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Abstract. In this note we describe the congruences of slim semimodular lat-
tices, i.e. of 2-dimensional semimodular lattices. It was proved by G. Czédli
and E. T. Schmidt [1] the following: (for planar semimodular lattices see
G. Grätzer, E. Knapp [7] [8]): each finite semimodular lattice L is a cover-
preserving join-homomor-phic image of a distributive lattice G which is the
direct product of finite chains. We use this theorem to get an overview on the
congruences.

1. Introduction

1.1. Results. G. Grätzer, H. Lakser, and E.T. Schmidt [6] proved that every finite
distributive lattice is the congruence lattice of a planar semimodular lattice. If a
planar semimodular lattice L doesn’t contain a M3 as sublattice, i.e. it is diamond-
free then width of J(L) (w(J(L))) is two, we say that the dimension of L is 2. (M3

has dimension 3.) In this case we can’t represent all finite distributive lattices.
We characterize the congruence lattices of these lattices, they have an interesting
description with special posets: the posets which looks like the poset presented
in Figure 2. First we take a poset, see in Figure 1 which we call call zigzag. A
zigzag is a sequence a1, a2, ..., an such that for the successive members, ai, ai+1

either ai < ai+1 or ai > ai+1. We extend such a poset defined in Figure 2.

Figure 1. A zigzag poset

Theorem 1. The congruence lattice of a 2-dimensional semimodular lattice L is
isomorphic to

(D+̇C2
2) × Ck

2 ,

where D is the direct product of lattices Di with the property that
(P) the poset of join-irreducible elements J(Di) is an extended zigzag.

In [4] G. Czédli and E. T. Schmidt introduced the concept of patch lattice.
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a step

Figure 2. An extended zigzag

Definition 1. A slim semimodular lattice (i.e. two dimensional semimodular lat-
tice) L is a patch lattice if it contains two dual atoms p and q such that their
intersection p ∧ q is zero.

The lattices N7 and C2
2 are patch lattices. {0, .p, q, 1} is a sublattice, the skele-

ton, Skeleton(L) of P .
If P is a patch lattice then k = 0 in Theorem 1:

Theorem 2. The congruence lattice of a patch lattice L is isomorphic to

(D+̇C2
2),

where D is the direct product of lattices Di satisfying the property (P).
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Figure 3. The quadruple Qs is isomorphic to C2 ×C2 and N7 as
the factor Qs/Ts

For the notations Z, Z1, Z2 in Figure 3. N7 has three join-irreducible congruence
relations, Z, Z1, Z2 where Z has the congruence classes {c, b}, {d, e}, {f, 1}, {a} the
Z1- classes are: {c, b}, {d, e}, {f, 1}, {a} and the Z2 classes are {c, b}, {d, e}, {f, 1}, {a}.

As example take the lattice F given in Figure 4. This is not a patch lattice.
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Figure 4. A semimodular lattice F with two copies of N7
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Figure 5. The lattice F given with the source elements
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Figure 6. Stitched together, J(Con(F ))
.

2. Preliminaries

2.1. cover-preserving join-homomorphism. The N7 is a cover-preserving join-
homomorphic image of C3

2 (Figure 3). If s is a source element of a grid G then
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the cover-preserving sublattice of G with the top element s is called the quadruple
with the beret Ts of s, if this is isomorphic to Qs = C3 × C3. Then N7

∼= Qs/Ts.
G is called a grid of L. Let L be a 2-dimensional semimodular lattice. Then we

have a grid G = Cn
2 and a cover-preserving join-congruence Φ such that L ∼= G/Φ.

This means that L is determined by the pair (G, Φ).

Lemma 1. Let L be a planar semimodular lattice. Then the following conditions
are equivalent:

(1) no three join-irreducible elements of L form an antichain, i.e. L is slim,
(2) L is a planar semimodudular lattice, which is M3-free, i.e. has no eys (the

interior element of an interval of length two and has four elements).

Adding a fork to a lattice L at the covering square K, firstly, replace K by a
copy of N7.

Secondly if there is a chain u ≺ v ≺ w such that the element v has just been
added T = {x = u ∧ z, z, u, w = z ∨ u} is a covering square in the lattice L but
x ≺ z at the present stage of of the construction, then we insert a new element y
such that x ≺ y ≺ z and y ≺. The new elements form an order, called a fork. We
say that K is obtained from L by adding a fork to L at the covering square S.

The matrix of a slim semimodular lattice is a (0, 1)-matrix where every row/co-
lumn contains at most one non zero entry. As matix we consider G itself (if you
want rotete by 45 degree).

Lemma 2. Let L be a slim semimodular lattice with at least four elements of length
n. Then the following conditions are equivalent:

(1) P is a patch lattice,
(2) P is gluing indecomposable,
(3) P is gluing indecomposable over chains,
(4) P can be obtained from the four element Boolean lattice by a sequence of

insertations of forks,
(5) the matrix of P is invertible n × n-matrix, [10].

Supplement. P is determined by a permutation ϕ of the n-element set {1, 2, ..., n}.
Every 2-dimensional semimodular lattice has a smallest (lattice) homomorphic im-
age which is a patch lattice. Every 2-dimensional semimodular lattice has a maximal
sublattice which is a patch lattice.

Definition 2. (E. T. Schmidt [9]) An element s ∈ G is called a source element
of Θ if there is a t, t ≺ s such that s ≡ t (Θ) and for every prime quotient u/v if
s/t ↘ u/v, s 6= u imply u 6≡ v (Θ). The set SΘ of all source elements of Θ is the
source of Θ.

Lemma 3. Let x be an arbitrary lower cover of a source element s of Θ. Then
x ≡ s (Θ). If s/x ↘ v/z, s 6= v, then v 6≡ z (Θ).

It is important to remark that we work not with L but with the (G, S)
pair. The structure of the congruences become more transparent. L is
determined by the pair (G, S). The (G, S) is an outspread map of L.

By condition (5) of Lemma 2 a semimodular lattice is a patch lattice iff every
row/column of the grid contains exactly one source element (except the last row/co-
lumn).
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2.2. Rectangular semimodular lattices. L is rectangular if J(L) is the disjoint
sum of two chains. Patch lattice is a rectangular slim lattice (2-dimensional semi-
modular lattice) which contains the most possible source elements (if the length of
L is n then the number of source elements is n − 1).

2.3. Coloring. A colored finite lattice L is a lattice whose prime intervals are
labeled so that if the prime intervals p, q are of the same color then con(p) = con(q).
Coloring helps to describe the congruences. If p has the color c then we define
con(c) = con(p). Sometimes we don’t color all prime intervals of L.

We color the vertices (the elements of L) if L denotes a congruence lattice and
some vertices are related to a join-irreducible congruence, see in Figure 2 and Figure
6.
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3. Proof-by-Pictures
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Figure 7. Outspread map of a 2-dimensional semimodular lattice

3.1. The spreading of congruences. Let Θ be a congruence relation of P and
let a, b, c, d be elements of this lattice If a ≡ b (Θ) congruences on implies that
c ≡ d (Θ) then we say that a ≡ b forces c ≡ d, see Figure xx.

In Figure 5 you can see how does it looks like a join-irreducible congruence of
the grid G and the grid with a source element. Every source element determine a
source lattice, in the two-dimensional case this is a copy of N7. Then N7 has thre
join-irreducible congruences, see Figure 4: the green color belongs to Z, the colors
of Z1, Z2, the ”shadows” are dotted green lines.
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Figure 8. con(p) in the grid and with a source element (on the
right side)
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Figure 9. Outspread map of a 2-dimensional semimodular lattice

3.2. Adjacent source elements. In the graph theory a vertex w is said to be
adjacent to other vertex v if the graph contains an edge (v, w). In this case we
write v ∼ w. This is the adjacent relation. The grid G is a graph, therefore we can
use ∼ in the grid. If s1 and s2 are source element then there are not adjacent, i.e.
s1 6∼ s2. Therefore we use a weaker form of adjacency.

Two source elemens s1 = (x, y, 2 = (z, u) are
(1) left adjacent if z = x + 1, u < y and right adjacent if y = u + 1, z < x.
(2) horosontaly (1, 1)-adjacent source elements if s1 ≺ s1 ∨ s2 and s2 ≺ s1 ∨ s2:

the two colors represent the same congruence, we merge the colors.
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(3) verticaly (1, 1)-adjacent source elements if s1 ≺ u and u ≺ s2 for some u:
the two colors represent represent different congruences,

(4) (1, 2)-adjacent source elements if Knight jumpif s1 ≺ s1 ∨ s2 and there is a
grid element g such that s2 ≺ g ≺ s1 ∨ s2 there is an ordering, red < green,
i.e. the same holds for the congruences,

(5) (2, 1)-adjacent source elements ifthere is an ordering, red < green, i.e. the
same holds for the congruences,

Two source elements are remote if the distans (in the graf G) is more then
two. Figure 4 presents the grid and the poset of a 2-dimensional lattice P . To
every source element s belongs a quadruple. We color these by different colors
(we don’t not color all prime intervals, only the most important intervals). As
colors we can use the numbers 1, 2, , ..., n. We consider these colors as precolors,
later we will change some of them. p and are the q special duual atoms of P with
the propertry p ∧ q = 0. Then p and q can be considered as elements of G too
(p = (cn, 0), q = (0, cn)). The principal ideals (p] and (q] are chains and prime
ideals. The projections p ∧ x resp. q ∧ y define a precoloring of these chains. In
Figure 4 we have a source element with quadruples . We color these by red, green
and blue.

 remote source elements
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Figure 10. The order-preserving (vertical) case

3.3. Some remarks on coloring. The conrguence lattice of N7 is isomorphic to
C2+̇C2

2. In Figure 3 a ≡ b forces b ≡ c (but b ≡ c don’t forces a ≡ b). We color
the congruence con(b, c), in the given example by green, i. e. we color the intervals
[b, c], [d, e], [f, 1].

.

3.4. Congruences. The patch lattice P has two special congruence relations, α
and β. These are dual atoms of the congruence lattice and are generated bt the
primeintervals [0, u], [0, v].
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Figure 11. The horizontal case: crossroads

To prove the Theorem 1 is enough to see that every congruence relation generated
by a prime interval is an atom. Distributive lattice have this property, con(p) is an
atom. The proof is easy, we have the situation presented in Figure 4.

If the two source elements are (1, 1)-adjacent then the two correponding prime
intervals generate the same congruence relation.

C is the set of the colors, this is a facor of the chain 1 < 2 < ... < n, factorised
by ∼.

In Figure 9 we have a semimodular lattice given by a grid and source and then
two congruence relations which are atoms of the congruence lattice.

In the colored part of Figure 10 all prim intervals generate the same congruence
relation, an atom of the congruence lattice.

3.5. The proof of the Theorem 1. Let L be a 2-dimensional semimodular lattice.
By a theorem of G. Grätzer, E. Knapp, [8] LN has a congruence-isomorf extension
to a rectangular lattice. That means we may assume that L is rectangular. Every
congruence relation Θ is determied by its restriction to J(L) ∪ {0}. Th elements
of J(L) ∪ {0} are: (ci, 0), (0, cj). The prime intervals p = (ci+1, 0), (ci, 0) and
(0, ci+1), (0, ci)) generate the join-irreducinle congruences con(p) of G. We color
the prime intervals of G on the usual way. The congruence lattice of G is isomorphic
to C2

2n.
L is given by the pair (G, S), we consider G as a colored lattice. We define an

equvivalence relation ∼ on the source S. Two source elements s1 and s2 ae in the
same ∼ -class if and only if there is knight walk, (1, k)-adjacent sequence k ≤ 2
between these elements (Figure 10). Posets determined by different ∼- classes are
independet, i.e. we have direct product.

G contains the set S. In every row/column we have at most one source element,
if in a row/column there is no source element we say it The last row/columns are
always empty !is empty. This means that these rows/columns determine congru-
ences of L, see in Figure 2. The corresponding colors are pi, ..., pk. Let Φ be the
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i
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 the merged  color

Figure 12. 9Merging of colors by (1, 1)-adjacent source elements

twin lattice

Figure 13. Congruence spreading via a twin lattice, change of direction

join of all these congruences. Then L/|Φ is a patch lattice. Φ is the second direct
factor(D+̇C2

2) × Ck
2 of the formula in Theorem 1.

We may assume that L is a patch lattice. Take S = {s1, s2, ..., sn} such that
si is in i-th row. Letk1 be the smallest natural number such that in the series
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s1, s2, ..., sk1 the neiburth are adjacent, but ski , ski+1 is a remote pair. Then these
sequence is the first zigzag Z1. This determine a distributive Lattice D1., e Figure
8. we continue this procedure, ski+1 , ..., s2, ..., sk1

Z2 gives D2, and D is the direct product of these lattices.
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Figure 14. Adjacent pairs
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Figure 15. (1, 2)-adjacent sequence,
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