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Abstract

We consider a one parameter family of self-similar sets of over-
lapping construction. We study the exceptional set, that is the set
of those parameters for which the correlation dimension is smaller
than the similarity dimension. We find some connection between the
exceptional set and the multifractal analysis of a measure.

1 Introduction

When we compute a certain fractal dimension of a self-similar or self-affine
set there is always an easy upper bound for the dimension (see [2]). Al-
though, in many cases it turns out that this most natural upper bound is
actually the dimension, it also may occur that the dimension drops compared
to its expected value, on a dense set of configurations (see [10, Theorem 2]).
There have been lots of efforts trying to understand what causes the drop of
dimension but we know very little about the reasons. Obviously, for a self-
similar fractal in R (having similarity dimension smaller than one) if there
are two (possibly higher level) cylinders which coincide then the dimension
drops. We do not know however, even in this very simple situation, whether
there is any other reason for the drop of the dimension. In this paper we
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find a connection between this problem and the multifractal analysis of a
measure.

We investigate the simplest possible non-trivial one parameter family of
self-similar Iterated Function Systems (IFS) with overlapping cylinders on
the real line. For almost all parameters b the correlation dimension dimC

of the attractor Λ(b) is equal to the similarity dimension s. The set of those
parameters b for which dimC(Λ(b)) < s is called the exceptional set E.
Our aim in this paper is to prove that for an exceptional parameter b the
correlation dimension of the attractor Λ(b) can be expressed as the pointwise
dimension of a certain measure γ which is a projection of a self-similar
measure β of the plane. In the last section we discuss the connection between
the multifractal analysis of the measure γ and the size of the exceptional
set E.

Acknowledgement 1 The author wishes to express his thanks to the ref-
eree for his valuable work which improved a lot on this paper. I am especially
grateful to the referee for finding a serious mistake in an earlier version of
this paper which was not at all trivial to correct.

2 Correlation Dimension

2.1 Three equivalent definitions for correlation dimen-
sion

Let {Si}m
i=1 be a self-similar IFS on Rn. Assume that 0 < λi < 1, i =

1, . . . ,m are the ratios of the similarities and s is the similarity dimension,
that is

∑m
i=1 λs

i = 1. As usual we write Si0...ik := Si0 ◦ · · · ◦Sik . Let µ be the

Bernoulli measure on Σ = {1, . . . ,m}N with weights (λs
1, . . . , λ

s
m). Further,

let Iα(µ) :=
∫∫

Σ×Σ
|Π(i)− Π(j)|−αdµ(i)dµ(j), where

(1) Π(i) := lim
k→∞

Si0...ik(0).

Following Chin, Hunt and York [1] the correlation dimension of the IFS
{Si}m

i=1 is defined as

(2) dimC(Λ(b)) := sup {α ≥ 0 : Iα(µ) < ∞} .
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That is, dimC(Λ(b)) is the correlation dimension of the natural measure
ν := µ ◦ Π−1. Alternatively, we can define the correlation dimension as
follows: Fix a partition Dl of R into a grid intervals of length 2l for every
l > 0. Denote τl :=

∑
Q∈Dl

(ν(Q))2. Peres and Solomyak proved in [7] that the

limit

D2(ν) := lim
l→0

log τl

log l

exists. It was proved in [9, Th.18.2] that for D := liml→0
log

∫
ν(Bl(x))dν

log l
we

have: D2(ν) = D, where Bl(x) is the ball of radius l centered at x. Further,
Sauer and Yorke [12] proved that: D = sup {α ≥ 0 : Iα(µ) < ∞} . Thus

(3)

dimC(Λ(b)) = sup {α ≥ 0 : Iα(µ) < ∞} = lim
l→0

log τl

log l
= lim

l→0

log
∫

ν(B(x, l))dν

log l
.

2.2 Rams’ Theorem on correlation dimension

The theorem in this section was proved by M. Rams in his Ph.D. Thesis [11,
Wn 6.5] in a much higher generality (in Rd for self-conformal IFS). For the
convenience of the reader we present here Rams’ proof of this simplified
version of his theorem.

Let {Si}m
i=1 be a homogenous self-similar IFS on R, Si (x) = λx+ ti. To

keep the notations simple we assume that the smallest interval containing
the attractor Λ is [0, 1]. We always write ωn, τn for elements of

∑
n :=

{1, . . . ,m}n and we index them like ωn = (ω0 . . . ωn−1). Further, Uωn :=
Sωn (U), Uτn := Sτn (U) if U ⊂ R. For an l > 0 and assuming U is bounded
we write Ml := {Uωn : λl < |Uωn| ≤ l}, further let

Al (U) := # {(ωn, τn) |Uωn ∩ Uτn 6= ∅, Uωn , Uτn ∈Ml} .

Observe that Al (U) ≥ mn if λl < λn |U | < l. Put s = log m
− log λ

. We assume
that s ≤ 1.

Theorem 1 (Rams) Let U be a non-empty bounded but not necessarily
open interval. For simplicity we suppose that U ∩ [0, 1] 6= ∅. Then

lim
l→0

log (Al (U))

− log l
= 2s− dimC (ν) .
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In particular the limit exists and independent of U.

Proof. For an l > 0 we call Il (x) the interval of the 2l interval
grid Dl which is centered at x. The set of centers of such intervals is
called Cl. We assume that l′ > l. For an x′ ∈ Cl′ we define Nl′,l (x

′) :=
# {ωn : Uωn ∩ Il′ (x

′) 6= ∅, Uωn ∈Ml}. First we prove that

(4) 1 <

∑
x′∈Cl′

N2
l′,l(x

′)

Al (U)
< 3β2

where β := 2(l′+l)
λl

+1. The first inequality is obvious. To see the second one
fix an arbitrary x′ ∈ Cl′ . If Uωn∩Il′ (x

′) 6= ∅ then Uωn ⊂ (x′ − (l′ + l), x′ + l′ + l).
Subdivide the interval (x′ − (l′ + l), x′ + l′ + l) into subintervals of length λl,
(for Uωn ∈Ml, we have |Uωn| > λl). There are exactly β endpoints of such
intervals. Thus there is such an interval endpoint which contained in at
least Nl′,l(x

′)/β elements of Ml. These elements of Ml of course pairwise

intersect each other. So there are at least
N2

l′,l(x
′)

3β2 pairs of elements of Ml

which pairwise intersect each other and which can be associated uniquely
with x′. This completes the proof of (4).

Next we prove that there exists a c∗ = c∗ (U) > 0 such that

(5) (c∗)−1 <

∑
x∈Cl

ν2 (Il (x))

l2sAl (U)
< c∗.

For this end, we fix a c = c (U) < 2
|U | such that the c |U | neighborhood

of U , called Bc|U | (U) contains [0, 1] ⊃ Λ. (We assumed that U ∩ [0, 1] 6= ∅).
Thus |U | > 1

2c+1
. Then for a Uωn ∈Ml,

1
2c+1

< |U | < 2
c

and

1

m

cs

2s
ls <

1

mn
< (2c + 1)s ls.

Using that µ (ωn) = 1
mn and ν = µ ◦Π−1 it follows that for an arbitrary

x′ ∈ Cl′ and for l′ = (1 + 2c) l, we have

(lsNl′,l(x
′))

2
<

(
2s

csλs

1

mn
# {ωn|Λωn ⊂ B2l′ (x

′) 6= ∅}
)2

(6)

<
3 · 22s

c2sλ2s
(ν2 (Il′ (x

′
L)) + ν2 (Il′ (x

′)) + ν2 (Il′ (x
′
R)))(7)
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where x′L and x′R are the centers of the neighbors of Il′ (x
′) and s ≤ 1 is

the similarity dimension.
For an arbitrary x ∈ Cl, let x′ be the center of the interval from Dl′

which contains x in its interior or as its right endpoint. Further, let x′L and
x′R are the centers of the two neighbors of Il′(x

′) in Dl′ .
ν (Il (x)) ≤ 1

mn # {ωn : Λωn ∩ Il (x) 6= ∅, Uωn ∈Ml}
< (2c + 1)s ls# {ωn|(Il′ (x

′
L) ∪ Il′ (x

′) ∪ Il′ (x
′
R)) ∩ Uωn 6= ∅, Uωn ∈Ml}

≤ (2c + 1)s ls(Nl′,l(x
′
L) + Nl′,l(x

′) + Nl′,l(x
′
R)). Thus using (6) and using

twice that l′

l
= 2c + 1∑

x∈Cl

ν2 (Il (x)) < 3 (2c + 1)1+2s l2s
∑

x′∈Cl′

(N2
l′,l(x

′
L) + N2

l′,l(x
′) + N2

l′,l(x
′
R))

≤ 9 (2c + 1)1+2s l2s
∑

x′∈Cl′

N2
l′,l(x

′)

< 3 · 9 (2c + 1)1+2s 22s

c2sλ2s

∑
x′∈Cl′

(ν2 (Il′ (x
′
L)) + ν2 (Il′ (x

′)) + ν2 (Il′ (x
′
R)))

≤ 9·9 (2c + 1)1+2s 22s

c2sλ2s

∑
x′∈Cl′

ν2(Il′(x
′)) < 81 (2c + 1)2+2s 22s

c2sλ2s

∑
x∈Cl

ν2 (Il (x)).

Thus we obtained that
(

cλ
2

)2s 1
9(1+2c)

<
∑
x∈Cl

ν2 (Il (x)) /l2s
∑

x′∈Cl′

N2
l′,l(x

′) <

9 (2c + 1)1+2s. This and (4) completes the proof of (5). This and (3)
immediately implies the statement of Rams’ theorem.

2.3 A Corollary of Rams’ Theorem

Since we assumed that the attractor Λ spans the interval J := [0, 1], thus the

left end point of the cylinder interval Jω0...ωn−1 = Sω0...ωn−1 (J) is
n−1∑
k=0

ωkλ
k.

Therefore if U := [0, z]

(8)

∣∣∣∣∣
n−1∑
k=0

ωkλ
k −

n−1∑
k=0

τkλ
k

∣∣∣∣∣ ≤ zλn ⇐⇒ Uωn ∩ Uτn 6= ∅.

That is Azλn(U) = #

{
(ωn, τn) :

∣∣∣∣n−1∑
k=0

ωkλ
k −

n−1∑
k=0

τkλ
k

∣∣∣∣ ≤ zλn

}
. So, as

a corollary of Rams’ Theorem we obtained that
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Lemma 2 For every z > 0 limn→∞

log #

{
(ωn,τn):

∣∣∣∣n−1∑
k=0

ωkλk−
n−1∑
k=0

τkλk

∣∣∣∣≤zλn

}
− log λn =

2s− dimC (ν).

Observe that Al (U) is constant in l on the interval l ∈ [λn |U | , λn−1 |U |).
We write A′

n (U) for this constant. That is, for every l > 0 we choose an
n = n (l) such that

(9)
log l

log λ
− log |U |

log λ
≤ n <

log l

log λ
− log |U |

log λ
+ 1

Put
A′

n (U) := Al (U) = # {(ωn, τn) |Uωn ∩ Uτn 6= ∅} .

and

Nn (U) := # {(ωn, τn) |ω0 6= τ0, Uωn ∩ Uτn 6= ∅, Uωn , Uτn ∈Ml} .

Observe that

(10) A′
n (U) =

n∑
k=0

mn−kNk (U) + mn.

From the definition it is obvious that

(11) lim
n→∞

log A′
n (U)

n
= lim

l→0

log Al (U)

− log l
log

1

λ
.

Our aim is to prove that in the interesting case (when the exponential
growths rate of A′

n (U) is greater than n) A′
n (U) growth as fast as Nn (U) at

least for U = [0, z] where 1 ≤ z. To do this we define α = α (U) , β = β (U)
and γ = γ (U) by

log α := lim
n→∞

log A′
n (U)

n
, log β := lim sup

n→∞

log Nn (U)

n

and

log γ := lim inf
n→∞

log Nn (U)

n

Let z ≥ 1 be arbitrary. In the rest we assume that U := [0, z].
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Lemma 3 If β ≤ m then α = log m.

Proof. From the definition α ≥ m. Let ε > 0 be arbitrary. There exists
a K such that for every k > K, Nk (U) ≤ (m + ε)k. Thus from (10) we

obtain that A′
n (U) ≤

K∑
k=0

mn−kNk (U) +
n∑

k=K+1

mn−k (m + ε)k + mn. That is

A′
n (U) ≤ const · n · (m + ε)n + mn. Thus α ≤ m.

Lemma 4 If β > m then β = α.

Proof. Obviously β ≤ α. On the contrary assume that β < α. Let
ε < α− β. Then for all k big enough Nk (U) < (β + ε)k. Then as above we
obtain that α ≤ β + ε. Which is a contradiction.

Lemma 5 If β > m then α = β = γ.

Proof. Since we assumed that Λ ⊂ [0, 1] ⊂ U we have that Si (U) ⊂ U
i = 1, . . . ,m. Therefore Uωn ⊃ Uωn+1 for any ωn ∈ Σn. Thus

(12) Nn+1 (U) < m2Nn (U) .

To get contradiction we assume that γ < α. Choose ε > 0 so small that the
following three requirements are satisfied: γ + ε < α− ε, m < α− ε, and

(13) log
α + ε

α− ε
< log

α− ε

m

log α+ε
γ+ε

log m
.

If ε is small enough then (13) holds because for ε = 0 the left hand side is
0 and the right hand side is positive and both sides are continuous in ε.
From the definition of γ we get that there exists {nk}∞k=1 such that

Nnk
(U) ≤ (γ + ε)nk .

Using (12) k−times and that for every j > 0, Nj (U) ≤ const · (α + ε)j

(since Nj (U) ≤ A′
j (U)) it follows from (10) that A′

ni+k (U) =
ni∑

j=0

mni+k−jNj (U)+

ni+k∑
j=ni+1

mni+k−jNj (U) + mni+k ≤ const · nim
k (α + ε)ni + k (γ + ε)ni m2k +

mni+k holds for every k > 0. By (13), we can choose {ki}∞i=1 such that

ni

log α+ε
α−ε

log α−ε
m

< ki < ni

log α+ε
γ+ε

log m
.
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For such a ki we have

(14) (α + ε)ni mki < (α− ε)ni+ki and (γ + ε)ni m2ki < (α + ε)ni mki .

Therefore

lim
i→∞

log A′
ni+ki

(U)

ni + ki

≤ lim
i→∞

log(const · (ni + ki) (α− ε)ni+ki)

ni + ki

= log (α− ε) .

Which contradicts the definition of α.
Since we know from Rams theorem that α does not depend on U = [0, z] ,

z ≥ 1 therefore the same is true for β and γ if β > m. These lemmas and
Rams’ theorem imply:

Proposition 6 Let z ≥ 1 be arbitrary. Then for U = [0, z] we obtain that

dimC Λ =

{
s if lim supn→∞

log Nn(U)
n

≤ log m

2s− limn→∞
log Nn(U)
−n log λ

otherwise

Observe that Uωn ∩ Uτn 6= ∅ if and only if the left end points
n−1∑
k=0

ωkλ
k

and
n−1∑
k=0

τkλ
k are closer to each other than the length of |Uωn| = |Uτn| = zλn

that is

∣∣∣∣n−1∑
k=0

ωkλ
k −

n−1∑
k=0

τkλ
k

∣∣∣∣ ≤ zλn. Thus

Corollary 7 For an arbitrary z ≥ 1 if

lim sup
n→∞

log #

{
(ωn, τn) : ω0 6= τ0,

∣∣∣∣n−1∑
k=0

ωkλ
k −

n−1∑
k=0

τkλ
k

∣∣∣∣ ≤ zλn

}
n

> log m

then the limit exists and the limit is the same for all z ≥ 1 further,

limn→∞

log #

{
(ωn,τn):ω0 6=τ0,

∣∣∣∣n−1∑
k=0

ωkλk−
n−1∑
k=0

τkλk

∣∣∣∣≤zλn

}
n

= (2s− dimC Λ) log 1
λ
.

This is the corollary of Rams’ theorem we are going to use in the proof
of our theorem.
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3 A certain family of fractals with overlaps.

We construct the simplest possible one parameter family of self-similar IFS
with overlapping cylinders. This is a simplification of those IFS which ap-
pear in M.Keane’s so-called ‘(0,1,3)-problem’ (see [4]).

First fix an arbitrary a ∈
(

1
4
, 1

3

)
. We define the one parameter family of self-

similar IFS
{

S
(b)
i (x)

}
i∈V

, where V = {0, b, (1− a)}, and S
(b)
i (x) := a · x + i,

i ∈ V . The similarity dimension is s = log 3
− log a

. In what follows we always

assume that the parameter b ∈ (1−3a
2

, a). (a is not a parameter, a was fixed.)
This provides that

(15) S
(b)
0 (Λ(b)) ∩ S

(b)
b (Λ(b)) 6= ∅ and Λ(b) − Λ(b) = [−1, 1]

holds, where Λ(b) ⊂ [0, 1] is the attractor of the IFS
{

S
(b)
i (x)

}
i∈V

and A−B

means the arithmetic difference of the sets A and B. It follows from the
second part of (15) that

(16) Λ
(b)
i0...im

− Λ
(b)
j0...jm

= I
(b)
i0...im

− I
(b)
j0...jm

,

where Λ
(b)
i0...im

:= S
(b)
i0...im

(Λ(b)) = S
(b)
i0
◦· · ·◦S(b)

im
(Λ(b)) and I

(b)
i0...im

:= S
(b)
i0...im

([0, 1]).
Using an argument of Falconer [2] one can easily prove the first part of the
next theorem. The proof of the second part is the same as [10, Theorem 2].

Theorem 8 1. For Lebesgue-almost all b ∈ (1−3a
2

, a)

(17) dimH(Λ(b)) = dimC(Λ(b)) = s.

2. There is a dense exceptional subset E of the parameter interval (1−3a
2

, a),
such that for b ∈ E

(18) dimC(Λ(b)) < s.

As usual, we denote the symbolic space by Σ. That is
Σ = {(i0, i1, i2, . . .) : ik ∈ V , k ≥ 0} . Note that the indices start with

zero. Let µ be the {1
3
, 1

3
, 1

3
} equally weighted Bernoulli measure on Σ. We

denote the product set Σ× Σ, the product measure µ× µ and the product
of the metric by Σ2, µ2 and ρ2 respectively.
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3.1 The construction of the measure γ

First we construct a self-similar measure β on the plane. Let

(19) I := V − V = {±(1− a),±b,±(1− a− b), 0}

We define a self-similar IFS {Rw}w∈I on the plane as follows:

R±(1−a)(x, y) = (ax, ay) + (0,±a), R±b(x, y) = (ax, ay) + (∓a, 0),

R±(1−a−b)(x, y) = (ax, ay) + (±a,±a), R0(x, y) = (ax, ay).

Write Λ′ for the attractor of {Rw}w∈I . In fact what we need is a trans-

lation of Λ′. Let Λ̃ = Λ′ + (1, 0). Let Σ̃ := {(τ1, τ2,...) : τk ∈ I, k ≥ 1}
(the indices of the symbolic sequences start with 1). We denote the natural
projection from Σ̃ to Λ̃ by

(20) Π̃(τ) := lim
k→∞

Rτ1,...τk
(0, 0) + (1, 0),

for τ ∈ Σ̃. We call
Λ̃τ1...τm := Π̃(τ1, . . . , τm) =

{
x ∈ Λ̃ : x = Π̃ (τ) , where τ |m = τ1 . . . τm

}
an m-cylinder of Λ̃, where τk ∈ I, k = 1, . . . ,m.

Define the Bernoulli measure β̃ on the symbolic space Σ̃ as follows: The
weight of 0 is 1

3
(we get 0 in V − V in three different ways), and the

weight of all other elements of I are 1
9

. In this way for ı̄m = i1 . . . im and
j̄m = j1 . . . jm, where ik, jk ∈ V for k = 1, . . . ,m we get

(21) β̃ (̄ım − j̄m) =
1

9m
# {(̄ı′m, j̄′m) : ı̄m − j̄m = ı̄′m − j̄′m} .

The push down measure of β̃ is called β. Since a < 1
3
, the cylinders of

Λ̃ are disjoint. So β is a nice self-similar measure on the plane which does
not depend on b. Via projections with rays through the origin β induces a
measure γ on the real line with compact support. Namely, consider the cone
C(c, ε) :=

{
(x, y) : c− ε < y

x
< c + ε

}
. We define the measure γ as follows:

10



(22) γ(c− ε, c + ε) := β(C(c, ε)).

The pointwise dimension of γ at x is denoted by dγ(x). That is dγ(x) :=

limr→0
log γ(x−r,x+r)

log r
.

4 The main result

Theorem 9 dimC(Λ(b)) = min
{
dγ( b

1−a
), s

}
.

Before we prove this Theorem, we need some observations stated in the
following Lemmas.

We know from Proposition 6 and Corollary 7 that dimCΛ(b) < s = log 3
− log λ

if and only if for ωk, τk ∈ {0, b, 1− a}
(23)

lim sup
m→∞

log #

{
(ωm+1, τm+1) : ω0 6= τ0,

∣∣∣∣ m∑
k=0

ωka
k −

m∑
k=0

τka
k

∣∣∣∣ ≤ am+1

}
m + 1

> log 3.

First we observe that for i0 6= j0 I
(b)
i0...im

∩ I
(b)
j0...jm

6= ∅ holds if and only
if either i0 = 0 and j0 = b or vice versa. (We remind the reader that

I
(b)
i0...im

:= S
(b)
i0...im

([0, 1]) was defined previously.) We write

ı̄m := (i1, . . . im) = {j ∈ Σ : j0 = i1, . . . , jm−1 = im}

that is the k−th coordinate of an element of ı̄m is ik+1 for 0 ≤ k ≤ m − 1.
Moreover (i0, ı̄m) := {j :jk = ik, 0 ≤ k ≤ m} .

Put
Bm :=

{
(̄ım, j̄m) : I

(b)
0...im

∩ I
(b)
b...jm

6= ∅
}

.

The cardinality of Bm is called N
(b)
m which is just the half of the cardi-

nality which appears in the numerator of (23) since
m∑

k=1

ika
k and b+

m∑
k=1

jka
k

are the left end points of the intervals I
(b)
0...im

, I
(b)
b...jm

respectively, and am+1 is

the length of these intervals. To estimate N
(b)
m we observe that
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(24) (̄ım, j̄m) ∈ Bm ⇐⇒ Λ
(b)
(0,̄ım) ∩ Λ

(b)

(b,j̄m)
6= ∅.

Since I
(b)
i0i1...im

=
[∑m

k=0 ika
k,

∑m
k=0 ika

k + am+1
]
we get (̄ım, j̄m) ∈ Bm ⇐⇒

(25) |
m∑

k=1

(ik − jk)a
k − b| ≤ am+1

holds for every m ≥ 1.
Fix arbitrary ı̄m = (i1, . . . , i m), j̄m = (j1, . . . , j m) such that ik, jk ∈ V

for 1 ≤ k ≤ m. Observe that

(26)
m∑

k=1

(ik − jk)a
k − b = b(qm − 1) + (1− a)pm

where using the notation Tu(m) = {1 ≤ k ≤ m : ik − jk = u} (u ∈ I), pm =
pm(̄ım, j̄m) and qm = qm(̄ım, j̄m) are defined as follows:

(27) pm =
∑

k∈T1−a(m)

ak −
∑

k∈T−(1−a)(m)

ak +
∑

k∈T(1−a−b)(m)

ak −
∑

k∈T−(1−a−b)(m)

ak

and

(28) qm =
∑

k∈Tb(m)

ak −
∑

k∈T−b(m)

ak +
∑

k∈T−(1−a−b)(m)

ak −
∑

k∈T1−a−b(m)

ak.

Let cm := 1
(1−a)(1−qm)

then

(29) 1 < cm < a−1.

It follows from (25) and (26) that

(30) (̄ım, j̄m) ∈ Bm ⇐⇒
∣∣∣∣ pm

1− qm

− b

1− a

∣∣∣∣ < cmam+1.

Thus we have proved that:

12



Lemma 10

(31) if (̄ım, j̄m) ∈ Bm then

∣∣∣∣ pm

1− qm

− b

1− a

∣∣∣∣ < am

and

(32) if

∣∣∣∣ pm

1− qm

− b

1− a

∣∣∣∣ < am+1 then (̄ım, j̄m) ∈ Bm.

Using (20) for (τ1, . . . , τm) = (i1, . . . , im)− (j1, . . . , jm) the center of the
m−th cylinder of Λ̃τ̄m = Λ̃τ1...τm is

(33) center
(
Λ̃τ̄m

)
= Rτ1,...τm(0, 0) + (1, 0) = (1− qm, pm).

Roughly speaking, (̄ım, j̄m) ∈ Bm means that the slope of the center of Λ̃τ̄m

is cmam-close to b
1−a

, where τ̄m = ı̄m − j̄m. Let

U (b) (m) :=

{
(̄ım+4, j̄m+4) |Λ̃τ̄m+4 ⊂ C

(
b

1− a
, am+2

)}
where τ̄m+4 = ı̄m+4 − j̄m+4. Denote the cardinality of U (b) (m) by u(b) (m).

We need two simple geometric observations:

Lemma 11 If center
(
Λ̃τ̄m

)
∈ C

(
b

1−a
, am

)
then Λ̃τ̄m ⊂ C

(
b

1−a
, am−3

)
.

Lemma 12 If Λ̃τ̄m+4 ∩ C
(

b
1−a

, am+3
)
6= ∅ then Λ̃τ̄m+4 ⊂ C

(
b

1−a
, am+2

)
.

That is, if ı̄m+4 − j̄m+4 = τm+4 and Λ̃τ̄m+4 ∩ C
(

b
1−a

, am+3
)
6= ∅ then

(̄ım+4, j̄m+4) ∈ U (b) (m) .

Since their proofs are almost identical we should see the proof of Lemma
12 only.

Proof. (of lemma 12) Observe, that Λ̃τ̄m+4 lies in the x > 1
2

half plane

and Λ̃τ̄m+4 ⊂ C
(
0, π

4

)
, further Λ̃τ̄m+4 is contained in a square parallel to the

coordinate axes, of sides 2am+5

1−a
called Qτ̄m+4 . Assume that center

(
Λ̃τ̄m+4

)
is not above the line y = b

1−a
x. (The opposite case is similar.) Then

we have to prove that the right bottom corner of Qτ̄m+4 is contained in

13



C
(

b
1−a

, am+2
)
. From the geometric position of Qτ̄m+4 , this would imply

that Qτ̄m+4 ⊂ C
(

b
1−a

, am+2
)
. Let (x0, y0) be the left upper corner of Qτ̄m+4 .

Then it is enough to show that y0− 2 · side(Qm+4) > x0

(
b

1−a
− am+2

)
since

Λ̃τ̄m ⊂ C
(
0, π

4

)
. From the assumption of the Lemma: y0 ≥

(
b

1−a
− am+3

)
x0.

Thus we have to show that
(

b
1−a

− am+3
)
x0−4am+5

1−a
> x0

(
b

1−a
− am+2

)
, what

is obvious since x0 > 1
2

and 0 < a < 1
3
.

Using (31) and (33), Lemma (11) immediately implies that

Lemma 13 For τ̄m = ı̄m − j̄m if (̄ım, j̄m) ∈ Bm then Λ̃τ̄m ⊂ C
(

b
1−a

, am−3
)
.

As a consequence of Lemma 13 we can see that

Lemma 14 N
(b)
m

9m ≤ β
(
C

(
b

1−a
, am−3

))
.

Proof. Using (21) first we observe that for (̄ım, j̄m) ∈ Bm β
(
Λ̃ı̄m−j̄m

)
=

1
9m # {(̄ı′m, j̄′m) : ı̄′m − j̄′m = ı̄m − j̄m} = 1

9m # {(̄ı′m, j̄′m) ∈ Bm : ı̄′m − j̄′m = ı̄m − j̄m} .
This is so, because by (25) if ı̄′m − j̄′m = ı̄m − j̄m and (̄ım, j̄m) ∈ Bm then
(̄ı′m, j̄′m) ∈ Bm either. Using this and Lemma (13) we obtain the statement
of the lemma.

As a trivial consequence of Lemma 12 we obtain

Lemma 15 C
(

b
1−a

, am+3
)
∩ Λ̃ ⊂

⋃
(ı̄m+4,j̄m+4)∈U(b)(m)

Λ̃τ̄m+4, where τ̄m+4 =

ı̄m+4 − j̄m+4 as usual.

As a consequence of Lemmas 14,15 we get:

(34)
N

(b)
m

9m
≤ β

(
C

(
b

1− a
, am−3

))
= γ

(
b

1− a
− am−3,

b

1− a
+ am−3

)
and

(35)

γ

(
b

1− a
− am+3,

b

1− a
+ am+3

)
= β

(
C

(
b

1− a
, am+3

))
≤ u(b) (m)

9m+4

respectively. To get asymptotic for N
(b)
m and u(b) (m) we prove some further

lemmas:
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Lemma 16 If

(36)

∣∣∣∣∣
m+4∑
k=1

(ik − jk) ak − b

∣∣∣∣∣ ≤ am+4

then (̄ım+4, j̄m+4) ∈ U (b) (m) .

Proof. Using (26) and (29) we see that (36) implies |(1− a) pm+4 − b (1− qm+4)| <
am+3 (1− a) (1− qm+4) . Therefore,

∣∣∣ pm+4

1−qm+4
− b

1−a

∣∣∣ < am+3. From (33) we

obtain that center
(
Λ̃τ̄m+4

)
∈ C

(
b

1−a
, am+3

)
. Using Lemma 12 we obtain

the statement of our lemma.
Using the Corollary of Rams’ Theorem we shall prove that for those b

for which

(37) lim sup
m→∞

log N
(b)
m

m
> log 3

the exponential growth rates of u(b) (m) and N
(b)
m are the same.

Lemma 17 If (37) holds then

lim
m→∞

log N
(b)
m

m
= lim

m→∞

log u(b) (m)

m
= (2s− dimC Λ) log

1

a

in particular the second limit exists.

Proof. If two cylinders Λ
(b)
i0...in

and Λ
(b)
j0...jn

of Λ(b) with different first
digits i0 6= j0, are close to each other then either i0 = 0 and j0 = b or vice
versa. Thus it follows from Lemma 16 that for τk, ωk ∈ V

(38) u(b) (m) ≥ 1

2
#

{
(ωn, τn) : ω0 6= τ0,

∣∣∣∣∣
n−1∑
k=0

ωka
k −

n−1∑
k=0

τka
k

∣∣∣∣∣ ≤ zan

}

where n = m + 5, z = a−1. Using (25), we obtain that for τk, ωk ∈ V and
n = m + 1, and z = 1

(39) N (b)
m =

1

2
#

{
(ωn, τn) : ω0 6= τ0,

∣∣∣∣∣
n−1∑
k=0

ωka
k −

n−1∑
k=0

τka
k

∣∣∣∣∣ ≤ zan

}
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Finally, if (̄ım+4, j̄m+4) ∈ U (b) (m) then by definition Λ̃τ̄m+4 ⊂ C
(

b
1−a

, am+2
)
.

So, in particular, center(Λ̃τ̄m+4) ∈ C
(

b
1−a

, am+2
)
. Then by an argument par-

allel to the one in the proof of Lemma 16, we obtain that

∣∣∣∣m+4∑
k=1

(ik − jk) ak − b

∣∣∣∣ <

am+2 (1− a) (1− qm+4) < am+2. Thus, for τk, ωk ∈ V and n = m + 5, and
z = a−3

(40) u(b) (m) ≤ 1

2
#

{
(ωn, τn) : ω0 6= τ0,

∣∣∣∣∣
n−1∑
k=0

ωka
k −

n−1∑
k=0

τka
k

∣∣∣∣∣ ≤ zan

}

Now, putting together (38), (39) and (40), Corollary 7 immediately implies
the statement of our lemma.

Now we are ready to prove our main Theorem.
Proof of the Main Theorem. Assume that (37) holds. Then from

(34) and (35) we get that

N (b) (m)

9m
≤ γ

(
b

1− a
− am−3,

b

1− a
+ am−3

)
<

u(b) (m− 6)

9m−2
.

From Lemma 17 we get that limm→∞
log β(C( b

1−a
,am))

m log a
= −2s+dimC Λ(b)−

2 log 3
log a

= dimC Λ(b). If (37) does not hold then it follows Proposition 6 that

dimC Λ(b) = s. This completes the proof of the main theorem.

5 Connection with multifractal analysis

It follows from our result above that if b ∈ E, that is, b is exceptional
(dimC Λ(b) < s) then the correlation dimension is given by the lower point-
wise dimension of γ. So to understand how big the exceptional set is, we
have to understand, how big is the set on which the pointwise dimension of
γ is smaller than s. This so because if the lower pointwise dimension of γ
at b

1−a
, dγ

(
b

1−a

)
< s then (37) holds. Therefore in this case dγ

(
b

1−a

)
=

dγ
(

b
1−a

)
= dimC Λ(b).

For this reason the multifractal analysis of γ may be useful. Let f(α) =
dimH{x|dγ(x) = α} and αmin := inf{α|f(α) > 0}.
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Since the measure γ is not a self-similar measure, it is not trivial to find
its multifractal analysis. However, γ is the projection via rays through the
origin of a very nice (no overlaps) self-similar measure β.

In the literature there are estimates on E from above (see e.g. [6] or
[10]) but there are no estimates on E, even at special cases, from below. If
αmin < s then it implies that the exceptional set E has positive Hausdorff
dimension, and in this way it would prove that the dimension drops not
only in case of having two cylinders which coincide. This could be a partial
answer on the problem mentioned in the introduction.
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