AN EXTENSION THEOREM FOR PLANAR SEMIMODULAR LATTICES

G. GRÄTZER AND E.T. SCHMIDT

To Lászlo Fuchs, our teacher, on his 90th birthday

ABSTRACT. We prove that every finite distributive lattice D can be represented as the congruence lattice of a rectangular lattice K in which all congruences are principal. We verify this result in a stronger form as an extension theorem.

1. Introduction

In G. Grätzer and E. T. Schmidt [16], we proved that every finite distributive lattice D can be represented as the congruence lattice of a sectionally complemented finite lattice K. In such a lattice, of course, all congruences are principal, using the notation of G. Grätzer [11], Con K = Princ K.

Since every finite distributive lattice D can be represented as the congruence lattice of a planar semimodular lattice K (see G. Grätzer, H. Lakser, and E. T. Schmidt [15]), it is reasonable to ask whether instead of the sectional complemented lattice of the previous paragraph, we can construct a planar semimodular lattice K.

G. Grätzer and E. Knapp [13] proved a result stronger than the Grätzer–Lakser–Schmidt result: every finite distributive lattice D can be represented as the congruence lattice of a rectangular lattice K—see Section 2.1 for the definition. (For a new proof of this result, see G. Grätzer and E. T. Schmidt [19].) Keeping this in mind, we prove:

Theorem 1. Every finite distributive lattice D can be represented as the congruence lattice of a rectangular lattice K with the property that all congruences are principal.

We prove this representation result in a much stronger form, as an extension theorem.

Theorem 2. Let L be a planar semimodular lattice. Then L has an extension K satisfying the following conditions:

- (i) K is a rectangular lattice;
- (ii) K is a congruence-preserving extension of L;
- (iii) K is a cover-preserving extension of L;
- (iv) every congruence relation of K is principal.

Date: Aug. 26, 2013.

²⁰¹⁰ Mathematics Subject Classification. Primary: 06C10. Secondary: 06B10. Key words and phrases. principal congruence, order, semimodular, rectangular.

Observe that we only have to prove Theorem 2. Indeed, let Theorem 2 hold and let D be a finite distributive lattice. By G. Grätzer and E. Knapp [13], there is a planar semimodular lattice K_1 whose congruence lattice is isomorphic to D. By Theorem 2, the lattice K_1 has a congruence-preserving extension K in which every congruence relation is principal. This lattice K satisfies the conditions of Theorem 1.

We will use the notations and concepts of lattice theory as in [8]. See [7] for a deeper coverage of finite congruence lattices. See G. Czédli and G. Grätzer [4] and G. Grätzer [9] for an overview of semimodular lattices, structure and congruences.

2. Background

We need some concepts and results from the literature to prove Theorem 2.

2.1. Rectangular lattices. Let L be a planar lattice. A left corner (resp., right corner) of the lattice L is a doubly-irreducible element in $L - \{0,1\}$ on the left (resp., right) boundary of L. A corner of L is an element in L that is either a left or a right corner of L. G. Grätzer and E. Knapp [13] define a rectangular lattice L as a planar semimodular lattice which has exactly one left corner, lc(L), and exactly one right corner, rc(L), and they are complementary—that is, $lc(L) \vee rc(L) = 1$ and $lc(L) \wedge rc(L) = 0$. In a rectangular lattice L, there are four boundary chains: the lower left, the lower right, the upper left, and the upper right, denoted by $C_{ll}(L)$, $C_{lr}(L)$, $C_{ul}(L)$, and $C_{ur}(L)$, respectively.

Let A and B be rectangular lattices. We define the rectangular gluing of A and B as the gluing of A and B over the ideal I and filter J, where I is the lower left boundary chain of A and J is the upper right boundary chain of B (or symmetrically).

We recap some basic facts about rectangular lattices (G. Grätzer and E. Knapp [13] and [14], G. Czédli and E. T. Schmidt [5] and [6]).

Theorem 3. Let L be a rectangular lattice.

- (i) The ideal $\downarrow lc(L)$ is the chain $C_{ll}(L)$, and symmetrically.
- (ii) The filter $\uparrow lc(L)$ is the chain $C_{ul}(L)$, and symmetrically.
- (iii) For every $a \leq lc(L)$, the interval $[a, rc(L) \vee a]$ is a chain, and symmetrically.
- (iv) For every $a \leq lc(L)$, L is a rectangular gluing of the filter $\uparrow a$ and the ideal $\downarrow rc(L) \lor a$.
- (v) For every prime interval \mathfrak{p} of the chain $[a, rc(L) \vee a]$, there is a prime interval \mathfrak{q} of the chain C_{lr} so that \mathfrak{p} and \mathfrak{q} are perspective.

Note that it follows from (v) that

$$\operatorname{con}(C_{\operatorname{ul}}) = \operatorname{con}(a, \operatorname{rc}(L) \vee a) = \operatorname{con}(C_{\operatorname{lr}}).$$

- 2.2. Eyes. Let L be a planar lattice. An interior element of an interval of length two is called an *eye* of L. We will *insert* and *remove* eyes in the obvious sense. A planar semimodular lattice L is *slim* if it has no eyes.
- 2.3. Forks. We need from G. Czédli and E. T. Schmidt [6] the fork construction. Let L be a planar semimodular lattice. Let L be slim. Inserting a fork into L at the covering square S, firstly, replaces S by a copy of S_7 . We get three new covering squares replacing S of L. We will name the elements of the inserted S_7 as in Figure 1.

Secondly, if there is a chain $u \prec v \prec w$ such that the element v has just been inserted (the element a or b in S_7 in the first step) and $T = \{x = u \land z, z, u, w = z \lor u\}$ is a covering square in the lattice L (and so $u \prec v \prec w$ is not on the boundary of L) but $x \prec z$ at the present stage of the construction, then we insert a new element y into the interval [x, z] such that $x \prec y \prec z$ and $y \prec v$, see Figure 2. We get two covering squares to replace the covering square T.

Let K denote the lattice we obtain when the procedure terminates (that is, when the new element is on the boundary); see Figure 3 for an example.

The new elements form an order, called a fork (the black filled elements in Figure 3). We say that K is obtained from L by $inserting\ a\ fork\ into\ L$ at the covering square S.

Here are some basic facts, based on G. Czédli and E. T. Schmidt [6], about this construction.

Lemma 4. Let L be a planar semimodular lattice and let S be a covering square in L. If L is slim, then inserting a fork into L at S we obtain a slim planar semimodular lattice K. If L is rectangular, so is K.

If y is an element of the fork outside of S, then $[y_*, y]$ is up-perspective to [o, a] or [o, b], where y_* is the lower cover of y in K - L.

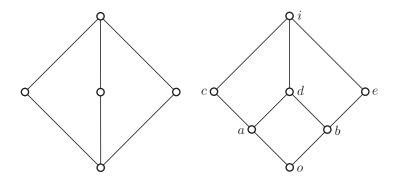


FIGURE 1. The lattices M_3 and S_7

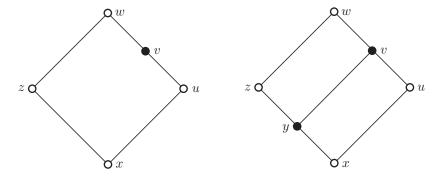


FIGURE 2. A step in inserting a fork

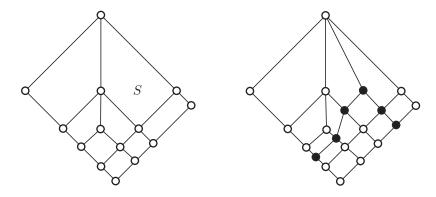


FIGURE 3. Inserting a fork at S

2.4. Patch lattices. Let us call a rectangular lattice L a patch lattice if lc(A) and rc(A) are dual atoms; Figure 1 has two examples. The next lemma is a trivial application of Lemma 4.

Lemma 5. Let L be a slim patch lattice and let S be a covering square in L. Inserting a fork into L at S, we obtain a slim patch lattice K.

2.5. **The structure theorems.** Now we state the structure theorems for patch lattices and rectangular lattices of G. Czédli and E. T. Schmidt [6].

Theorem 6. Let L be a patch lattice. Then we can obtain L from the four-element Boolean lattice C_2^2 by first inserting forks, then inserting eyes.

Theorem 7. Let L be a rectangular lattice. Then there is a sequence of lattices

$$K_1, K_2, \ldots, K_n = L$$

such that each K_i , for i = 1, 2, ..., n, is either a patch lattice or it is the rectangular gluing of the lattices K_j and K_k for j, k < i.

See also G. Grätzer and E. Knapp [14] and G. Grätzer [10].

2.6. A congruence-preserving extension. Finally, we need the following result of G. Grätzer and E. Knapp [13].

Theorem 8. Let L be a planar semimodular lattice. Then there exists a rectangular, cover-preserving, and congruence-preserving extension K of L.

3. CONGRUENCES OF RECTANGULAR LATTICES

To prove Theorem 2, we need a "coordinatization" of the congruences of rectangular lattices.

Theorem 9. Let L be a rectangular lattice and let α be a congruence of L. Let α^l denote the restriction of α to C_{ll} . Let α^r denote the restriction of α to C_{lr} . Then the congruence α is determined by the pair (α^l, α^r) . In fact,

$$\alpha = \operatorname{con}(\alpha^l \cup \alpha^r).$$

Proof. Since $\alpha \geq \operatorname{con}(\alpha^l \cup \alpha^r)$, it is sufficient to prove that

(P) if the prime interval \mathfrak{p} of A is collapsed by the congruence $\boldsymbol{\alpha}$, then it is collapsed by the congruence $\operatorname{con}(\boldsymbol{\alpha}^l \cup \boldsymbol{\alpha}^r)$.

First, let L be a slim patch lattice. By Theorem 6, we obtain L from the square, C_2^2 , with a sequence of n fork insertions. We induct on n.

If n = 0, then $L = C_2^2$, and the statement is trivial.

Let the statement hold for n-1 and let K be the patch lattice we obtain by n-1 fork insertions into C_2^2 , so that we obtain L from K by one fork insertion at the covering square S. We have three cases to consider.

Case 1. \mathfrak{p} is a prime interval of K. Then the statement holds for \mathfrak{p} and $\alpha \rceil_K$, the restriction of α to K by induction. So \mathfrak{p} is collapsed by $\operatorname{con}((\alpha \rceil_K)^l \cup (\alpha \rceil_K)^r)$ in K. Therefore, (P) holds in L.

In the next two cases, we assume that \mathfrak{p} is not in K.

Case 2. \mathfrak{p} is perspective to a prime interval of K. Same proof as in Case 1. This case includes $\mathfrak{p} = [o, a]$ and any one of the new intervals up-perspective with [o, a].

Case 3. $\mathfrak{p} = [a, c]$ and any one of the new intervals is up-perspective with [a, c]. Then the fork extension defines the terminating prime interval $\mathfrak{q} = [y, z]$ on the boundary of L which is up-perspective with \mathfrak{p} , verifying (P).

Secondly, let L be a patch lattice, not necessarily slim. This case is obvious because (P) is preserved when inserting an eye.

Finally, if L is not a patch lattice, we induct on |L|. By Theorem 7, L is the rectangular gluing of the rectangular lattices A and B over the ideal I and filter J. Let \mathfrak{p} be a prime interval of L. Then \mathfrak{p} is a prime interval of A or B, say, of A. (If \mathfrak{p} is a prime interval of B, then the argument is easier.) By induction, \mathfrak{p} is collapsed by $\operatorname{con}(\alpha|_{C_{\operatorname{ll}}(A)} \cup \alpha|_{C_{\operatorname{lr}}(A)})$, so it is collapsed by $\operatorname{con}(\alpha|_{C_{\operatorname{ll}}(L)} \cup \alpha|_{C_{\operatorname{lr}}(L)}) = \operatorname{con}(\alpha^l \cup \alpha^r)$.

4. Construction

Now we proceed with the construction for the planar semimodular lattice L for Theorem 2.

Step 1. We apply Theorem 8 to get a rectangular, cover-preserving, and congruence-preserving extension K_1 of K.

Step 2. Let $D = C_{lr}(K_1)$. We form the lattice D^2 , and insert eyes into the covering squares of the main diagonal, obtaining the lattice \widehat{D} , see Figure 4.

Now we do a rectangular gluing of K_1 and \widehat{D} , obtaining the lattice K_2 . Here is the crucial statement:

Lemma 10. K_2 is a rectangular, cover-preserving, and congruence-preserving extension of L. For every join-irreducible congruence α of L, there is a prime interval \mathfrak{p}_{α} of $C = C_{ll}(K_2)$ such that $con(\mathfrak{p}_{\alpha})$ in K_2 is the unique extension of α to K_2 .

Proof. Indeed, by Theorem 9, there is a prime interval \mathfrak{q}^l_{α} of $C_{\mathrm{ll}}(K_1)$ or a prime interval \mathfrak{q}^r_{α} of $C_{\mathrm{lr}}(K_1)$ such that $\mathrm{con}(\mathfrak{q}^l_{\alpha})$ or $\mathrm{con}(\mathfrak{q}^r_{\alpha})$ in K_1 is the unique extension of α to K_1 . If we have $\mathfrak{q}^l_{\alpha} \subseteq C_{\mathrm{ll}}(K_1) \subseteq C$, set $\mathfrak{q}^l_{\alpha} = \mathfrak{p}_{\alpha}$ and we are done.

If we have $\mathfrak{q}^r_{\alpha} \subseteq C_{\mathrm{lr}}(K_1)$ with $\mathrm{con}(\mathfrak{q}^r_{\alpha})$ the unique extension of α to K_1 , then

If we have $\mathfrak{q}^r_{\alpha} \subseteq C_{\operatorname{lr}}(K_1)$ with $\operatorname{con}(\mathfrak{q}^r_{\alpha})$ the unique extension of α to K_1 , then in K_2 there is a unique $\mathfrak{q} \subseteq C_{\operatorname{ll}}(\widehat{D}) \subseteq C_{\operatorname{ll}}(K_2)$ such that in \widehat{D} , the prime intervals \mathfrak{q}^r_{α} and \mathfrak{q} are connected by an M_3 on the main diagonal; see Figure 5 for an illustration.

Now clearly, we can set $\mathfrak{p}_{\alpha} = \mathfrak{q}$.

Note: Lemma 10 is a variant of several published results. Maybe G. Czédli [1, Lemma 7.2] is its closest predecessor.

Step 3. For the final step of the construction, take the chain $C = C_{ll}(K_2)$ and a congruence α of L. We can view α as a congruence of K_2 and let $\alpha = \gamma_1 \vee \cdots \vee \gamma_n$

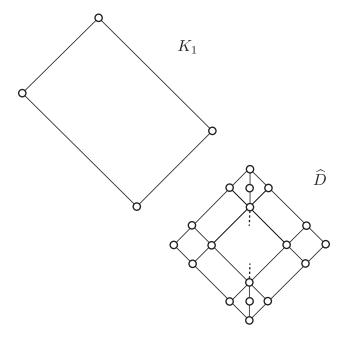


FIGURE 4. Step 2 of construction

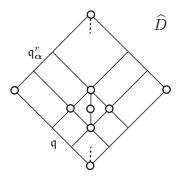


FIGURE 5. Step 2 of construction: a detail of the lattice \hat{D}

be a join-decomposition of α into join-irreducible congruences. By Theorem 9 and (P), we can associate with each γ_i , for $i=1,\ldots,n$, a prime interval \mathfrak{p}_i of C so that $\operatorname{con}(\mathfrak{p}_i)=\gamma_i$.

We construct a rectangular lattice $C[\alpha]$ (a cousin of \widehat{D}) as follows:

Let $C_{n+1} = \{0 < 1 < \dots < n\}$. Take the direct product $C \times C_{n+1}$. We think of this direct product as consisting of n columns, column 1 (the bottom one), ..., column n (the top one).

In column i, for $1 \leq i \leq n$, we take the covering square whose upper right edge is perspective to \mathfrak{p}_i and insert an eye. In the covering M_3 sublattice we obtain, every prime interval \mathfrak{p} satisfies $\mathrm{con}(\mathfrak{p}) = \gamma_i$. See Figure 6 for an illustration with n=3; a prime interval \mathfrak{p} is labelled with γ_i if $\mathrm{con}(\mathfrak{p}) = \gamma_i$.

Let b denote the top element of the M_3 we constructed for \mathfrak{p}_n , clearly, we have $b \in C_{\mathrm{ur}}(C[\alpha])$. Take the element $a \in C_{\mathrm{ll}}(C[\alpha])$ so that the interval [a,b] is a chain of length n. Then the n prime intervals $\mathfrak{q}_1, \ldots, \mathfrak{q}_n$ of [a,b] satisfy

$$con(\mathfrak{q}_1) = \gamma_1, \dots, con(\mathfrak{q}_n) = \gamma_n,$$

so $\operatorname{con}([a,b]) = \boldsymbol{\alpha}$, finding that in the lattice $C[\boldsymbol{\alpha}]$, the congruence $\boldsymbol{\alpha}$ is principal. We identify C with $C_{\operatorname{ur}}(C[\boldsymbol{\alpha}])$; note that this is a "congruence preserving" isomorphism: for a prime interval \mathfrak{p} of C, the image \mathfrak{p}' of \mathfrak{p} in $C_{\operatorname{ur}}(C[\boldsymbol{\alpha}])$ satisfies $\operatorname{con}(\mathfrak{p}) = \operatorname{con}(\mathfrak{p}')$.

Now we form the rectangular gluing of $C[\alpha]$ with filter C and K_2 with the ideal C to obtain the lattice $K_2[\alpha]$. Obviously, $K_2[\alpha]$ is a rectangular lattice, it is a cover-preserving congruence-preserving extension of K_2 and, therefore, of L.

It is easy to see that $C_{\rm ll}(K_2[\alpha])$ is still (congruence) isomorphic to C; for a rigorous treatment see the Corner Lemma and the Eye Lemma in G. Czédli [1] as they are used in the proof of [1, Lemma 7.2]. We can continue this expansion with all the congruences of L. In the last step, we get the lattice $K_3 = K$, satisfying all the conditions of Theorem 2.

4.1. **Discussion.** Let L be a rectangular lattice and let α be a join-irreducible congruence of L. We call α left-sided, if there a prime interval $\mathfrak{p} \subseteq C_{\mathrm{ll}}(L)$ such that $\mathrm{con}(\mathfrak{p}) = \alpha$ but there is no such $\mathfrak{p} \subseteq C_{\mathrm{lr}}(L)$. In the symmetric case, we call α right-sided. The congruence α is one-sided if it is left-sided or right-sided. The congruence α is two-sided if it is not one-sided.

Using these concepts, we can further analyze Theorem 9 and condition (P). By Theorems 6 and 7, we build a rectangular lattice from a grid (the direct product of two chains) by inserting first forks and then eyes. At the start, all join-irreducible congruences are one-sided. When we insert a fork, we introduce a two-sided congruence. When we insert an eye, we identify two congruences, resulting in a two-sided congruence.

What congruence pairs occur in Theorem 9? Let β_l be a congruence of $C_{\rm ll}(L)$ and let β_r be a congruence of $C_{\rm lr}(L)$. Under what conditions is there a congruence α of L such that $\alpha^l = \beta_l$ and $\alpha^r = \beta_r$? Here is the condition: If \mathfrak{p} is a prime

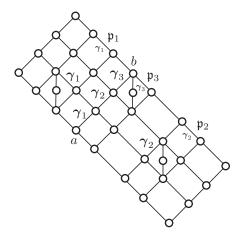


FIGURE 6. Step 3 of construction: the lattice $C[\alpha]$

interval of $C_{\rm ll}(L)$ collapsed by $\boldsymbol{\beta}_l$ and there is a prime interval \mathfrak{q} of $C_{\rm lr}(L)$ with ${\rm con}(\mathfrak{p})={\rm con}(\mathfrak{q})$, then \mathfrak{q} is collapsed by $\boldsymbol{\beta}_r$; and symmetrically.

In Step 3 of the construction, we use the chain C_{n+1} . Clearly, C_n would have sufficed. Can we use, in general, shorter chains?

In a finite sectionally complemented lattice, the congruences are determined around the zero element. So it is clear that for finite sectionally complemented lattices, all congruences are principal.

For a finite semimodular lattice, the congruences are scattered all over. So it is somewhat surprising that Theorem 1 holds.

For modular lattices, the situation is similar to the semimodular case. E. T. Schmidt [21] proved that every finite distributive lattice D can be represented as the congruence lattice of a countable modular lattice K. (See also G. Grätzer and E. T. Schmidt [17] and [18].) It is an interesting question whether Theorem 1 holds for countable modular lattices.

The congruence structure of planar semimodular lattices is further investigated in three recent papers: G. Czédli [2], [3] and G. Grätzer [12].

References

- [1] G. Czédli, Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices. Algebra Universalis 67 (2012) 313–345.
- [2] G. Czédli, Patch extensions and trajectory colourings of slim rectangular lattices. Algebra Universalis.
- [3] G. Czédli, A note on congruence lattices of slim semimodular lattices. Algebra Universalis.
- [4] G. Czédli and G. Grätzer, Planar Semimodular Lattices: Structure and Diagrams. Chapter in [20].
- [5] G. Czédli and E. T. Schmidt, Slim semimodular lattices. I. A visual approach, Order 29 (2012), 481-497.
- [6] _____, Slim semimodular lattices. II. A description by patchwork systems, Order 30 (2013), 689-721.
- [7] G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach. Birkhäuser Boston, 2006. xxiii+281 pp. ISBN: 0-8176-3224-7.
- [8] G. Grätzer, Lattice Theory: Foundation. Birkhäuser Verlag, Basel, 2011. xxix+613 pp. ISBN: 978-3-0348-0017-4.
- [9] G. Grätzer, Planar Semimodular Lattices: Congruences. Chapter in [20].
- [10] ______, Notes on planar semimodular lattices. VI. On the structure theorem of planar semimodular lattices. Algebra Universalis.
- [11] ______, The order of principal congruences of a lattice. Algebra Universalis **70** (2013), 95–105. arXiv: 1302.4163
- [12] ______, Congruences of fork extensions of lattices. Acta Sci. Math. (Szeged). arXiv: 1307.8404
- [13] G. Grätzer and E. Knapp, Notes on planar semimodular lattices. III. Rectangular lattices. Acta Sci. Math. (Szeged) 75 (2009), 29–48.
- [14] ______, Notes on planar semimodular lattices. IV. The size of a minimal congruence lattice representation with rectangular lattices. Acta Sci. Math. (Szeged) 76 (2010), 3–26.
- [15] G. Grätzer, H. Lakser, and E. T. Schmidt, Congruence lattices of finite semimodular lattices. Canad. Math. Bull. 41 (1998), 290–297.
- [16] G. Grätzer and E.T. Schmidt, On congruence lattices of lattices, Acta Math. Acad. Sci. Hungar. 13 (1962), 179–185.
- [17] ______, On finite automorphism groups of simple arguesian lattices, Studia Sci. Math. Hungar. **35** (1999), 247–258.
- [18] _____, On the Independence Theorem of related structures for modular (arguesian) lattices. Studia Sci. Math. Hungar. 40 (2003), 1–12.
- [19] ______, A short proof of the congruence representation theorem of rectangular lattices. arXiv: 1303.4464. Algebra Universalis (2013).

- [20] G. Grätzer and F. Wehrung eds., Lattice Theory: Empire. Special Topics and Applications. Birkhäuser Verlag, Basel.
- [21] E. T. Schmidt, Every finite distributive lattice is the congruence lattice of some modular lattice. Algebra Universalis 4 (1974), 49-57.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANITOBA, WINNIPEG, MB R3T 2N2, CANADA $E\text{-}mail\ address$, G. Grätzer: gratzer@me.com

URL, G. Grätzer: http://server.maths.umanitoba.ca/homepages/gratzer/

Mathematical Institute of the Budapest University of Technology and Economics, H-1521 Budapest, Hungary

 $E{\text{-}mail~address}, \text{ E. T. Schmidt: schmidt@math.bme.hu} \\ \textit{URL}, \text{ E. T. Schmidt: http://www.math.bme.hu/~schmidt/}$