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Application of fractals

We use fractals to describe objects or phenomena in
which some sort of scale invariance exists.
Fractals appear physics, astronomy, biology, chemistry,
market fluctuation analysis, and so on.
At the conference
Practical Applications of Fractals
17 - 19 November 2004
Miramare, Trieste, Italy the following main applications
were discussed:
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Fractals in industry and man-made
fractals:

Fractal antennae,
Fractal sound barriers,
Use of fractal polymeric surfaces,
Fractal reactor design,
Fractal studies of heterogeneous catalysis,
Petroleum research.
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Natural fractal objects:

Fractal bronchial trees in mammals,
Growth of fractal trees in nature,
Optimal fractal distribution,
Absolute limitations of tree distributive structures,
River Networks,
Fractals and allometry (relative growth of a part in
relation to an entire organism or to a standard; also:
the measure and study of such growth).
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Applications of fractal concepts to the
study of complex systems:

Image analysis and compression
Multifractal signal analysis
Scaling topology of the internet and the www
Fractal aviation communication network
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Figure: Waclaw Sierpiński

Born in Warsaw 1882.
Ph.D. in 1908 at Univ.
of Krakkow (Poland).
1919-1969 worked at
the Univ of Warsaw,
died: 1969
Very important results
in: set theory, real
analysis and topology.
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How long is the coast of Britain?

Figure: Britain coastline, 200km: 2400km, 50 km:3400km
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Figure: Lewis R.
Richardson 1881-1953

Richardson conjectured: The
measured length L(G) of a
geographic boarder is

L(G) ≈ M · G1−D,

M is a constant and D is the
dimension . Namely:

L(G) = N(G) · G

logN(G)
logG−1 ≈ D =⇒ L(G) ≈ G1−D.

Britain: D = 1.25, Germany:
D = 1.14, South Africa D = 1.02.
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Beniot Mandelbrot

Figure: The father of fractal
geometry

In Ecole Polytechnique,
student of Julia, Lévy.
Later post. doc.
working with J.
Neumann at Princeton.
Worked for IBM for 35
years. Then moved to
Yale. Books:
Fractals: Form, Chance
and Dimension 1975.
The Fractal Geometry
of Nature, 1982.
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Middle-α Cantor set
Fix an α ∈ (0, 1). We remove the (open) middle-α
portion from the interval [0, 1]. Repeat the same
procedure for these smaller intervals ad infinitum to get
the middle-α Cantor set. More precisely, let

Sα :=
{
S1(x) = 1− α

2 · x , S2(x) = 1− α
2 · x + 1 + α

2

}
.

Then the middle-α Cantor set Λα is defined by

(1) Λ =
∞⋂

n=1

⋃
(i1,...,in)∈{1,2}N

Si1...in([0, 1]) .
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The middle-1/2 Cantor set
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Figure: Si1...in(x) := Si1 ◦ · · · ◦ Sin(x) = Si1 (Si2 (· · · (Sin(x)) · · · )),
where ik ∈ {1, 2}.

Károly Simon (TU Budapest) Fourier Analysis and Fractals A File 12 / 105



Sierpiński Gasket

S1(T ) S2(T )

S3(T )

S31(T )
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S123(T )
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C
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C1

B1 B1

U

V

Figure: S312(x) := S3 ◦ S1 ◦ S2(x) = S3(S1(S2(x)))

Si are translations of the appropriate
homothety-transformatons of the form:
Si(x) = 1

2x + ti .
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IFS

Let Ai be d × d non-singular matrices with ‖Ai‖ < 1 and
ti ∈ Rd for i = 1, . . . ,m. Let

(2) F := {fi}m
i=1 = {Ai · x + ti}m

i=1 ,

where we always assume that

‖Ai‖ < 1.

We study the attractor Λ of the IFS F .
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The attractor Λ (definition I)
Let B = B(0, r) be any closed ball centered at the origin
with radius r such that

r > max
1≤i≤m

‖ti‖
1− max

1≤i≤m
‖Ai‖

then
(3) ∀i = 1, . . . ,m : fi(B) ⊂ B.
Thus

⋃
i1...in+1 fi1...in+1(B) =

⋃
i1...in

fi1...in
 m⋃

in+1=1
fin+1(B)


⊂ ⋃

i1...in fi1...in(B)(4)
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The attractor Λ (definition II)

So we can define the non-empty compact set

(5) Λ :=
∞⋂

n=1

⋃
i1...in

fi1...in(B).

The definition is independent of B. Then Λ is the only
non-empty compact set satisfying

(6) Λ =
m⋃

i=1
fi(Λ).
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Coding the points of Λ
To code the elements of Λ we use the symbolic space

Σ := {1, . . . ,m}N .

To code the elements of Λ with the infinite sequences
from Σ we choose a sufficiently big closed ball B
centered at the origin. We have seen that fi(B) ⊂ B for
all i = 1, . . . ,m. This follows that for all infinite
sequence i := (i1, i2, . . . ) ∈ Σ the sequence of sets

{fi1...in(B)}∞n=1

converge to a single point as n→∞. We call this point
Π(i).
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Coding of the points of Λ (cont.)

For an i = (i1, i2, . . . ) ∈ Σ we have

(7) i
Π
��

σ // σi
Π
��

Π(i) Π(σi)fi1
oo
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Figure: T is the "big" equilateral triangle. The first three
approximations of the Sierpiński triangle.
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Figure: Q is the "big" square. The first three approximations of the
Sierpiński carpet.
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Figure: The third approximation of the golden gasket
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Figure: Menger Sponge (from Wikipedia)
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Figure: The first, the second and the fourth approximations of the
golden gasket.
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Figure: The first four approximations of the von Koch curve.
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Heighway Dragon I

Click here to see a vidio on youtube how the Heighway
dragon fractal builds up.
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Heighway Dragon II

S1(x) =
 1

2 −
1
21

2
1
2

 · x
S2(x) =

 −1
2 −

1
21

2 −
1
2

 · x +
 1
0

 .

(8) SH := {S1(x), S2(x)} .
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Figure: The first four approximations of the Heighway dragon.
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Figure: The 9-th approximation of the Heighway dragon.
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Figure: Heighway Dragon. The Figure is from the Internet.
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Heighway Dragon VI

Let Pn be the broken line that we obtain after n steps.
Then {Pn}∞n=1 is a Cauchy sequence of compact sets in
the Hausdorff metric (defined later). It converges to a set
Λ (the attractor) which is called Heighway dragon .

The interior of Λ is non-empty
The plane can be tiled with congruent copies of Λ.
The Hausdorff dimension (to be defined later) of the
boundary is 2 log λ/ log 2 = 1.5236270862 . . ., where
λ is the largest real zero of λ3 − λ2 − 2.
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Figure: The first three approximations of a non-homogeneous
self-similar IFS.
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Figure: The level 1, 2 and level 3 cylinders for Example ??.
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Figure: The Hironaka curve.
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A1 :=
 0.3464101616 −0.1250000000

0.2 0.2165063510

 ,

A2 :=
 0.2 0.2165063510
−0.3464101616 0.1250000000


t1 := [0.5196152, 0.3], t2 := [−0.4688749, 0.5721152]

Let f1(x) := A1x + t1 and f2(x) := A2x + t2 and

Di1...in := fi1 ◦ · · · ◦ fin(D),
where D is the unit disk.
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Figure: The third approximation of the attractor of the self affine
IFS.
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Figure: The Barnsly’s fern
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Figure: Fractal percolation
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Figure: Mandelbrot Percolation.
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Brown mozgás

Figure: Brownian motion
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Separation conditions

Strong separation Property

(9) fi(Λ) ∩ fj(Λ) = ∅ for all i 6= j

Open Set Condition (OSC)
There exists a non-empty open set V such that

1 fi(V ) ⊂ V holds for all i = 1, . . . ,m
2 fi(V ) ∩ fj(V ) = ∅ for all i 6= j .
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M. Keane’s ” {0, 1, 3} ” problem:

For every λ ∈ (1
4 ,

2
5) consider the following self-similar set:

Λλ :=

∞∑

i=0
aiλ

i : ai ∈ {0, 1, 3}
 .

Then Λλ is the attractor of the one-parameter (λ) family
IFS:

{
Sλi (x) := λ · x + i

}
i=0,1,3
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{0, 1, 3} problem II.

0
1

3

3λ2

1−λ

3λ
1−λ

1 + λ

3 + λ 3 + 3λ

λ
3

1−λ

I0

I1

I3

I13 I31

Σ := {0, 1, 3}N , Πλ : Σ → Λλ,
i = (i0, i1, i2, . . .) ∈ Σ :

Πλ(i) := i0 + i1 · λ+ i2λ
2 + i3 · λ3 + · · ·

Πλ is the natural projection which is , NOT 1− 1
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Let k ∈ N and i = (i0, i1, . . .) ∈ {0, 1, 3}N︸ ︷︷ ︸
Σ

.

Iλi0,...,ik := Sλ
i0
◦ · · · ◦ Sλ

ik
(Iλ) and Πλ(i) :=

∞⋂
k=1

Iλi0,...,ik .

Example: Πλ(0, 3, 1, 0, . . .)

Iλ0
Iλ03Iλ031

Iλ0310

Iλ :=
[
0, 3

1−λ

]
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Box dimension
Let E ⊂ Rd , E 6= ∅, bounded. Nδ(E ) be the smallest
number of sets of diameter δ which can cover E . Then
the lower and upper box dimensions of E :

(10) dimB(E ) := lim inf
r→0

logNδ(E )
− log δ ,

(11) dimB(E ) := lim sup
r→0

logNδ(E )
− log δ .

If the limit exists then we call it the box dimension of E .
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Equivalent definitions I.

The definition of the box dimension does not change if
we define Nδ(E ) in any of the following ways:

1 the smallest number of closed balls of radius δ that
cover E ,

2 the smallest number of cubes of side δ that cover E ,
3 the number of δ-mesh cubes that intersect E
4 the smallest number of sets of diameter at most δ

that cover E ,
5 the largest number of disjoint balls of radius δ with

centers in E .
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Equivalent definitions II.

(12) dimB(E ) := d − lim sup
δ→0

log vold([E ]δ)
− log δ ,

(13) dimB(E ) := d − lim inf
δ→0

log vold([E ]δ)
− log δ ,

where [E ]δ is the δ parallel body of E .
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Hausdorff measure on Rd

Let Λ ⊂ Rd and let t ≥ 0. We define
(14)

Ht(Λ) = lim
δ→0


inf

 ∞∑
i=1
|Ai |t : Λ ⊂

∞⋃
i=1

Ai ; |Ai | < δ

︸ ︷︷ ︸
Ht

δ(Λ)


Then Ht is a metric outer measure. The t-dimensional
Hausdorff measure is the restriction of Ht to the σ-field
of Ht-measurable sets which include the Borel sets.
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Hausdorff dimension I.

Let Λ ⊂ Rd and 0 ≤ α < β. Then

Hβ
δ (Λ) ≤ δβ−αHα

δ (Λ).

Using that Ht(Λ) = limδ→0Ht
δ(Λ)

Hα(Λ) <∞⇒ Hβ(Λ) = 0 for all α < β.

0 < Hβ(Λ)⇒ Hα(Λ) =∞ for all α < β.
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Hausdorff dimension II.

∞
t → Ht(Λ)

dimH(Λ) t

The Hausdorff dimension of Λ

dimH(Λ) = inf
{
t : Ht(Λ) = 0

}
= sup

{
t : Ht(Λ) =∞

}
.
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Elementary properties of Hausdorff
dimension I

EP0 Every countable set has zero Hausdorff
dimension.

EP1 For every F ⊂ Rd we have dimH(F ) ≤ d .
EP2 If Ld(E ) > 0 then dimH(E ) = d .
EP3 For any k < d a k-dimensional smooth

surface in Rd has Hausdorff dimension k .
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Elementary properties of Hausdorff
dimension II

EP4 For a Lipschitz map f : Rd → Rd and a Borel
set E ⊂ Rd we have dimH(f (E )) ≤ dimH(E ).

EP5 Let E be a Borel set and let f : Rd → Rd be
a bi-Lipschitz map (that is f is invertible and
both f and its inverse are Lipschitz maps.)
Then dimH(E ) = dimH(f (E )).

EP6 Let {Ei}∞i=1 be a sequence of Borel sets in Rd .
Then dimH(⋃∞i=1 Ei) = supi dimH(Ei).
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Measure

Definition 5.1
Given a set X and a σ-field F of subsets of X . µ is a
measure on F if µ is a function µ : F → [0,∞] such
that

µ(∅) = 0
µ(⋃∞i=1 Ai) =

∞∑
i=1

µ(Ai), for every countable disjoint
{Ai}∞i=1, Ai ⊂ X .
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An outer measure ν on X is defined on all subsets of X
takes values from [0,∞] such that

ν(∅) = 0,
ν(A) ≤ ν(B) if A ⊂ B,
ν(∪∞i=1Ei) ≤

∞∑
i=1

ν(Ei) for all sequence of sets
{Ei}∞i=1.

A set E is measurable with respect to the outer measure
ν if every set is dissected properly. That is
for every A ⊂ X we have

ν(A) = ν(A ∩ E ) + ν(A \ E ).
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Measurable sets

LetM be the collection of all measurable set for an
outer measure ν. ThenM is a σ-field and the restriction
of ν toM is a measure.
Further, assume that (X , d) is a metric space. We say
that the outer measure ν is a metric outer measure if
ν(A ∪ B) = ν(A) + ν(B) holds for all A,B ⊂ X with
d(A,B) := inf {d(a, b) : a ∈ A, b ∈ B} > 0.
In this case the restriction of ν to the σ-field of the
measurable setsM is a Borel measure.
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Support of a measure

Definition 5.2
Let µ be a measure on a separable metric space X . The
support of µ , spt(µ) is the smallest closed set F such
that µ(X \ F ) = 0. In other words:

spt(µ) = X \ {x : ∃r > 0, µ(B(x , r)) = 0} .

Károly Simon (TU Budapest) Fourier Analysis and Fractals A File 59 / 105



M(A), mass distribution

Definition 5.3
Mass distribution : a Borel measure µ on Rd of
compact support with 0 < µ(Rd) <∞.
Let A ⊂ Rd for a d ≥ 1. We write M(A) for the
collection of Borel measures µ

I whose support spt(µ) ⊂ A and
I spt(µ) is compact and
I 0 < µ(A) <∞.
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Definitions
Let (X , d) be a separable metric space and let µ be a
measure on X .

1 µ is locally finite if ∀x ∈ X , ∃r > 0, such that
µ(B(x , r)) > 0.

2 µ is a Borel measure if all Borel sets are µ
measurable. (The family of Borel sets in X is the
smallest σ-algebra containing all open sets.)

3 The measure µ is Borel regular if
(a) Borel measure and
(b) ∀A ⊂ X , ∃A ⊂ B ⊂ X Borel set s.t.

µ(A) = µ(B).
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Radon measure definition
µ is a Radon measure if

(a) Borel measure,
(b) ∀K ⊂ X compact: µ(K ) <∞,
(c) ∀V ⊂ X open:

µ(V ) = sup {µ(K ) : K ⊂ V is compact }
(d) ∀A ⊂ X :

µ(A) = inf {µ(V ) : A ⊂ and V is open }.

Theorem 5.4
A measure µ on Rd is a Radon measure if and only if it
is locally finite and Borel regular

Proof: See Mattila’s book [2, p. 11-12].
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Radon measure examples

1 The Lebesgue measure Lebd on Rd is a Radon
measure.

2 The Dirac measure δa(A) := 1 if a ∈ A and
δa(A) = 0 if a 6∈ A is a Radon measure.

3 For every s ≥ 0 the Hausdorff measure is a Borel
regular measure but it need not be locally finite. So,
in general the Hausdorff measure is not a Radon
measure. However, for an A ⊂ Rd , Hs(A) <∞ the
restriction Hs |A is a Radon measure. (See Mattila’s
book: [2, p. 57].)
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Push forward measure

Let X ,Y be separable metric spaces and f : X → Y
continuous and let µ be Radon measure on X . Then the
push forward measure of µ defined by

f∗µ(A) := µ(f −1A)

is also a Radon measure and the support of f∗µ(A) is

sptf∗µ = f (sptµ).
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Change of variable formulae

Theorem 5.5
Let X ,Y be separable metric spaces and let f : X → Y
be a Borel map and µ is a Borel measure on X. Further
let g : Y → R be a non-negative Borel function. Then∫

Y
g(y)d(f∗µ)(y) =

∫
X

(g ◦ f )(x)dµ(x).

Károly Simon (TU Budapest) Fourier Analysis and Fractals A File 65 / 105



Mass Distribution Principle
Lemma 5.6 (Mass Distribution Principle)
If A ⊂ X supports a mass distribution µ such that for a
constant C and for every Borel set D we have

µ(D) ≤ const · |D|t

Then dimH(A) ≥ t.

Proof For all {Aj}∞j=1

A ⊂
∞⋃

j=1
Aj ⇒

∑
j
|Aj |t ≥ C−1 ∑

j
µ(Aj) ≥

µ(A)
C .
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Frostman’s Energy method
Let µ be a mass distribution on Rd . The t-energy of µ
is defined by

It(µ) :=
∫∫
|x − y |−tdµ(x)dµ(y).

Lemma 5.7 (Frostman (1935))
For a Borel set Λ ⊂ Rd and for a mass distribution µ
supported by Λ we have

It(µ) <∞ =⇒ dimH(Λ) ≥ t.

In this case Ht(Λ) =∞.
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Proof of Frostman Lemma I

This proof if due to Y. Peres. Let

Φt(µ, x) :=
∫ dµ(y)
|x − y |t .

Then It(µ) = ∫ Φt(µ, x)dµ(x). Let

ΛM := {x ∈ Λ : Φt(µ, x) ≤ M} .

Since ∫ Φt(µ, x)dµ(x) = It(µ) <∞ we have M such
that µ(ΛM) > 0. Fix such an M.
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Proof of Frostman Lemma II

Let
ν := µ|ΛM

Then ν is a mass distribution supported by Λ. (That is
ν satisfies one of the assumptions of the Mass
Distribution Principle above.) Now we show that for
every bounded set D:

(15) ν(D) < const · |D|t .

If D ∩ ΛM = ∅ then (15) holds obviously. From now we
assume that D is a bounded set such that D ⋃Λm 6= ∅.
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Proof of Frostman Lemma III

Pick an arbitrary x ∈ D ⋂ΛM . We define

m := max
{
k ∈ Z : B(x , 2−k) ⊃ D

}
.

Then

(16) |D| ≥ 2−(m+1) and |D| < 2 · 2−m.
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Proof of Frostman Lemma IV
Observe that from the right hand side of (16): y ∈ D we
have |x − y |−t ≥ |D|−t ≥ 2−t · 2mt . So,

M ≥
∫ dν(y)
|x − y |t ≥

∫
D

dν(y)
|x − y |t ≥ ν(D) · 2−t · 2m·t .

Using this and the left hand side of (16) we obtain

ν(D) ≤ M · 2t · 2t · 2−(m+1)t ≤ M · 22t · |D|t .

So, the mass distribution ν satisfies the assumptions of
the Mass Distribution Principle which completes the
proof of the Lemma.
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Example: Bold Play from Edgar’s book I
The following is literary copied from Eddgar’s book [1]:
This is an exercise which goes back to Cesaro 1906 and
this is about a gambling system known as "bold play" .
The gambler wants to increase his holdings to a certain
amount by repeatedly playing a game at even money, but
under unfavorable odds. He attempts to do this by
always placing the maximum sensible bet. The
probability of eventual success is a function Q(x) of the
fraction x of the goal that the gambler currently holds.
Let p be the probability of winning on any given play; we
are told the odds are unfavorable, that is, 0 < p < 1/2.
To analyze the function Q, consider two cases.
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Example: Bold Play from Edgar’s book II
If x ≥ 1/2 then the bet to be placed should be the
fraction 1− x of the goal; if he wins he has reached the
goal, and if he loses, he continues with stakes reduced to
the fraction x − (1− x) = 2x − 1 of the goal. Thus

Q(x) = p + (1− p)Q(2x − 1), if x ≥ 1/2

On the other hand, if x < 1/2, then the bet to be placed
should be the fractio x of the goal; if he wins, he
increases his stake to fraction 2x of the goal an
continuesi if he loses, he is broke and that is that. Thus

Q(x) = pQ(2x), if x < 1/2.
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Example: Bold Play from Edgar’s book II
So what we know about the unknown function
Q : [0, 1]→ [0, 1] are as follwos:

Q(x) = pQ(2x), if x < 1/2,(17)
Q(x) = p + (1− p)Q(2x − 1), if x ≥ 1/2.(18)

Let F1,F2 : [0, 1]2 → [0, 1]2,

(19) F1(x , y) :=
 1

2 0
0 p

 ·
 x
y

 ,

(20) F2(x , y) :=
 1

2 0
0 1− p

 ·
 x
y

 +
 1

2
p
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Example: Bold Play from Edgar’s book III

By definition,

Graph(Q) =
{

(x ,Q(x)) ∈ [0, 1]2 : x ∈ [0, 1]
}
.

Using (17) and (18), one can easily check that

(21) Graph(Q) = F1(Graph(Q)) ∪ F2(Graph(Q)).

That is Graph(Q) is the attractor of the IFS {F1,F2}.
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Example: Bold Play from Edgar’s book IV

Figure: Q(x) when p = 0.3. The picture is copied (in a terrible way)
from Edger’s book.
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Example: Bold Play from Edgar’s book V

The function Q(x) is
1 Self affine function graph,
2 continuous,
3 strictly increasing
4 Q′(x) = 0 for Lebesgue a.e. x ∈ (0, 1).

Theorem 5.8
If a function is strictly increasing then the Hausdorff
dimension of its graph is equal to 1.
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Equivalent definitions of the box-
dimension
For an arbitrary F ⊂ Rd we say that {Ai}∞i=1 is a cover of
F if F ⊂

∞⋃
i=1

Ai . We denote the family of all covers of a

set F ⊂ Rd by C (F ) . Moreover, we write

CU(F ) := {{Ai}∞i=1 ∈ C , |Ai | = |Aj | ∀i , j} .
Then

dimH F =inf
s ≥ 0 : ∀ε > 0,∃ {Ai} ∈ C (F ),

∞∑
i=1
|Ai |s ≤ ε

 .
dimBF =inf

s ≥ 0 : ∀ε > 0,∃ {Ai} ∈ CU(F ),
∞∑

i=1
|Ai |s ≤ ε

 .
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Equivalent definitions of the Hausdorff
dimension
Let F ⊂ Rd be a Borel set. Then we get the Hausdorf
dimensin of F by any of the following expressions

(22) dimH F =
sup

{
s ≥0 : ∃µ ∈M(F ), µ(B(x , r)) ≤ r s ,∀x ∈ Rd , r > 0

}
,

(23) dimH F = sup {s ≥0 : ∃µ ∈M(F ), Is(µ) <∞} ,

(24)
dimH F = sup

{
s ≥0 : ∃µ ∈M(F ),

∫
|x |s−d |µ̂(x)|2 <∞

}
.
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Hausdorff dimension of a measure
Let µ ∈M(A).
Definition 5.9
dimH(µ) := inf

{
dimH(A) : µ(Rd \ A) = 0

}
.

Lemma 5.10
dimH(µ) = ess supx lim inf

r→0

log µ(B(x , r))
log r .

Roughly speaking, dimH(µ) = δ if for a µ-typical x we
have

µ(B(x , r)) ≈ r δ

for small r > 0.
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Lower Hausdorff dimension of a measure

Let µ ∈M(A).

Definition 5.11
dimH(µ) := inf {dimH(A) : µ(A) > 0} .

Lemma 5.12
dimH(µ) = ess infx lim inf

r→0

log µ(B(x , r))
log r .
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Self-similar sets with OSC

Assume that F := {fi}m
i=1 is a self-similar IFS on Rd .

The similarity dimension s = s(F) is defined as the only
positive solution of the equation

(25) r s
1 + · · ·+ r s

m = 1,

where ri is the similarity ratio for fi .
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Hutchinson Theorem

Hutchinson (1981)

Theorem 6.1
Given a self similar IFS F which satisfies the OSC. Let
s = s(F) be the similarity dimension. Then

(26) 0 < Hs(Λ) <∞.

Further,
dimH Λ = dimB = s.
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Hausdorff measure for self-similar
attractors

We cannot easily estimate the appropriate dimensional
Hausdorff measure of a self similar-set in the plane or
higher dimension. If Λ is the Sierpinski triangle then the
we know that s = dimH Λ = log 3

log 2 . The best estimate for
s-dimensional Hausdorff measure:

0.77 ≤ Hs(Λ) ≤ 0.81

The upper bound is old (proved in 1999) but the lower
bound is new. It was given by Peter Móra.
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Lemma 6.2
For every E ⊂ Rd we have

dimH(E ) ≤ dimB(E ) ≤ dimB(E ).
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Theorem 6.3 (Moran, Hutchinson )
Assume that the self-similar IFS S = {S1, . . . , Sm} acts
on Rd and satisfies the OSC . The similarity ratio of Si
is 0 < ri < 1, i = 1, . . . ,m. Let s be the similarity
dimension, that is, r s

1 + · · ·+ r s
m = 1 . Then for the

attractor Λ of the IFS S we have

(27) 0 < Hs(Λ) <∞.

Moreover,

(28) dimH(Λ) = dimB(Λ) = s,

in particular the box dimension exists.
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Infinite Bernoulli convolution I
For a λ ∈ (0, 1) we define the random variable

Yλ :=
∞∑

n=0
±λn.

νλ be the distribution of Yλ. On the other hand νλ is
the self similar measure of the IFS. That is for
λ ∈ (0, 1), x ∈ [0, 1/(1− λ)]

Sλ1 (x) := λx + 1, Sλ−1(x) := λx − 1,

with weights 1/2, 1/2
(νλ(A) = 1

2νλ((Sλ1 )−1(A)) + 1
2νλ((Sλ−1)−1(A))).
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Infinite Bernoulli convolution II

νλ = (Πλ)∗({1/2, 1/2}N),
Πλ(i0, i1, i2, . . . ) = i0 + i1λ + i2λ2 + · · ·

Let Iλ :=
[
− 1

1−λ ,
1

1−λ
]
. Yet again we write

Iλi0...ik := Si0...ik (Iλ).

Then
Πλ(i0, i1, . . . ) =

∞⋂
k=0

Iλi0...ik .
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Infinite Bernoulli convolution III
Cylinders for λ ∈ (0.5, 1)

− 1
1−λ

1
1−λ0

λ
1−λ − 1

1− λ
1−λ

Iλ−1

Iλ1

Iλ1,−1

Iλ1,−1,−1

Iλ−1,−1

Iλ−1,1

Iλ−1,1,1

Figure: λ =
√
5−1
2 is the golden mean
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Infinite Bernoulli convolution IV

− 1
1−λ

1
1−λ0

λ
1−λ − 1

1− λ
1−λ

Iλ−1

Iλ1

Iλ1,−1

Iλ1,−1,−1

Iλ−1,−1

Iλ−1,1

Iλ−1,1,1

Figure: General λ ∈ (0.5, 1)
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Law of pure type

Theorem 7.1 (Jensen, Wintner 1935)
Either νλ � Leb or νλ⊥Leb

It was proved by Parry and York that for every λ we have

(29) Either νλ ∼ Leb or νλ⊥Leb.
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Solomyak’s Theorem (1995)

After 60 years after that in 1930’s P. Erdős started to
investigate the infinite Bernoulli convolutions Boris
Solomyak made the following major achievement:

Theorem 7.2 (Solomyak (1995))
1 νλ � Leb with a density in L2(R) for a.e.
λ ∈ (1/2, 1).

2 νλ � Leb with a density in C(R) for a.e.
λ ∈ (2−1/2, 1).
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ν̂λ(x) :=
∫
R
eitxdνλ(t) = ∏∞

n=0 cos(λnx) .

Hence

(30) ν̂√λ(x) = ν̂λ(x) · ν̂λ(
√
λ · x)

From Plancherel Theorem:

if νλ � Leb with L2 density =⇒ ν̂λ ∈ L2.

On the other hand by (30)

ν̂λ ∈ L2 =⇒ ν̂√λ ∈ L1 =⇒ ν√λ has continuous density.
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That is, if νλ � Leb with a density in L2(R) for a.e.
λ ∈

(
1
2 ,

1√
2

)
then

(a) νλ � Leb with a density in L2(R) for a.e.
λ ∈ (1/2, 1) . Moreover,

(b) νλ � Leb with a density in C(R) for a.e.
λ ∈ (2−1/2, 1) .
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Erdős Results form the 1930’s

Theorem 7.3 (Pál Erdős 1940)
There exists a t < 1 (rather close to 1) such that for a.e.
λ ∈ (t, 1) we have νλ � Leb. More precisely,

∃ak ↑ 1 s.t. dνλ

dx ∈ C
k(R) for λ ∈ (ak , 1).
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Problem 7.4 (Erdős)
Is it true that νλ � Leb holds for a.e. λ ∈ (1/2, 1)?

The only known counter examples are the reciprocals of
the so-called PV number or Pisot or Pisot Vayangard
numbers (they are the same but nobody can pronounce
Vayangard properly so people avoid using his name).
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Solomyak’s Theorem (1995)

After 60 years after that in 1930’s P. Erdős started to
investigate the infinite Bernoulli convolutions Boris
Solomyak made the following major achievement:

Theorem 7.5 (Solomyak (1995))
1 νλ � Leb with a density in L2(R) for a.e.
λ ∈ (1/2, 1).

2 νλ � Leb with a density in C(R) for a.e.
λ ∈ (2−1/2, 1).
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Methods of Proving Solomyak’s theorem

The proof uses the so-called transversality condition plus
There are two approaches:

either Derivative of measures method or
Fourier analysis.

First we study the drivaive of measures method.
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Derivative of a measure I

Definition 7.6
Let µ, η be Radon measures on Rd . We define the upper
and lower derivatives of µ with respect to η:

D(µ, η, x) := limr→0
µ(B(x , r))
η(B(x , r)) .

If the limit exists then we write D(µ, η, x) for this
common value and we call it the derivative of the
measure µ with respect to the measure η.
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Derivative of a measure II

Theorem 7.7
Let µ, η be Radon measures on Rd .

(i) The derivative D(µ, η, x) exists and is finite
for η almost all x ∈ Rd . [2, Theorem 2.12]

(ii) For all Borel sets B ⊂ Rd we have

(31)
∫
B
D(µ, η, x)dη(x) ≤ µ(B)

with equality if µ� η. [2, Theorem 2.12]
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Derivative of a measure III

Theorem 7.7 (Cont.)
(iii) µ� η if and only if D(µ, η, x) <∞ for µ

almost all x ∈ Rd . [2, Theorem 2.12]
(iv) If µ� η then∫

D(µ, η, x)2dη(x) =
∫
D(µ, η, x)dµ(x).

This is [2, Exercise 6 on p. 43]
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Derivative of a measure IV

Theorem 7.7 (Cont.)
(v) Assume that µ� η . Then D(µ, η, x) is a

version of the Radon-Nikodym derivative
dµ(x)
dη(x) . So, we know that∫
R
D(µ, η, x)dη(x) <∞. Further, by (iv)

above, we have:
(32)∫
R
D(µ, η, x)dµ(x) <∞ =⇒ dµ(x)

dη(x) ∈ L2(η).

This argument appears in [4, p.233].
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