CONGRUENCE-DETERMINING CHAIN IDEALS OF SEMIMODULAR LATTICES

E. TAMÁS SCHMIDT

Abstract. Every semimodular lattice L has a congruence-preserving extension to a semimodular lattice K such that: K contains as ideal a congruence-determining chain C and every congruence is principal.

1. Introduction

If every congruence of A is determined by its restriction to B, then B is called a congruence-determining sublattice of A.

We prove:

Theorem. Every semimodular lattice L has a congruence-preserving extension K such that:

1. L is the cover-preserving sublattice of a filter of K,
2. K is a semimodular lattice,
3. K contains as ideal a chain C,
4. C is congruence-determining,
5. every congruence is principal.

2. The planar case

Proof. First, we consider the planar case. By Theorem 7. of G. Grätzer, E. Knapp, [1] L has a congruence-preserving extension to a planar rectangular semimodular lattice $R = \mathcal{T}$, see on Figure 1. $[c, a]$ and $[c, b]$ are chain ideals. Let n be the length of $[c, a]$, i.e. $n = l([c, a])$. We color the prime intervals of $[c, a]$ by $p_1, p_2, ..., p_n$. The colors correspond to the congruences of L. Let $\pi = \{p_{i_1}, p_{i_2}, ..., p_{i_k}\}$ be a permutation a subset of the color set $\{p_1, p_2, ..., p_n\}$.

The congruences of R are determined by the restrictions to $V = [c, a] \cup [c, b]$. (Let us remark that the chain $[b, 1]$ can be shorter then $[c, a]$.)

M is direct product of two chains of length n and length m, $n \leq m$, in some covering squares we insert a double irreducible element to get M_3-s, see Figure 2. We color the prime intervals of $[e', c']$ in M by given colors such that a subinterval $[u, v]$ of $[e', c']$ is colored by π. Insert a double-irreducible element into every monochromatic covering square to get M_3-s. To get K we apply gluing for R, M, see Figure 3. Then R is a filter of K.

C is the ideal $[e, b]$ on the right side (black filled circles). It is easy to prove, that K satisfies the properties, listed in the Theorem 1.

Date: November 1, 2014.

2000 Mathematics Subject Classification. Primary: 06C10, Secondary: 06B15.

Key words and phrases. Lattice, semimodular, geometric lattice, embedding, cover-preserving.
2.1. Minimal set of principals.

3. Higher dimension

New, we consider the \(\text{Jw}(L) \geq 3 \) case. We construct \(K \) in several steps.

Step 1. Let \(L \) be a semimodular lattice of length \(n \), \(\text{Jw}(L) = 3 \). Then there is a chain \(D \) of length \(n \) such that \(L \) is the cover-preserving join-homomorphic image of \(D^3, \varphi(D^3) \to L \). \(L \) is the (0, 1)-sublattice of a rectangular lattice \(R \), the rectangular hull of \(L \), \([2]\) (see the next remark). This has three chain-deals \(C_1 \) (green), \(C_2 \) (blue) and \(C_3 \) (red) of length \(n \). \(C_1 \cup C_2 \cup C_3 \) is a congruence-determining meet-sublattice (order ideal).

Remark: the construction of \(R \). We denote by \(\Theta \) the cover-preserving join-congruence induced by \(\varphi \). Take the source \(S \) of \(\Theta \). A source element \(s \in S \) is called bastard if \(s \) itself or at least one of its lower covers \(t \) is join-irreducible. Let \(S' \subseteq S \) the set of all non bastard source elements and \(\Theta' \) denotes the corresponding cover-preserving join-congruence. Then \(R = D^3/\Theta' \) is a rectangular lattice (envelop) and \(L = D^3/\Theta \) is a cover-preserving sublattice of \(R \).
Step 2. Follow the construction on Figure 3. We glue together $B \cong D^3$ and R identifying the zero element of R with the unit element of B. Take M (presented on Figure 1) in three examples M_1, M_2 and M_3 (flaps) and attach to $R \cup B$. We denote this lattice by K_0.

Step 3. $[v,e]$ and $[w,a]$ are isomorphic to $M \times C_2$. Apply again gluing twice: first we glue together K_0 and $[v,e]$. Finally we glue this lattice with $[w,a]$. This results K. The ideal $[w,u]$ is a chain, which contains the three colors as subchains. Let us remark that $[w,y] \cong [v,x] \cong M$.

\[\square \]
Let \mathcal{K} denote the class of finite length semimodular lattices that have congruence-determining chain ideals. From [3] we get:

Corollary. Let L be a semimodular lattice and let D be a $(0,1)$-sublattice of $\text{Con} L$. Then there exists an $\mathcal{T} \in \mathcal{K}$ such that K contains as ideal a chain C, C is congruence-determining and the restriction mapping $\rho : \text{Con}\mathcal{T} \rightarrow \text{Con} L$, $\theta \mapsto [\theta]_L$, is actually a $(0,1)$-lattice isomorphism $\text{Con}\mathcal{T} \rightarrow D$; in particular, $\text{Con}\mathcal{T} \cong D$.

References

Mathematical Institute of the Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1521 Budapest, Hungary

E-mail address, E. T. Schmidt: schmidt@math.bme.hu

URL: http://www.math.bme.hu/~schmidt/

Figure 5. 3D final, the queuing: K