2.3).
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Remark 4. It follows from the proof that if I = N then ε in Lemma 1 can be
0. This is exactly the case considered in [10, Lemma 5.2].

3 The Fourier transform of νm
λ

As usual we denote the Fourier-transform of the measure νm
λ by ν̂m

λ . By
Plancherel-Theorem (see also [10, p.16]) ν̂m

λ ∈ L2 if and only if νm
λ � Leb

with L2 density. To find the Fourier transform of νm
λ observe that

νm
λ = ∗

∞∏
n=0

(
δ0

m
+

δλn

m
+ . . . +

δ(m−1)λn

m

)
.

Thus

ν̂m
λ (ξ) =

∞∏
n=0

1
m

(
1 + e−iλnξ + . . . + e−i(m−1)λnξ

)
=

∞∏
n=0

1
m
· e−imλnξ − 1

e−iλnξ − 1
.

(3.1)

We verify some simple properties of ν̂m
λ (ξ) what we frequently use in the

paper:

Claim 2. Let z = eix (x ∈ R). (We will use this with x = λnξ most fre-
quently.)

1.
∣∣∣ zm−1

z−1

∣∣∣ =
∣∣∣ sin(m·x/2)

sin(x/2)

∣∣∣,
2. 1

m

∣∣∣ zm−1
z−1

∣∣∣ ≤ 1 and m
∣∣∣ z−1
zm−1

∣∣∣− 1 = O(x2) as x → 0.

3. The Fourier-transform is a convergent infinite product:

|ν̂m
λ (ξ)| =

∞∏
n=0

1
m

∣∣∣∣ sin(mλnξ/2)
sin(λnξ/2)

∣∣∣∣ . (3.2)

Proof. (i)
∣∣eix − 1

∣∣ = 2 |sin(x/2)|. Using this for mx instead of x gives the
statement of (i).

(ii) The first part is straightforward. We obtain the second part by a
multiple application of L’Hospital rule.

(iii) This is immediate from (i), (ii) and (3.1).
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Corollary 1. We can rearrange the terms of the infinite product in (3.1).
Like in [9] this yields that for any λ ∈ (0, 1):

ν̂m√
λ
(ξ) = ν̂m

λ (ξ) · ν̂m
λ (
√

λξ). (3.3)

Similarly as in [9] this implies that:

Claim 3. If we can prove that νm
λ is absolutely continuous with L2 density for

Lebesgue almost every λ ∈ ( 1
m , 1√

m
) then the same holds on the bigger interval

( 1
m , 1).

Proof. If νλ is absolute continuous with L2 density for almost all λ ∈
( 1

m , 1√
m

) then ν̂m
λ ∈ L2 holds for almost all λ ∈ ( 1

m , 1√
m

). Using (3.3), this
implies that ν̂m

λ ∈ L1 for almost all λ ∈ ( 1√
m

, 1
4√m

). Since ν̂m
λ is bounded this

implies that ν̂m
λ ∈ L2 for almost all λ ∈ ( 1√

m
, 1

4√m
). Iterating this argument

we get the statement of the Claim.

4 Checking transversality

Our aim in this section is to establish transversality on the interval
(

1
m , 1√

m

)
.

A considerable part of the interval ( 1
m , 1√

m
) can be covered by the following

lemma. It appears in [8, Corrolary 5.2].

Lemma 2. Let m ≥ 2. We write

xm :=
1

1 +
√

m− 1
.

We can find δ > 0 such that the δ-transversality condition holds for Bm on the
interval [0, x] for every x < xm.

Corollary 2. It is immediate from Theorem 3 (i) and Lemma 2 that νm
λ is

absolute continuous with L2 density for almost all λ ∈
(

1
m , 1

1+
√

m−1

)
.

Latter we need the following two corollaries of the lemma:

Corollary 3. For every m ≥ 4 and 2 ≤ k ≤ 2m there exist δ > 0 such that
the δ-transversality holds for Bk on the interval [0, 1/m].
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Proof. This follows immediately from Lemma 2 since

1
m

<
1

1 +
√

2m− 1
≤ 1

1 +
√

k − 1
.

Corollary 4. For every m ≥ 5 there exist δ > 0 such that the δ-transversality
holds for B3m on the interval [0, 1/m].

Proof. Since
1
m

<
1

1 +
√

3m− 1
holds for all m ≥ 5, Lemma 2 implies the statement of the Corollary.

Although xm = 1
1+

√
m−1

is very close to 1√
m

for big m, unfortunately
xm = 1

1+
√

m−1
< 1√

m
for every m. The following lemma is very important

since it covers the gap between xm and 1√
m

for all m big enough.

Lemma 3. Let m ≥ 3 be arbitrary. Put

A(m) :=
2m2 + 1

3m3
.

Then νm
λ is absolute continuous with L2 density for a.a. λ ∈

(√
A(m), 1√

m

)
Notice that for m big enough

√
A(m) is approximately 1√

m
· 0.81649.., so

for big m,
√

A(m) < xm must hold. The proof follows an argument from [8].

Proof. Let ηm
λ := νm

λ ∗ νm
λ . Then ηm

λ is the distribution of Zm
λ :=

∞∑
n=0

θnλn,

where the random variables θn are i.i.d. and for k ≤ m − 1, Prob(θn = k) =
k+1
m2 . For m ≤ k ≤ 2m− 2, Prob(θn = k) = 2m−1−k

m2 . So, for every n

2m−2∑
k=0

Prob2(θn = k) = A(m).

We know from Corollary 3 that for m ≥ 4 and for some δ > 0, δ-transversality
holds for B2m−1 on [0, 1

m ]. Lemma 2 implies that B5 is δ-transversal on the
interval [0, 1/3]. Thus we obtain from Theorem 3 (i) that ηm

λ is absolute
continuous with L2 density for almost all λ ∈

(
A(m), 1

m

)
, m ≥ 3. This means

that η̂m
λ ∈ L2 for almost all λ ∈

(
A(m), 1

m

)
. From the definition of ηm

λ this
implies that ν̂m

λ ∈ L4 for a.a. λ ∈
(
A(m), 1

m

)
. Thus from (3.3) we obtain

that ν̂m
λ ∈ L2 for a.a. λ ∈ (

√
A(m), 1√

m
). This completes the proof of our

Lemma.
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Proof. [The proof of the Theorem 2 for m ≥ 16] An elementary calculation
shows that √

A(m) <
1

1 +
√

m− 1
. (4.1)

holds for m ≥ 16. Since
(

1
m , 1√

m

)
=

(
1
m , 1

1+
√

m−1

)
∪

(√
A(m), 1√

m

)
. In

Lemma 2 we checked the δ-transversality for λ ∈
(

1
m , 1

1+
√

m−1

)
. This im-

plies by Theorem 3 (i) the νm
λ is absolute continuous with L2 density for a.a.(

1
m , 1

1+
√

m−1

)
. The other interval

(√
A(m), 1√

m

)
was settled in Lemma 3.

This completes the proof for m ≥ 16.

The remaining cases will be checked in three groups:

Remark 5. We would like to remark that upper bounds for the transversality
interval in the case of m = 3, 4 were found in [8, Corollary 5.2].

Proof. [The proof of Theorem 2 for m = 3, 4, 5.] If we can prove that for
m ∈ {3, 4, 5} there is a (*) function h for Bm such that for some x >

√
A(m)

h(x) > 0 and h′(x) < 0 (4.2)

then we can take δ = min {h(x),−h′(x)}. We know from Lemma 1 and Re-
mark 4 that this implies the existence of a τ > 0 such that the τ -transversality
condition holds for Bm on [0,

√
A(m)]. Using Theorem 3 this follows that νm

λ

is absolute continuous with L2 density for almost all λ ∈
(

1
m ,

√
A(m)

)
. The

statement of the Theorem 2 for a.a. λ ∈
(√

A(m), 1√
m

)
was proved in Lemma

3. So, to complete the proof for m = 3, 4, 5 we only have to show (*) functions
satisfying (4.2) for some x >

√
A(m).

m = 3 h(x) = 1− 2x− 1.8x2 + 2
∞∑

i=3

xi,

x = 0.484323 >
√

A(3) = 0.4843221048 . . .. Then

h(x) = 0.497443 . . . > 0 and h′(x) = −0.129874 . . . < 0

m = 4 h(x) = 1− 3x− 0.5x2 + 3
∞∑

i=3

xi,

x = 0.414559 >
√

A(4) = 0.414578098794 . . .. Then

h(x) = 0.003548 . . . > 0 and h′(x) = −0.148952 . . . < 0
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m = 5 h(x) = 1− 4x + 1.2x2 + 4
∞∑

i=3

xi,

x = 0.368783 >
√

A(5) = 0.368781778291715 . . .. Then

h(x) = 0.005898 . . . > 0 and h′(x) = −0.259036 . . . < 0

Using Corollary 2 and Lemma 3 we only have to deal with the interval(
1

1+
√

m−1
,
√

A(m)
)
. Unfortunately we cannot prove transversality on this

interval for Bm,m ∈ {6, 7, 9, 11, 13}. To make a step further, we have to
invoke an idea from [9].

Proof. [The proof of the Theorem 2 for m = 6, 7, 9, 11, 13] Let

Zm
λ :=

∑
n∈I

θnλn,

where I := {i ∈ N : i 6= 3k + 2 for any k ∈ N} and θn i.i.d. with

Prob(θn = 0) = . . . = Prob(θn = m− 1) =
1
m

.

We write ηm
λ for the distribution of Zm

λ . (This Zm
λ and ηm

λ are different from
the ones defined in an earlier proof in this paper.) It follows from (3.2) that

|η̂m
λ (x)| ≥ |ν̂m

λ (x)| ,

for all x ∈ R. Therefore, to prove that ν̂m
λ (x) ∈ L2 almost surely on a param-

eter interval, it is enough to point out the same for η̂m
λ (x). Notice that

m−2/3 <
1

1 +
√

m− 1
(4.3)

holds for all m ≥ 6. So, if we can prove that for some δ > 0, δ-transversality
holds for Bm,I on the interval

(
m−2/3, x

)
for some x >

√
A(m) then Theorem

3 (ii) implies that η̂m
λ (x) ∈ L2 for a.a. λ ∈

(
m−2/3, x

)
and by (4.3), in this way

we have covered the missing interval
(

1
1+

√
m−1

, 1√
m

)
. So according to Lemma

1 what we are left to do it is to construct for every m ∈ {6, 7, 9, 11, 13} a (*)
function h1(x) for Bm,I and another (*) function h2(x) for Bm,σI such that

hi(x) > 0 and h′i(x) < 0, i = 1, 2.
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Then taking δ := min {hi(x), |h′i(x)|, i = 1, 2} > 0 we get from Lemma 1 that
there exists a τ > 0 such that τ -transversality holds for the interval

(
m−2/3, x

)
.

Then Theorem 3 (ii) completes the proof for the m’s considered here. Now we
construct the required (*) functions for m ∈ {6, 7, 9, 11, 13}:

h1,m(x) = 1− 3x + (m− 1)
∑
i∈I

xi = 1− 3x + (m− 1)
x3 + x4

1− x3

and

h2,m(x) = 1− 5x2 + (m− 1)
∑
i∈σI

xi = 1− 5x2 + (m− 1)
x3 + x5

1− x3
.

Then h1,m(x) is a (*) function for Bm,I and h2,m(x) is a (*) function for Bm,σI .

m x >
√

A(m) h1,m(x) h′1,m(x) h2,m(x) h′2,m(x)
6 0.3357 0.255492 −0.364468 0.655278 −1.19327
7 0.311 0.310949 −0.387734 0.720471 −0.964625
9 0.274 0.392061 −0.439015 0.805257 −0.628602
11 0.247 0.449788 −0.494282 0.857287 −0.392609
13 0.227 0.493266 −0.527637 0.8917 −0.208441

We are left to deal with m ∈ {8, 10, 12, 14, 15}. In each of these cases, we
use the following observation, which follows easily from Claim 2:

Remark 6.
|ν̂qm

λ (x)| ≤ |ν̂m
λ (x)|

holds for all q ∈ N, q ≥ 1 and all x. Thus ν̂m
λ ∈ L2 implies ν̂qm

λ ∈ L2.

Proof. [The proof of Theorem 2 for 8, 10, 12, 14.] Let m ∈ {4, 5, 6, 7}. Then
we have already proved that ν̂m

λ ∈ L2 for a.a. λ ∈
(

1
m , 1√

m

)
. Using Remark

6 this implies that also

ν̂2m
λ ∈ L2 for a.a. λ ∈

(
1
m

,
1√
m

)
. (4.4)

So what we are left to do it is to prove that ν2m
λ has almost surely L2 density

on the interval ( 1
2m , 1

m ). However in Corollary 3 we have pointed out that for
some δ > 0, δ-transversality hold for B2m on

[
0, 1

m

]
. By Theorem 3 (i) this

completes the proof.
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Proof. [The proof of Theorem 2 for 15.] We argue exactly as above for
m = 5 and use Corollary 4.
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