ON THE SIZE OF THE ALGEBRAIC DIFFERENCE OF
TWO RANDOM CANTOR SETS

MICHEL DEKKING AND KAROLY SIMON

ABSTRACT. In this paper we consider some families of random Cantor
sets on the line and investigate the question whether the condition that
the sum of Hausdorff dimension is larger than one implies the existence
of interior points in the difference set of two independent copies. We
prove that this is the case for the so called Mandelbrot percolation. On
the other hand the same is not always true if we apply a slightly more
general construction of random Cantor sets. We also present a complete
solution for the deterministic case.

1. INTRODUCTION

Algebraic differences of Cantor sets occur naturally in the context of the
dynamical behavior of diffeomorphisms. From these studies a conjecture by
Palis([11]) originated, relating the size of the arithmetic difference F;, — F} =
{y—x:2 € Fi,y € F»} to the Hausdorff dimensions of the two Cantor sets
F1 and FQI if
dlmH F+ dlmH FE>1
then generically it should be true that
F, — F| contains an interval.

For generic dynamically generated non-linear Cantor sets this was proved
in 2001 by de Moreira and Yoccoz ([10]). The problem is open for generic
linear Cantor sets. The problem was put into a probabilistic context by
Per Larsson in his thesis [7], (see also [8]). He considers a two parameter
family of random Cantor sets F,;, and obtains that the Palis conjecture
holds for a set of a and b of full Lebesgue measure. However Larsson’s proof
contains errors and significant gaps. In a forthcoming paper the authors
of the present paper will correct these errors and fill the gaps in Larsson’s

2000 Mathematics Subject Classification. Primary 28A80 Secondary 60J80, 60J85

Key words and phrases. Random fractals, Mandelbrot percolation, difference of Can-
tor sets, Palis conjecture, multitype branching processes in varying environment, super-
branching processes.

The research of Dekking was partially supported by the National Science Founda-
tion of China #10371043. The research of Simon was supported by OTKA Foundation
#T42496 and the NWO-OTKA common project.

1



2 MICHEL DEKKING AND KAROLY SIMON

proof. Here we will study Palis’ conjecture for a natural class of random
Cantor sets considered e.g. in [4], [1], [5] and [2]. A special member of this
class was already considered in 1974 by Mandelbrot ([9]).

2. RANDOM CANTOR SETS

Given are M > 2 and the vector p := (po,...,pym-1) € [0,1]M, in general
not a probability vector and p; = 0 or 1 are also allowed.

Let 7 be the M-adic tree. For each n 7 has M™ nodes at level n, which we
denote by strings i, = iy ...4,, where i, € {0,..., M —1} for k=1,...,n.
There is one node at level 0, the root, denoted (). We consider a probability
measure P, on the space of labeled trees, i.e., each node 4, ...1%, obtains a
label X;, ; which will be 0 or 1. The probability measure is defined by
requiring that the X;, ; are independent Bernoulli random variables, with
P,(Xg=1)=1,and forn > 1 and 4;...4, € {0,..., M —1}"

]P)p<Xil~--7;n = 1) = pln

In particular, when the X;, ;, areiid.—i.e. p; = p for all +—then P, will
generate Mandelbrot percolation.

The randomly labeled tree generates a random Cantor set in [0,1] in the
following way. Define

in 11 i9 in  Ip+1
VRV C R VTR VT

1 19
I s o= | 2
e M—i_M2+ +M”

The n-th level approximation F™ of the random Cantor set is a union of
such n-th level M-adic intervals selected by the sets S,, defined by

The random Cantor set F' is
F=(F"= U L
n=1 n=1 41...in, €Sy

Let Z,, = Card(S,,) be the number of non-empty intervals I;, ; in F™ and
let Zy := 1. Then (Z,),,oy is a branching process with offspring distribution

the law of Z;. Namely, let £§n), for 7,n > 1 be i.i.d. random variables such
that £™ £ Z,. Then

gL ET e iz, > 0
T 0, if Z, = 0.

Note that
Ep(Zl) = Ep(Xo + -+ XM—l) = Po + - +pM_1.
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Therefore the branching process will almost surely die out—and F' will be
empty—if this expectation is smaller than 1. Hence we will assume from
now on that

(2'1) Zpk > 1.

The expectation also determines the Hausdorff dimension dimy F' of F; it
is well known ([4] or [6]) that:

M—1
Fact 1. dimyg F' = log < > pk) /IOgM almost surely on F # .
k=0

3. DIFFERENCES OF RANDOM CANTOR SETS

Let Fi, F5 be two independent copies of the random Cantor set F' above.
From now on P will denote the product probability P, x P,. Let F* and
E7 be the corresponding n-th level approximants of F; and Fb, so

F; = ﬂ F!" fori=1,2.
n=1

Our aim here is to investigate whether the difference set

Fo—F ={y:3x, € F,,y=2 — a1}

contains an interval. It is immediate that

Fact 2. For a set A C R? we denote the projection of A on the y axis along
lines having a 45° angle with the x axis by Proj,s.(A). Then

F2 — F1 = P?"Oj45o (Fl X FQ)
In this way, if dimy F' < % then dimy (Fy — F7) < 1, so it does not contain

M-1

any interval. By Fact 1, this happens if and only if > pr <V M. So, we
k=0

may hope to find an interval in F, — F; only if the following condition holds:

M-1
(3.1) dimp Fy + dimg F, > 1, that is > pp >V M.
k=0
Define ppr4j = p; for j = 0,1,..., M. Now we can define the cyclic auto-
correlations i by
M-1

Vi 1= ijijrk for k=0,..., M.

J=0
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Theorem 1. Conditional on Fi, Fy # (), we have

(a): If v > 1 for all k then Fy— Fy contains an interval almost surely.

(b): If there exists an k € {0,...,M—1} such that v, and i1 are
both less than 1 then Fy, — Fy almost surely does not contain any
intervals.

In the case of the Mandelbrot percolation all p; = p for some 0 < p < 1. In
this case , = Mp? for all k. With Fact 1 we obtain the following corollary.

Corollary 1. The Palis conjecture holds for Mandelbrot percolation. That
18, if F'is Mandelbrot percolation, then dimy Fy + dimy Fy < 1 implies that
Fy — Fy almost surely contains no interval, and dimyg F} + dimyg F5, > 1
implies that Fy — Fy almost surely does contain an interval (conditional on
Fi, Fy being non-empty).

4. COMMENTS ON THEOREM 1

4.1. Exceptional behaviour. It can happen that Condition (3.1) holds
but almost surely, F, — F} does not contain an interval. Let M = 3 and for
a small number € > 0 (say, ¢ < 1/4) let pg = 1,p1 = 0,p, = 1 — . (This
is almost the triadic Cantor set with the difference that the second interval
is chosen with probability less than one.) Then Condition (3.1) holds, but
Y1 =7 =1—¢€ < 1, so almost surely there is no interval in F;, — Fy. That
is, the so-called Palis Conjecture does not hold.

4.2. Scope of the theorem. In the general case it can happen that for
some k, v < 1 but 751 > 1. In this case our theorem is inconclusive (see
Section 7 for a further discussion). However, if M = 3 then vy > 71 = 7.
Thus, if pop1 +p1p2+p2po > 1 then F,— F; almost surely contains an interval
given that F, F5 are non empty. On the other hand, if pop; +p1p2+papo < 1
then F5 — F) does not contain any interval almost surely.

4.3. The deterministic case. In the case that all p; € {0,1} we have a
complete answer to the question whether I, — F} contains an interval or
not. This will be given in Section 8.

4.4. A generalisation. Theorem 1 remains true when we consider the dif-
ference set of two independent Cantor sets F; and F, generated by two
different p-vectors of the same length; the autocorrelations simply have to
be replaced by cross correlations. Assume that the probabilities for F} are
Do, - --,Prm—1 and for Fy the probabilities are qo, ..., qy—1. Then to get

dlmH Fi+ dlmH F,>1
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we need to assume that
M-1 M—1
D_pii ) a > M
i=0 =0

The cross correlations are:

M-1
Ve = Z 4jPj+k
3=0

With this all calculations will be the same except for a small adaptation of
the proof of Lemma 2. The obvious generalization of Corollary 1 remains
true.

5. COUNTING TRIANGLES

Before we start the proof of Theorem 1 we would like to introduce some
notation. Since it is easier to study 90° projections we rotate the [0, 1]x [0, 1]
square by 45° in the positive direction and translate it, so that its horizontal
diagonal, let us call it J, is the [—— ,2\/_} mterval on the x axis. Let
this transformation be called ¢, and let

Q= ([0,1]x[0,1]), A":=(F'x F3), A:=@(F X Fy).

In this way instead of the 45° degree projection Proj,s. of 7 X F» to the y
axis, it is equivalent to consider the orthogonal projection of A to J.

The image under ¢ of the square I;, _; X I;, ;. is denoted Q;, ., j,..;.- Every
n-th level square Q;, i, j,..j, is divided into two congruent triangles by its
vertical diagonal. The one which is on the left side is denoted L; ; . We call
Li, i, ., an n-th level L-triangle. The other part of the square Qi
denoted R; ; . In the same way, we divide the square @) into two trlangles
L and R , "as in Figure 1. Note that A satisfy a symmetry property: if
we replace (z,y) by (—=z,y) (e (i,,7 ) by (j, .1,) at level n) then L N A
is mapped to R N A and vice versa. Moreover, since this corresponds to
replacing F| x Fy by Fy x Fy, P is invariant for this mirroring. It follows
that properties that we deduce for R N A will also hold for L N A. For this
reason, and to simplify the statements, several of the following results are
formulated for the R-triangle only.

The orthogonal projection (any projection from now on will be meant to be
orthogonal) of the n-th level L- and R-triangles to [0, %\/ﬂ are M"™ intervals

of length %\/5 - M~™. We denote them in the following way:

1
Jkl...kn = 5\/5 : Ikl...kn-
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The intervals in [—%\/5, ()] will be denoted
- 1
Jkl...kn = Jkl...kn — 5\/5

Now we introduce the appropriate vertical columns intersecting triangle L
respectively R: we write

Clc_lkn = Jk_lkn x R, Chryoen = Ty, X R.

We are going to count the number of L- and R-triangles in these columns.
The idea is that as long as there are L- and R-triangles in Cl, . , , then the
interval Jy, , is in the projection of A”. Let for U,V € {L, R} the number

Co  Cr Gy Ci | Co | Ci | Co | Cy
C12

Q?),O

FIGURE 1. The case M = 4. The square @) split into two
triangles L and R with level 1 squares, triangles and columns.
Also shown is level 2 column C}, with a A-pair.
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of level 1 V-triangles in A'NC,, (if U = L), respectively A'NCy, (if U = R),
generated by a level 0 U-triangle be denoted by ZVV (k). So for instance

Z"k) = #{(i,j) : Qi; CAR;; CCy }.

More generally, we denote by ZUV (k) the number of level n V-triangles in
A" N Oy (respectively A" N Cy, ) generated by a level 0 U-triangle. Let

EZLE(k,) EZLE(k,
i - [t B

Then from the definition one can easily check that
(5.1) M(ky .. k) = M(ky) - M(ky,).

In the context of branching processes this is an obvious property: for a fixed
sequence (ki, ko, ..., kn,...) the process (ZYV(k,)) is a two type branching
process in a varying environment with neighbour interaction. Actually we
will be needing another process that is not a multi type branching process,
but a superbranching process ([1]) in varying environment, which also has
neighbour interaction. The reason we need this process is that an R-triangle
will have very few offspring (next level L- and R-triangles) in the right most
subcolumns in which it occurs, and possibly a lot in the left most columns.
To balance this asymmetry we will pair L-triangles and R-triangles.

Let n Z 1. Any pair (Ln,Rn) = (Li1~-vin7j1~njn7 Rl&”m]i]h) of dZS]OZTLt n-th
level L-triangles and R-triangles with L" C Cy and R" C Cj for some
k, is called a level n A-pair (cf. Figure 1). Disjoint means that they are
not allowed to share an edge, so that their offspring distributions can not
interact. We try to find as many A-pairs as possible in a column, where an
L-triangle or R-triangle is allowed to belong to at most one A-pair. It can
be proved by mathematical induction that for m > 3 we can find m A-pairs
as soon as m L-triangles, and at least m R-triangles occur, or vice versa.
We then say that m A-pairs occur in the column. To analyze the process
of A-pairs we consider the number of V-triangles generated in columns Ck;

and Cj, by the level 0 triangles L and R. This is equal to
2 (k,) = 2% (k,) + 2" (k).
Note (cf. Figure 1) that for each k € {0,..., M —1}:
LijeC,ei—j=k+1(modM), R;;€Cpsi—j=k(modM),

and that this also holds for the C)  columns.
Since

P(Q;; € A =P(I; € F},I; € F)) =P, (I; € FPy(I; € Fy) = pip;j,
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we obtain that for k € {0,..., M —1}
(52) EZ(K) =y, EZ7(K) =

This is the reason that in the statement and the proof of Theorem 1 the
number

= min EZV(k) = min
Ve{L,R},0<k<M—1 0<k<M-1

has an important role.

We will need in the proof of Lemma 4 that there is a positive probability
that the number of A-pairs grows exponentially fast in all columns. When
all p; are positive this is trivial. The following lemma deals with the case
where some p; may be zero.

Lemma 1. For anyn
P(Z*(k,) > " and Z"(k,) > 4" forall k,) > 0.

Proof. We want to know the maximal number of level n L-triangles and
R-triangles that occur in the columns Cy and C)  with positive PP proba-
bility. Let p; = p; if p; = 0, and pj —11fpj>0 Fork—() , M—1 we
denote the expectation matrices generated by the vector (po, e p*M_l) by
M*(k). Note that if all the level n squares Q;,. i, j,..j, for which p;; ; >0
and p;,j, > 0 are selected (which happens with positive probability) then
ZE(k,) (Z%(k,)) is the sum of the two elements in the first column (sec-
ond column) of M*(k,,) respectively. Now note that (with all inequalities
componentwise)

(5.3) (L )M(k,) = (L YM(k,) = (v"1"),
since the fact that the sum of the two elements of both of the columns of
M (k) is greater than v for every k implies that the sum of the two elements

of both of the columns of M(k,,) is larger than 4". The claim follows now
directly from (5.3). O

6. THE PROOF OF THEOREM 1
First we show that we can start the A-pair process in R at level 2.

Lemma 2. Let pa be the probability that Coo N A? contains a level 2 A-pair.
If v > 1 then pa > 0.

Proof. We know that yy/—1 = popapr—1+pipo+- - - Pr—2Prvi—3+DPrv—1Pv—2 > 1.
This means that at least one of the last M — 1 terms is not zero. So,
there is an 0 < ¢ < M — 2 such that both p; > 0 and p;»; > 0. Then
Qi(i+1),41 is selected with probability pipir1 and Q i+1)(i4+1),(i41)(i41) 18 se-
lected with probability p;ﬂrl. Using that L1y = Qigi+1): N Coo and
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Riir1y(it1),(i+1)6+1) = Qur1)i+1),(i+1)i+1) N Coo We obtain that with proba-
bility pipi1pi,, we select the A-pair (Ligit1yii, Rit1)(ir1),i+1)6+1) 0 Coo.
Thus pa > pipi,, > 0. O

It follows from the self-similarity of the construction that the following fact
is true.

Fact 3. Let (L", R") be a n-th level A-pair in some column Cy, . Consider
the following conditional probability:
P(Projyp-(L" UR") NA) = Jp | L" C A", R" C A").

Then this probability, denoted py, is independent of n, k., and the choice of

L™ and R".

n’

Proposition 1. Assume that v > 1. Then py > 0.

In the sequel we will denote
N(k,) := min { Z"(00k,,), Z"(00k,,) } .

Note that N(k,) counts the number of level n 4+ 2 A-pairs in subcolumns
of Cyy, and that by Lemma 2 we know that we start in Cyy with a level 2
A-pair with positive probability.

Lemma 4 below will directly imply Proposition 1. In Lemma 4 we apply the
large deviation theorem in the same way as in Falconer and Grimmett ([2]).
Unfortunately in our case the appropriate random variables are not pairwise
independent. To handle this problem we first prove a lemma which implies
that N(k,,) level n+2 L-triangles and N (k,,) level n+2 R-triangles in column
Coor, can be paired into A-pairs such that these N(k,) A-pairs can be
divided into three groups (of approximately the same cardinality) with the
following property: any two triangles (left or right) from any two pairs from
the same group are disjoint. This will provide the required independence.
For each k, we consider all the left and right triangles in column Cpgg . Let
K = K(k,) be their cardinality. We can naturally label these K triangles
with {1,..., K} in the order in which they appear in the column, starting at
the bottom. Then the odd numbers correspond to the level n+2 R-triangles
of Coor, N A"*? and the even numbers to the L-triangles. The assumption
that an L and R triangle form a A-pair is equivalent to the assumption that
the corresponding even and odd numbers are not consecutive. Through this
identification the following combinatorial lemma ensures the division into
three groups announced above.

Lemma 3. We are given N distinct odd numbers oy, ...,ox and N distinct
even numbers eq, ..., ey. Then we can couple the odd numbers with the even
numbers and we can color the N couples with three colors (say r,g and b)
such that no two numbers in pairs of the same color are adjacent and all
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colors are used for at least | N/3| pairs. That is, there exists a permutation
m of {1,..., N} such that we can color the pairs

(617 071'(1))7 ) (€N> OW(N))

with the three colors such that with each color we painted at least | N/3|
pairs and for any (also if £ = k) (ex, 0rk)) and (eg, 0x(e)) having the same
color it is true that:

leq — On(iy| > 1.

The proof of this three color lemma will be given in the appendix.
The following key lemma, and its proof, are very similar to the main result
on orthogonal projections of random Cantor sets in [2].

Lemma 4. Assume that v > 1. Then
P(N(k,) >0Vk, €{0,...,M—1}" for all n) >0
holds.
Proof. Using that EZY (k) > ~ for V. € {L,R} and k € {0,..., M —1}, it

follows from Large Deviation Theory that we can choose an ' with 1 < ' <
min{2,7} and 0 < § < 1 such that

(6.1) P(Z) (k) + -+ 2y (k) < qn) <6

for all ¢ > 1, whenever Z} (k), Zy (k) ... are independent random variables
with the same distribution as ZV (k). Fix an 1 <7 < 1’ and choose ng such
that for all n > nyg

(6.2) n- Q%J +1) <n- {%J .
Let
A, :={N(k,) >n":Vk,€{0,....M —1}"}.
It follows from Lemma 1 and Lemma 2 that for all n > 1 we have
(6.3) P(A,) > 0.

To continue the proof we have to get rid of possible dependence between
A-pairs. Fix an arbitrary k, and k. Let

N::S{%J.

Using Lemma 3 we can we can label and then pair the level n + 2 left and
right triangles of Cpor, M A™™? into N A-pairs (Ly, Ry), ..., (Ly, Ry) such
that for every ¢ = 0, 1,2 we have that all the triangles

(6.4) Linszi1s Rinyzsts - - -5 Lgy)nys, Bagynys are disjoint.
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For every i = 0,1,2 and 1 < j < N/3 we denote the A-pairs D; =
(Lin3+j, Rinys+;) and we write ZZ‘J/V/3+](/<:) for the number of level n + 3

V triangles in Coop, N Dj. Note that for every i it follows from (6.4) that
the N/3 random variables

Zinssia(k), - 20 1ynys (k)

are independent and each of them has the same distribution as ZV (k). Now
we define

S (00k, k) := ZZN/3+1(k) +o Tt Z(‘;+1)N/3<k)'
So, for any k,, k and V € {L, R} we have

2
ZV(00k, k) > SY (00K, k).

=0

This directly implies that

2 n
P (Z"(00k,k) <n"*'A,) <) P <5¥ (00k, k) < 7 Q%J - 1) ‘ An)
i=0
2 N "
< Z ( zN/3+1 )+t Z(‘;H)N/g(k) <n ({?J + 1) ‘ An> ;

and thus, using that N > 1™ on A, that the Z) (k) are independent of A,,,
and using (6.2) and (6.1) we obtain

P (ZY(00k,k) <n"™'|4,) < 3-P <21V(k> b 2 (R) <1 L%D

< 3§/l

So

P(AS,|A,) = ( U UU2z"(00k,k) <y A )
VE{LR) k, k
< Y ZZP(Z" (00k, k) < "+ A)

Ve{L,R} k,
< 6-M"-M.sn"/3L

Using this and the fact that for any r < n, we have P (A%, |4, N---NA4,) =
P (A, |A,) we obtain that

P (A, |A, O N A,) < 6M™HS" )
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holds for all » < n. Therefore for all r < n,
P(Ayin---NA) > (1—6M"HsBYP(A, N NA,)

> P(A)]] (1 - 6Mk+16L"k/3J> .
k=r
Choose r > ng such that J[>7 (1 —6M"T6""/3) > 0. Using (6.3) this
implies that ¢ := P(A4,) []>2, (1 — 6M"*150"/3)) > 0. Thus

n=r

P (A, holds for all n > r) > c.

This immediately implies the statement of the Lemma. U

Corollary 2. Let v > 1. For everyn and (iy . ..ip,J1 - - - Jn) the conditional
probability of the event that the projection of AN Qi 4, 1.4, to J contains
an interval given that Qi i, j..j. C A" is at least pa - py > 0.

Proof. By symmetry it suffices to prove this for squares such that R, _;, ;...
is contained in R. Let C} be the column that contains R;, , j,..j,- Then
Ck, o0 will contain a A-pair of level n + 2 with probability not less than pa
(see Lemma 2). Then by Fact 3 and Proposition 1 the probability that the
projection of this A-pair intersected with A is the interval Ji o is at least

PJ. D

From here we can finish the proof of our theorem as in the proof of Theorem
1 in [2]. However, because there is a lot of dependence between the squares
in A", our proof of part (a) is slightly more involved.

Proof of Theorem 1 (a). Here we assume that v > 1. We call two squares
Qir.iin g A Qir v i _ir unaligned if bothdy .. i, # 4y .. .ij and jy ... jn #
J1---jh. For every n let K(n) be the maximal number of pairwise unaligned
squares of A™. Then, by maximality of K (n), we can cover A with K (n)-2M"
squares of side M ~™. So, conditioned on A # () the Hausdorff dimension of
A almost surely satisfies

: . log (K(n)-2M"
1<d1mH(A)§r}l—>Holo g<lo<g])\4” )

Here dimg(A) > 1 follows from the hypothesis 7, > 1 for all k& (cf. condition
(3.1), which is equivalent to yo + - - - + yay—1 > M).
We obtained that

(6.5) {A#0} C {lim K(n) = co}.
For every n we fix a system {Q7,Q5, ... ,Q’;{(n)} of pairwise unaligned n-

squares contained in A™ which has cardinality K (n). Let
C: = {int(Projgp. (@5 N A)) = 0},
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and
C := {int(Projgg. (A)) = 0},

be the events that the unaligned squares Q7 N A for s = 1,..., K(n), and
the total set A do not have an interval in their projection. Our goal is to
prove that

P(CIA#0)=0.
According to Corollary 2 it holds for all s that
P(C)) <1—paps=:t<1Ll.
By the definition it is clear that for every n, N we have

P(CIA#0) < P(K(n) < N|A#0)+P(CN{K(n)> N}HA#D)
< P(K(n) < NJA£0)+P(CTN---NCN|A#0)
tN

P(K(n) < N|A#0) + —Fr—,

(K(m) < NA£D) + 505
where we use that the branching processes which determine A in each of
the unaligned squares run independently. Letting first n — oo, and then
N — oo we obtain from (6.5) and ¢ < 1 that P(C|A # 0) = 0 which
completes our proof. O

IA

Proof of Theorem 1 (b). If there is k such that both 7k, V11 < 1 then using
(5.2) we obtain that both of the column sums of the matrix M (k) are less
than one. This and (5.1) implies that for every ky ...k, we have

lim [|M(ky .. ko, Kk, k)| — 0
m—oQ H—/

Let Z,, be the total number of either left or right triangles of level n +m in

column CY],“_”]%“]67 k... k- Then
N —

m

E(Zy) = |IM(ky .. ko Kk, k)|
——

and by the Markov inequality, P(Z,, > 0) < E(Z,,). So with probability

one
(o)
m=1

N——

m

is not contained in the projection of A. Since by varying k, we may obtain
a dense set of such points, we conclude that in this case the projection of A
does not contain any interval with probability one. 0
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7. HIGHER ORDER CANTOR SETS AND EIGENVALUES

Here we reconsider (cf. Subsection 4.2) the question of the scope of The-
orem 1 by introducing higher order Cantor sets. We also discuss the con-
nection with the eigenvalues of the matrices involved in the generation of
Fy — Fy. This will be illustrated by two examples. First we consider the
family of random Cantor sets parametrised by p with 0 < p < 1 given by
M =4 and (po,...,ps) = (1,0,1, p). Clearly this gives

YUR SR TN PR P )

The cyclic autocorrelations are

Yo =24p", 1 =2p, Y2 =2, V3= 2p.
The Palis conjecture predicts that the difference set will contain an interval
almost surely for all p > 0. Application of Theorem 1 gives no conclusion
for p < %, and that for p > % this is indeed the case. However, it is possible
to get more out of the theorem by considering higher order Cantor sets.
The order 2 Cantor set associated to the set generated by (po, ..., py—1) is
the base M? Cantor set with vector

2 2
(p((l )7 e Jpg\/[)Zfl)

given by

2 ..
pg\/l)i—&-j:pipj for i,7€{0,...,M—1}.

We will denote the objects associated to p® all with a superindex (2),
for instance F® is the random M?-adic Cantor set generated by p®, and
I lg)kn denotes an n-th level M?-adic interval. The key fact is that for all
i1 iny g1 Jn € {0,..., M —1}" one has
) =

Mi1+j17'--7Min+jn ljl---injn'

This implies that F has the same distribution as (), -, F'*", which equals
the original Cantor set F'. We can therefore obtain statements about F' by
applying Theorem 1 to p?). Note that M@ (Mi+j) = M(ij) = M(G)M(j).
So in our example

@) () _ e 0 {2407 p| _ |20+ P
M) = o) = 0, 0 P =L e

It follows that v\ = 4p + 2p® and 7§2) = 2p + 2p? + p?. Clearly 7§2) <
’yf), and the latter is smaller than 1 for all p smaller than the real root of
4p+2p® = 1, which is about 0.242. Theorem 1 now gives that I, — F} does
almost surely not contain an interval for all p < 0.242. On the other hand we

can also strengthen the conclusion for the opposite case: a straightforward
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computation yields that for all p, v?) = 2p+2p%. Hence F, — F; will contain
an interval for all p larger than (v/3 —1)/2 = 0.366. . ..

Note that for all positive p the Perron Frobenius eigenvalues of all the M (k)
are larger than 1, but that still F5, — F} does not contain an interval for
a range of values of p. However, eigenvalues may be useful to prove the
opposite case: the Perron Frobenius eigenvalue of M(?)(3) is equal to

<p2+-p/2%—2—%1/2\/4p3%—p2+—8p)/n

which is smaller than 1 when p < 0.3221. As in the proof of Theorem 1
part(b), this can be used to show that a dense set of points is not in F; — F.
Using higher order Cantor sets (up to order 324), and Matlab we obtained
that the critical point p. where Fy — I changes from empty to non empty
interior, satisfies 0.3222 < p, < 0.3226.

We consider a second parametrized family which has a very different be-
haviour. Let M = 5, and (po,...,ps) = (1,0,p,0,1) for 0 < p < 1. (See
Figure 2.) One finds

M(0) = [(1) , EpQ} L M(1) = [2(1) (1)} L M(2) = {20/) 20p1 :

and M(3), M(4) are obtained from M(1), respectively M(0) by interchang-
ing R and L. Since ’yf") = 1 for all n, Theorem 1 is not applicable, even if one
considers higher order Cantor sets. However, since the 5 matrices are either
diagonal or anti-diagonal, it is not hard to prove that the Perron-Frobenius

eigenvalues A(kj ... k,) of the matrices M(ky ... k,) satisfy

Akr k) = (\/20)"

This seems to suggest that the critical p for this family is equal to 1/2.
Surprisingly, we here have p. = 1. It follows from Theorem 2 that F» — F}
contains an interval when p = 1. To see that F, — F} has empty interior for
p < 1, consider column Cj, _;, 44...42 0of level n+m+1 for each ¢, . .. 4, such that

C},..i, has only R-triangles (these are in fact all the columns where iy, ..., i,
are all even numbers). Then if there are K R-triangles in Cj, ; this will
be also true for all columns Cj, ; 44..4 of level n 4k, where &k =1,2,... m,

and moreover, column Cj,_ ; 44..42 Will be empty with probability

[(1—p)2]"
for all m. It follows as at the end of the proof of Theorem 1 b) that there
is a dense set of points in the complement of the projection of A.
An alternative would be to adapt the proof (to our setting which has much
more dependence) of the main result on fractal percolation of [2], or rather
its supplement from [3]. The crucial observation here is that the first level
columns C}. and Cj, split in pairs (Cy, C7), ..., (Cs, Cy), that do not interact
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CyCCyCyCy CoCrCaC3Cy

FIGURE 2. The square @ for the (1,0, p,0,1) Cantor set; the
shades indicate the probabilities with which the @); ; do occur.

with each other, since the (); ; only occur with positive probability when i —j
is even. Redefining each pair of columns as a single new column, and tilting
the Q;;’s, the question of empty interior could then be resolved by the
(extended) results of [2] and [3].

8. THE DETERMINISTIC CASE

In the deterministic case each p; is either 0 or 1, and the matrices M (k) sim-
ply count the number of level 1 L-triangles and R-triangles in the columns
C, and Cj. The crux to the solution in this case is that we can reduce
the problem to a finite problem by observing that to have a non-empty pro-
jection in a certain column we only have to know whether there is at least
one L- or R-triangle in that column. We relax the A-pair condition: now a
pair of adjacent R- and L-triangles is also allowed since independence is no
longer an issue.

For a non-negative integer matrix A, let its reduction A" be defined by
aj; = 0if a;; = 0, and a; = 1 if a;; > 1. Note that the reduction of the
product of two matrices equals the product of their reductions. It follows
that the reduction of M(ky)Y --- M(k,)" describes the presence or absence
of n-th order L- and R-triangles in columns k; ...k, of order n. Let 7 be
the set of 2 x 2 matrices with entries 0 and 1. For convenience we denote
these matrices by their natural binary coding:

{CCL Z}:Tj & j=a+2b+4dc+8d.

Define the map G : 27 — 27 by G() = (), and for C # ()
GIC)={(TT")" : T eC,T €C}.
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Then there is an empty column of order n in A™ if and only if

T |y o € CHEMO . MOE-1)7)),

where G™ is the n-th iterate of (G. Since G is acting on a finite set, the orbit
of any point becomes eventually periodic. We call that periodic sequence an
attractor, denoted by A. Examples are fixed points of G, as e.g., A = {1y}
and A = {Tg,Ty}. Assisted by the computer we can show that actually all
attractors are fixed points (the proof below can be adapted to a proof which
does not explicitly use this result).

Theorem 2. Let the Cantor set F' be generated by a 0-1-vector (po, - .., pap—1)-
Then Fy — F| does not contain any intervals if and only if Ty € A, where A
is the fized point of the map G starting from {M(0)¥,--- , M(M—1)"}.

Proof. <) If Ty € A then an empty column has to occur in some column
of order n, where n < 26 (actually a computer analysis shows that n < 3).
The proof that F, — F} does not contain any intervals, is then finished as
the proof of Theorem 1, part b).

=) Suppose Ty ¢ A. We split into two cases.

Case 1. For somen > 1 a A-pair of order n occurs.

Suppose that this happens in column Cj or in Cp . For arbitrary m and
Iy ...1,, the fact that T does not occur in A implie;nthat M(ly .. 1) # T,
and hence that all subcolumns C} ; will contain at least one order n +m
triangle for all m, and so the complete interval Jy, respectively J,_ will lie
in the projection of A. B

Case 2. A A-pair never occurs.
Then A can not contain a matrix with a row of two 1’s. This means that

AC AT, Ty, Ty, T5, Ts, Ts, Ty, Tho }-
But since T3 = T? = Ty, these two matrices can also not occur, and hence
AC {1, Ts5,Ts, 15, Ty, T10 }-
Now suppose that 77 € A. Then, since 11Ty = Ty, T1Ts = Ty and 11119 =
Ty, it follows (using again that T = Tp) that
A C{T,Ts, T}, given that T} € A.

Now note that all three matrices 17,75, and Ty have a 0 in the LR position.
This implies that for a certain n (actually it is not hard to show that one
can take n = 1) the n-th order Cantor set A™ has the property that there
are no R-triangles in its intersection with the L triangle. This happens

only if at most one pgn) # 0, which contradicts (2.1). Conclusion: T} ¢ A.
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Analogously (replacing L by R), it follows that Ty ¢ A. So we find that
necessarily

A CA{T5, T, Ty, T1o }-
But the matrices T, Tg, Ty, and T}y each have at least one 1 in each row. It

follows that for all n all columns of order n contain at least one triangle,
i.e., that Projg (A) is the whole interval [—1v/2, £1/2]. O

9. APPENDIX: PROOF OF LEMMA 3

Proof. Let Sy :={o1,...,0n,€1,...,en}. We say that Sy is a 3C' set if the
assertion of the Lemma holds for Sy. First we prove that:

(*) If Sy consists of 2N consecutive numbers Sy := {uy, ..., usn}
then S; is a 3C set.

To see this we write N = 3p + r where r = 0,1 or 2. Then we couple and
color the first 6p numbers of Sy as follows:

(U3k+1, U3k+4) = (1@ 1’)
(U3k+2, U3k+5) = (& g)
(u3k+37 u3/€+6) = (b7 b)a

for 0 < k <p—1. Since | N/3| = |p+r/3] = p we have verified the assertion
of (*) in this way (without having actually colored the last 2r numbers, an
option which we will leave open till the end of the proof).

A subset B C N is connected if ny,ny € B and n1 < k < ng,k € N
implies that kK € B. We say that a subset I C Sy is an interval of Sy if
I is a maximal connected subset of Sy (it is allowed that I consists of one
element). In particular if J; and Jy # J; are intervals of Sy then there
exists an ¢ ¢ Sp such that ¢ separates J; and Jo. Let Z§° be the family
of the intervals of Sy for which the left endpoint is an even number and
the right endpoint is an odd number. Analogously we define the family of
intervals Z§¢, Zg¢ and Z§°. Let Z, be the family of all of these intervals. So,

So=JroJrvlyruvlJr=yr
IeTge I€Tge I€Tge IeTg° €Ty
Let us define a “gluing and shifting” operation ® on Z; as follows: if there
exist two intervals J; = [k;, ¢;] € Ty, i = 1,2 such that ¢; + ks = 1 mod 2
then we select the two left most intervals with this property and we form
the interval
J = (Jl—l—n)U(Jg—l—fl —k2+1+n),

where n € N is the smallest number such that J is separated by a distance
of at least 2 from any intervals of Zy \ {Ji, Jo}. In this case we define

Il = @(Io) = {J} UI\ {Jl, JQ}
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If there are no such Ji,Jy then let Z; := ®(Zy) := Zy. By induction we
define Zj, for every k. We obtain also by induction that the set

SkZ:UI

I€Ty,

consists of N odd numbers and N even numbers and if Sy is a 3C set then
Si_1 1s also a 3C set for all k¥ > 1. We claim that

(9.1) if #(Zy) > 3 then #(Zjt1) < #(Zy).

We argue by contradiction. If #(Zy1) = #(Zy) then Iy = Zy. Observe
that

(9.2) Ty+1 = Iy implies that Z;° = Z° = 0.

Namely, the cardinality of Z;¢, Z7° is the same since we have N odd numbers
and N even numbers in Sy and if this cardinality is not 0 then we can form an
interval J like above by selecting a J; from Zp° and a J, from Z;°. Further,
if either Zg° # () or Zp° # () then their cardinality is at most one. This is
so because otherwise choosing J; # Jo from the same family, we could form
J like above. In this way we have verified (9.1). Let ko be then smallest
number for which Zy, = Zy, 1. Then it follows from (9.2) that

Ty, = Ly UL,
where both of the families on the right hand side consists of at most one

interval. Let us call these intervals I and I, with the possibility that one
of them may be empty. That is

Sko == [1 U IQ.

Since both of the intervals Iy, Is consist of an even number of consecutive
numbers, it follows from (*) that they are both 3C sets. This implies that
Sk, 1s also a 3C set. The only thing to check is that

(9.3) we use all colors at least | N/3] times

since I; and I, are separated by a distance of at least 2. To see that we can
accomplish this, write N; = 3p; + r; where N; is the cardinality of I;, and
r; =0,10r 2. Now if r| + 7y <2, then N = Ny + Ny = 3(p; +p2) + 11 + 72
and |N/3] = p1 + pa, so (9.3) is fulfilled. What remains are the cases
ry = 1,79 = 2 (together with r; = 2,79 = 1 which is very similar), and
r1 = 2,79 = 2, in which cases | N/3] = p; +ps + 1. In the first case we color
the last two numbers of I; by g and b, and the last four numbers of I, by
r,b,g,r. Since the parities of these numbers are e, o, respectively o, e, o, ¢,
we see that we can create the required extra pair for each color. In the case
r1 = 2,79 = 2 we color the last four numbers of both [; and I; by r,g,b, r,
and again we can create an extra pair for each color. This proves (9.3). As
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we observed above, the fact that Sy, is a 3C set implies that Sy is also a 3C
set, and the proof is complete. 0]
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