A CHARACTERISATION OF THE SOURCE IN A SEMIMODULAR LATTICE

E. TAMÁS SCHMIDT

ABSTRACT. The semimodular lattices are are very special join-homomorphic images of finite distributive lattices, these are the so called cover-preserving join-congruences. A cover-preserving join-congruence Θ of a distributive lattice L is determined by a subset S of L, which is the *source* of Θ . We characterise these subsets.

1. Prelimineries

This paper is a continuation of [2] and [3].

There is a trivial "representation theorem for finite lattices: each of them is a join-homomorphic image of a finite distributive lattice D. This follows from the fact that the finite free join semilattices with zero are the finite Boolean lattices. The semimodular lattices are are very special join-homomorphic images of finite distributive lattices.

A join-homomorphism $\varphi: L \to K$ is said to be *cover-preserving* iff it preserves the relation \preceq . Similarly, a join-congruence Φ of L is called cover-preserving if the natural join-homomorphism $L \to L/\Phi$, $x \mapsto [x]\Phi$ is cover-preserving.

As usual, $\mathbf{J}(L)$ stands for the poset of all nonzero join-irreducible elements of L. The width $\mathbf{w}(P)$ of a (finite) poset P is defined to be $\max\{n\colon P \text{ has an } n\text{-element antichain}\}$. We define the dimension of a finite semimodular lattice: $\dim(L) = \mathbf{w}(\mathbf{J}(L))$.

Definition 1. A grid of a semimodular lattice L is $G = C_1 \times C_2 \times ... \times C_n$, where the C_i -s are subchains of L, $\mathbf{J}(L) \subseteq C_1 \cup C_2 \cup ... \cup C_n$, $n = \dim(L)$.

The grid is not uniquely determined, we fix one of these. We choose maximal chains, these have the same length, m. \mathcal{C}_n denotes the chain $0 < 1 < \ldots < n-1$ of natural numbers. Then we can take as grid $G = \mathcal{C}_m{}^n$. The direct product $G = C_1 \times C_2 \times C_3$, where C_1, C_2 and C_3 are chains can be considered as a 3D hypermatrix (this is a square cuboid), in the n=2 case a matrix, this has a row and two columns. A sublattice $\{a_1 \wedge a_2, a_1, a_2, a_1 \vee a_2\}$ of a lattice is called a covering square if $a_1 \wedge a_2 \prec a_i \prec a_1 \vee a_2$ for i=1,2.

In [1] we proved the following lemma and theorem:

Lemma 1. Let Φ be a join-congruence of a finite semimodular lattice M. Then Φ is cover-preserving if and only if for any covering square $S = \{a \land b, a, b, a \lor b\}$ if $a \land b \not\equiv a \ (\Phi)$ and $a \land b \not\equiv b \ (\Phi)$ then $a \equiv a \lor b \ (\Phi)$ implies $b \equiv a \lor b \ (\Phi)$.

Date: January 24, 2016.

 $^{2000\ \}textit{Mathematics Subject Classification}.\ \textit{Primary: 06C10},\ \textit{Secondary: 06B15}.$

Key words and phrases. Semimodular lattice, cover-preserving.

Theorem 1. Each finite semimodular lattice L is a cover-preserving join-homomorphic image of the direct product of $n = w(\mathbf{J}(L))$ maximal (0, 1)-subchains of $L, \mathbf{J}(L) \subseteq C_1 \cup C_2 \cup \cup C_n$.

2. The source

We define the source in paragraph 2.2.

2.1. The source element. To describe the cover-preserving join- congruences of a distributive lattice G we need the notion of source elements of G. Czédli and E. T. Schmidt [3]. Let Θ be a cover-preserving join-congruence of G.

Definition 2. An element $s \in G$ is called a source element of Θ if there is a $t, t \prec s$ such that $s \equiv t$ (Θ) and for every prime quotient u/v if $s/t \searrow u/v, s \neq u$ imply $u \not\equiv v$ (Θ). The set S_{Θ} of all source elements of Θ is the source of Θ .

The source elements are top element of the cells.

Lemma 2. Let x be an arbitrary lower cover of a source element s of Θ . Then $x \equiv s$ (Θ). If $s/x \setminus v/z$, $s \neq v$, then $v \not\equiv z$ (Θ).

The following results are proved in [3]. The source S satisfies an independence property:

Definition 3. Two elements s_1 and s_2 of a distributive lattice are s-independent if $x \prec s_1, y \prec s_2$ there is no $v \prec s_2$ such that $s_1/x \searrow s_2/v$ and there is no $u \prec s_1$ such that $s_2/y \searrow s_1/u$. A subset S is s-independent iff every pair $\{s_1, s_2\}$ is s-independent.

Lemma 3. Every row/column contains at most one source element.

Proof. This is trivial by the definition of the source element. \Box

The semimodular lattice L is determined by (G,Θ) or (G,\mathbb{S}) , where \mathbb{S} is an s-independent subset and therefore we write:

$$L = \mathcal{L}(G, S).$$

Determined means, if $L \not\cong L'$ then $S \not\cong S'$ (order isomorphic subsets of G).

The meet of two cover-preserving join-congruence is in generally not cover-preserving.

Take S a subset of G. and the set of all lower covers of $s \in S$, $s'_i \prec s$ $(i \in \{1, 2, 3\})$. Then we have the following set of primintervals of G:

$$P = \{ [s'_i, s] | s \in S \}.$$

Let $\Theta_{\mathbb{S}}$ be the join congruence generated by this set of primintervals, i.e. for a priminterval [a, b], $a \equiv b$ (Θ_S) if and only if there is a $s \in \mathbb{S}$ priminterval $[s'_i, s]$ such that [a, b] is upper perspective to a $[s'_i, s]$.

Let Θ be a cover-preserving join-congruence of an *n*-dimensional grid G and let S be the source of Θ . Then $\Theta = \Theta_S$ (if S is an s-independent set then Θ_S is generally not a cover-preserving join-congruence). Θ_S denotes the cover-preserving join-congruence determined by S, see in Figure 9. The source of S is S.

It is easy to prove that in the 2D case every s-independent subset \$\mathbb{S}\$ determinate a cover-preserving join-congruence:

SOURCE 3

Lemma 4. Let G be a 2-dimensional grid, i.e. the direct product of two chains. Let S be an s-independent subset of G. Then there exists a cover-preserving joincongruences Θ of G with the source S.

2.2. Two Takes All: the TTA-property. If we have source element in two directions then we have in all directions.

In the n-dimensional case, n>2 the source satisfies the following additionally property:

The TTA-property: Let G be a 3D grid and $(x, y, z) \in G$. If the intervals [(x, y, 0), (x, y, z)] and [(x, 0, z), (x, y, z)] contains a source elements then there is a source element in the interval [(0, y, z), (x, y, z)].

In the special case, if (x, y, z) = (1, 1, 1), then if $(x_1, 1, 1), x_1 < 1$ and $(1, x_2, 1), x_2) < 1$ are source elements, then $(1, 1, x_3), x_i < 3$ is a source element for some $x_3 < 1$.

The TTA property is illustrated in Figure. We generaize Lemma 3.

From every grid point starts half lines parallel to the axes.

FIGURE 1. The TTA property: $s_1, s_2 \in S$ then there exists a $s_3 \in S$

Lemma 5. Let S be a source of 3D semimodular lattice L, then S satisfies the TTA property.

Proof. $G = (\mathcal{C}_2)^3$. Assume that (1,1,0) and (1,0,1) are source elements, then $(1,0,0) \equiv (1,1,0)(\Theta), (0,1,0) \equiv (1,1,0)(\Theta), (0,1,0) \equiv (0,1,1)(\Theta)$ and $(0,0,1) \equiv (0,1,1)(\Theta)$. These imply $(1,1,1) \equiv (1,1,0)(\Theta), (1,1,1) \equiv (0,1,1)(\Theta), (1,1,1) \equiv (1,0,1)(\Theta), (0,1,0) \equiv (1,1,0)(\Theta)$, By the transitivity we obtain $(0,0,1) \equiv (1,0,1)(\Theta)$ and $(0,1,0) \equiv (1,0,1)(\Theta)$, i.e. (0,1,1) is a source element.

For $G = (\mathcal{C}_n)^3$ the counting is similar but the notation is more complicated.

Theorem 2. Let S be a s-independent subset of a 3D grid G, which satisfies the TTA property. Then there exists a cover-preserving join-congruence Θ such that the source of Θ is S.

Proof. We take a s-independent subset S of G, which satisfies the TTA property and define a join-congruence Θ_S of G. In Figure we see the possible congruence-classes on the eight-element boolean lattice.

Define for $a \prec b$, $a,b \in G$, $a \equiv b$ (Θ) if and only if for a pair $s,t,s \in \mathbb{S}, t \prec s$ $a \lor s = b$ and $a \land s = t$. We prove that $\Theta_{\mathbb{S}}$ is cover-preserving and its source is $\Theta_{\mathbb{S}}$. Let $a \land b, a, b, a \lor b$ a covering square of G, $a \equiv a \lor b$ (Θ), $b \not\equiv a \lor b$ (Θ), $a \land b \not\equiv a$ (Θ). By the definition of $\Theta_{\mathbb{S}}$ there is a a pair $s,t,s \in \mathbb{S}, t \prec s$ such that $a \lor s = a \lor b$ and $a \land s = t$. Then $s \not\leq b$, otherwise $b \equiv s \lor a$ (Θ), this woud imply $b \equiv a \lor b$ (Θ), contradiction. This proves $s \lor b = a \lor b$. Take $s \land b$ and $s \land a \land b$. The elements $s \land a \land b, t, s \land b, s$ is a covring square. By Lemma $s \land b \equiv s$ ($s \land b \equiv s \in S$) and therefore $s \equiv a \lor b$ ($s \land b \equiv s \in S$).

References

- G. Czédli, E. T. Schmidt, How to derive finite semimodular lattices from distributive lattices?, Acta Math. Acad. Sci. Hungar., 121 (2008), 277–282.
- [2] G. Czédli and E. T. Schmidt, Slim semimodular lattices. II. A description by patchwork systems, Order, 30 (2013), 689-721.
- [3] E. T. Schmidt, A strukture theorem of semimodular lattices and the Rubik cube, submitted to Algebra Universalis.

Mathematical Institute of the Budapest University of Technology and Economics, Műegyetem RKP. 3, H-1521 Budapest, Hungary

E-mail address, E. T. Schmidt: schmidt@math.bme.hu

 URL : http://www.math.bme.hu/~schmidt/