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To the memory of András Huhn, 1947–1985.
We remember you.

Abstract. In the early eighties, A. Huhn proved that if D, E are finite dis-
tributive lattices and ψ : D → E is a {0}-preserving join-embedding, then
there are finite lattices K, L and there is a lattice homomorphism ϕ : K → L
such that ConK (the congruence lattice of K) is isomorphic to D, ConL (the
congruence lattice of L) is isomorphic to E, and the natural induced mapping
extϕ : ConK → ConL represents ψ. The present authors with H. Lakser
generalized this result to an arbitrary {0}-preserving join-homomorphism ψ.

It was also A. Huhn who introduced the 2-distributive identity:

x ∧ (y1 ∨ y2 ∨ y3) = (x ∧ (y1 ∨ y2)) ∨ (x ∧ (y1 ∨ y3)) ∨ (x ∧ (y2 ∨ y3)).

We shall call a lattice doubly 2-distributive, if it satisfies the 2-distributive
identity and its dual.

In this note, we prove that the lattices K and L in the above result can be
constructed as doubly 2-distributive lattices.

1. Introduction

The congruence lattice, ConL, of a finite lattice L is a finite distributive lattice
(N. Funayama and T. Nakayama [1]). The converse is a result of R. P. Dilworth,
first published in G. Grätzer and E. T. Schmidt [6].

Many paper have been published making L planar, “small”, modular (for count-
able L), and so on. See Appendix C in [2] for a review.

Recent publications consider simultaneous representations. Let K, L be lattices
and let ϕ be a homomorphism of K into L. Then ϕ induces a map extϕ of ConK
into ConL: for a congruence relation Θ of K, let the image Θ under extϕ be
the congruence relation of L generated by the set Θϕ = { 〈aϕ, bϕ〉 | a ≡ b (Θ) };
obviously, ϕ is a {0,∨}-homomorphism of ConK into ConL. The simultaneous rep-
resentation problem asks when a {0,∨}-homomorphism between finite distributive
lattices can be so represented.
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The following result was proved by A. P. Huhn in [9] in the special case when
ψ is an embedding and was proved for arbitrary ψ in G. Grätzer, H. Lakser, and
E. T. Schmidt [5]:

Theorem 1. Let D and E be finite distributive lattices, and let

ψ : D → E

be a {0,∨}-homomorphism. Then there are finite lattices K and L, a lattice homo-
morphism ϕ : K → L, and isomorphisms

α : D → ConK,
β : E → ConL

with

ψβ = α(extϕ).

Furthermore, ϕ is an embedding iff ψ separates 0.

Theorem 1 concludes that the following diagram is commutative:

D
ψ−−−−→ E

∼=
yα ∼=

yβ
ConK

extϕ−−−−→ ConL

See G. Grätzer, H. Lakser, and E. T. Schmidt [4] for related results.
A. Huhn introduced n-distributivity in [8]. Let n ≥ 1 be an integer. A lattice L

is n-distributive, if for all x, y1, . . . , yn+1 ∈ L,

x ∧ (
n+1∨
i=1

yi) =
n+1∨
i=1

(x ∧ (
n+1∨
j=1
j 6=i

yj)).

In particular, a lattice L is 1-distributive iff it is distributive and 2-distributive iff
it satisfies the identity:

x ∧ (y1 ∨ y2 ∨ y3) = (x ∧ (y1 ∨ y2)) ∨ (x ∧ (y1 ∨ y3)) ∨ (x ∧ (y2 ∨ y3)).(2D)

We shall call a lattice L doubly 2-distributive, if it satisfies the 2-distributive identity
and its dual. For instance, N5 and M3 are doubly 2-distributive lattices.

Now we can state our main result:

Theorem 2. In Theorem 1, K and L can be constructed as finite, doubly 2-
distributive lattices.

The background for this paper is briefly presented in Sections 2 and 3. The con-
struction of the lattice L is presented in Section 4 in six easy steps. We verify in
Section 5 that L is 2-distributive and in Section 6 that L is dually 2-distributive.
The crucial step is Lemma 9, proving that under very special circumstances we
can glue 2-distributive lattices and obtain a 2-distributive lattice. The concluding
Section 7 provides some discussion.
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2. Multi-coloring

The construction that leads to the proof of Theorem 2 is based on an extension
lemma first proved in [4]. We state this lemma in this section. But first some
concepts.

Let M be a finite lattice and let C be a finite set; the elements of C will be called
colors. A coloring µ of M over C is a map

µ : P(M)→ C

of the set of prime intervals P(M) of M into C satisfying the condition: if two
prime intervals generate the same congruence relation of M , then they have the
same color; that is,

p, q ∈ P(M) and Θ(p) = Θ(q) imply that pµ = qµ.
Since the join-irreducible congruences of M are exactly those that can be generated
by prime intervals, equivalently, µ can be regarded as a map of the set J(ConM)
of join-irreducible congruences of M into C:

µ : J(ConM)→ C.

A multi-coloring over C is an isotone map µ from P(M) into P+(C) (the set of all
nonempty subsets of C); isotone means that if p, q ∈ P(M) and Θ(p) ≤ Θ(q), then
pµ ⊆ qµ. Equivalently, a multi-coloring is an isotone map of the poset J(ConM)
into the poset P+(C).

The extension lemma states that a multi-colored lattice has a natural extension
to a colored lattice:

Lemma 1. Let M be a finite lattice with a multi-coloring µ over the set C. Then
there exist a lattice M∗ with a coloring µ∗ over C such that the following conditions
holds:

(i) M∗ is the colored direct product of the lattices Mc, c ∈ C, where Mc is a
homomorphic image of M colored by {c}.

(ii) There is a lattice embedding a 7→ a∗ of M into M∗.
(iii) For every prime interval p = [a, b] of M ,

pµ = { qµ∗ | q ∈ P(M∗) and q ⊆ [a∗, b∗] }
and the minimal extension of Θ(p) under this embedding of M into M∗ is of
the form ∏

(Θ(pc) | c ∈ C),

where
(a) pc is a prime interval of Mc iff c ∈ pµ;
(b) pc is a trivial interval otherwise (in which case, Θ(pc) = ωMc).

3. The planar construction

For a finite distributive lattice D, the authors and H. Lakser constructed in [3] a
finite planar lattice K with ConK ∼= D. To construct K, we take two finite chains,
G0 and G1 (whose length depends from the number of the join-irreducible elements
of D) colored by C = J(K); we assume that the coloring of G0: µ0 : P(G0) → C

is an onto map. We form the colored direct product, G = G0 ×G1; we call G the
grid. We adjoin some elements to this grid:
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(i) for some prime intervals [a, b] of G, we adjoin the new element n(a, b) such
that a ≺ n(a, b) ≺ b in the extended lattice;

(ii) for some prime squares [a, b] of G (that is, [a, b] is isomorphic to C2
2 ), we

adjoin the new element m(a, b) such that [a, b] extends to an M3.
K is constructed as such an augmented grid; for the details, see [3].

The following property of this construction is important in this paper.

Lemma 2. Let K be the planar lattice constructed for D. Let Θ be a congruence
of K and let d ∈ D be the element corresponding to Θ under the isomorphism
ConK ∼= D. Then K1 = K/Θ is isomorphic to the lattice constructed for the
distributive lattice D1 = [d, 1] ⊆ D.

Another obvious property of this construction is the following:

Lemma 3. Let K be the planar lattice constructed for D. Let K be the lattice we
obtain from K by adjoining a new element m(a, b) for all prime squares [a, b] of K
so that [a, b] extends in K to an M3. Then K is a finite, planar, simple lattice.

4. The 2-distributive construction

In this section, we construct the lattice L for Theorem 2 and verify its congruence
properties.

Let D, E be finite distributive lattices and let

ψ : D → E

be a {0,∨}-homomorphism.
In [3], we have observed that we can assume, without loss of generality, that ψ

separates 0.
Step 1: the lattice K. We represent D as the congruence lattice of a planar

lattice K as constructed in [3], see Section 3. We identify D with ConK, so we
view ψ a {0,∨}-homomorphism of ConK into E.

Step 2: the lattice L0. We define a map µ of P(K) to subsets of J(E):

pµ = J(E) ∩ (Θ(p)ψ].

µ is obviously isotone. ψ separates 0, so pµ 6= ∅. Therefore, µ is a multi-coloring
of K over J(E). We apply Lemma 1 to obtain the lattice

K∗ =
∏

(Kc | c ∈ J(E)).

Kc is a homomorphic image of K, so by Lemma 2, Kc is also a lattice of the type
described in Section 3; in particular, Kc is planar.

By Lemma 3, we can extend Kc to a finite, planar, simple lattice Kc of color
{c}. Define

L0 =
∏

(Kc | c ∈ J(E)).

Since L0 is a direct product of simple lattices, it follows that J(ConL0) is unordered;
the congruence lattice of L0 is a Boolean lattice with |J(E)| atoms. K is a sublattice
of K∗ and K∗ is a sublattice of L0 (under x 7→ x∗), so we obtain an embedding
ϕ : K → L0.

Let pc be an arbitrary atom of the direct component Kc; then the prime interval
[0, pc] of L0 has color c. The atoms pc, c ∈ J(E), generate an ideal B0 of L0 that is
a Boolean lattice with the following two properties:
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(i) for any two distinct atoms, p and q, the prime intervals [0, p] and [0, q] have
distinct colors;

(ii) every color c ∈ J(E) is the color of some prime intervals [0, p].

Step 3: the lattice L1. We represent E as the congruence lattice of a finite
planar lattice L1 as in [3], see Section 3. Then ConL1, is isomorphic to E. The
grid H of E is the direct product of chains H0 and H1 colored by J(E). The grid
H = H0 ×H1 inherits the coloring.

Step 4: the lattice M . Let n be the cardinality of J(E), and let B a Boolean
lattice with 2n elements; color this Boolean lattice by J(E) such that conditions (i)
and (ii) above hold.

Take the colored direct product B × H0. The elements 〈b, 0〉, b ∈ B, form an
ideal isomorphic to B; we identify B with this ideal. Similarly, H0 is identified with
the ideal {〈0, x〉 | x ∈ H0}. In B×H0, a prime square is of the form p× q, where p

is a prime interval in B and q is a prime interval in H0. We call the prime square
p× q monochromatic, if p in B and q in H0 have the same color.

Represent B as a sublattice of Mn
3 and H0 as a sublattice of some Mk

3 ; then
B ×H0 is a sublattice of Mn+k

3 . Let M denote the sublattice of Mn+k
3 containing

B ×H0 with the property that, for every monochromatic prime square in B ×H0,
the corresponding sublattice of M is an M3. M is a modular lattice in which B× p

is isomorphic to Cn−1
2 ×M3, for any prime interval p of H0. The dual ideal H ′0 of

M generated by 〈1, 0〉 is isomorphic to H0.
Step 5: the lattice L2. Glue together L1 and M by identifying the ideal H0

of L1 with the dual ideal H ′0 of M . Denote by L2 the lattice we obtain. ConL2 is
isomorphic to E and L2 contains an ideal which is a Boolean lattice colored by the
different colors.

We consider on L2 the natural coloring over J(E) (a prime interval p is colored
by Θ(p)β−1

1 ∈ J(E)). Note that L0 and L2 are colored over the same set, namely,
J(E). Then B is an ideal of B × H0 and B × H0 is an ideal of L2, consequently,
B is an ideal of L2. This ideal B is a Boolean lattice satisfying the conditions (i)
and (ii).

Step 6: the lattice L. Now we have the lattice L0 with the ideal B0 and L2

with an ideal B. Note that B0 and B are isomorphic finite Boolean lattices with the
same coloring. Take the dual of L2, denote it by L3. In L3, the ideal B corresponds
to a dual ideal B′. Again, note that B0 and B′ are isomorphic finite Boolean
lattices with the same coloring. Glue together L0 and L3 by a color preserving
identification of B0 and B′. The resulting lattice is L. The prime intervals of L
are colored by J(E), and we have the isomorphism β : E → ConL. Since L0 is a
sublattice of L, we may view ϕ as an embedding of K into L.

This completes the lattice constructions. As in [3], we have to verify that extϕ =
ψβ. It is enough to prove that Θ(extϕ) = Θψβ, for join-irreducible congruences Θ
in K.

So let Θ = Θ(p), where p = [a, b] is a prime interval of K. By Lemma 1,
Θ(p) extϕ = Θ(a∗, b∗) collapses in K∗ the prime intervals of color ≤ Θψ; the same
holds in L0 and in L.

Computing Θψβ we get the same result, hence Θ(extϕ) = Θψβ, completing the
proof.
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5. Verifying the 2-distributive identity

In this section, we verify that L is 2-distributive. We start with some general
statements about 2-distributivity.

Lemma 4. If the 2-distributive identity fails in the lattice L with x and y1, y2,
y3, then both {y1, y2, y3} and {y1 ∨ y2, y1 ∨ y3, y2 ∨ y3} are antichains; therefore,
{y1 ∨ y2, y1 ∨ y3, y2 ∨ y3} generates an eight-element Boolean sublattice.

Proof. This is obvious. If, say, y1 ≤ y2 or y1 ∨ y2 ≤ y1 ∨ y3, then the right side of
(2D) equals the left side, trivially. The last statement is Lemma I.5.9 of [2].

Corollary 5. A planar lattice is 2-distributive.

Proof. By Lemma 4, if it was not, then it would contain an eight-element Boolean
lattice, a contradiction.

Lemma 6. If the 2-distributive identity fails in the lattice L, then L contains an
element a ∈ L and a sublattice B that is an eight-element Boolean lattice with dual
atoms (in B) d1, d2, d3 and unit element uB, satisfying

a < uB ,(1)

a £ di, i = 1, 2, 3,(2)

(a ∧ d1) ∨ (a ∧ d2) ∨ (a ∧ d2) < a.(3)

Proof. If the 2-distributive identity fails with x and y1, y2, y3, then set d1 = y1∨y2,
d2 = y1∨y3, d3 = y2∨y3. By Lemma 4, d1, d2, d3 generate an eight-element Boolean
lattice B with dual atoms d1, d2, d3. Set uB = d1 ∨ d2 (= d1 ∨ d3 = d2 ∨ d3) and
a = x ∧ uB . The statement of the lemma is now clear.

The following technical lemma will allow us to dispense with some trivial cases
in the computations of this section and the next.

Lemma 7. Let K be a lattice with the dual ideal D and let L be a lattice with
the ideal I. Let D and I be isomorphic under a fixed isomorphism and let N be
obtained from K and L by gluing them together over D and I.

If both K and L are 2-distributive, then N is 2-distributive provided that the
following condition holds:

(SC) Let d1, d2, d3, a ∈ N satisfy

d1, d2, d3 ∈ L, a ∈ K − L(SC1)

or

d1, d2 ∈ L−K, d3 ∈ K − L.(SC2)

If d1, d2, d3 generate an eight-element Boolean lattice B (with unit element uB) as
the dual atoms of B and a ∈ N satisfies a < uB, then

a = (a ∧ d1) ∨ (a ∧ d2) ∨ (a ∧ d3)(4)

holds in N .

Proof. Let us assume that N satisfies (SC) and N is not 2-distributive. We shall
get a contradiction.

By Lemma 6, N contains an element a and a sublattice B that is an eight-
element Boolean lattice with dual atoms d1, d2, d3 and unit element uB , satisfying
(1)–(3). We distinguish several cases.
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Case 1. B ⊆ L. If a ∈ L, then (4) holds because it follows from (2D) by applying
it to the three atoms of B and to a, contradicting (3). So we can assume that a /∈ L,
that is, a ∈ K − L and so condition (SC1) is satisfied. Thus (4) contradicts (3).

Case 2. B ⊆ K. Then also a ∈ K, so (3) contradicts the 2-distributivity of L
by applying it to the three atoms of B and to a.

Case 3. B * L and B * K. One of the dual atoms, say d1, must be in L −K
and one of the dual atoms, say d3, must be in K − L. Therefore, two of the three
atoms of B (the ones under d3) are in K−L and one (the one under d1) is in L−K.
Hence d2 ∈ L − K. So B and a satisfy the assumptions of (SC2), therefore, (4)
holds, contradicting (3).

As a first consequence of Lemma 7, we obtain the following:

Lemma 8. Let N be a lattice we obtain by gluing two 2-distributive lattices over a
chain. Then N is a 2-distributive lattice.

Proof. Let K, D, L, I, N , B, d1, d2, d3 be given as in Lemma 7 and let us assume
that D = I is a chain.

If (SC1) holds, take o ∈ I with o ≤ vB , the zero of B. Let a = o ∨ a. Then
a ≤ a ≤ uB . So by the 2-distributivity of L (by applying it to the three atoms of
B and to a), we have

a = (a ∧ d1) ∨ (a ∧ d2) ∨ (a ∧ d3).(5)

Since a ∧ d1, a ∧ d2, a ∧ d3 ∈ I, one of them, say, a ∧ d1 is the largest, so by (5),
a = a ∧ d1. It follows that a = a ∧ d1, verifying (4).

If (SC2) holds, choose o ∈ I with o ≤ d1 ∧ d2. Then d1 = (d1 ∧ d2)∨ (d1 ∧ d3) =
(d1 ∧ d2) ∨ (o ∨ (d1 ∧ d3)) and, similarly, d2 = (d1 ∧ d2) ∨ (o ∨ (d2 ∧ d3)). Since
o ∨ (d1 ∧ d3) and o ∨ (d2 ∧ d3) are in the chain D = I, they must be comparable.
Thus d1 and d2 are comparable, a contradiction, so (SC2) does not apply.

Now we are ready to prove the crucial gluing lemma:

Lemma 9. Let K be a lattice with the dual ideal D and let L be a lattice with
the ideal I. Let D and I be isomorphic under a fixed isomorphism and let N be
obtained from K and L by gluing them together over D and I.

Let us further assume that L = C × I, where C is a chain with zero, 0C .
If K is 2-distributive, then so is N .

Proof. The conditions of Lemma 7 are all assumed except that L be 2-distributive.
This trivially holds since L = C × I and I = D is a sublattice of the 2-distributive
lattice K, and C is a chain. We write any x ∈ L as 〈xC , xI〉, where xC ∈ C and
xI ∈ I. By Lemma 7, we only have to verify that (SC) holds in N .

So let B, a, d1, d2, d3, and uB be given as in (SC); we have to compute that (4)
holds.

Let d1, d2, d3, a satisfy (SC1). Let us choose o ≤ i in I satisfying o ≤ vB (the
zero of B) and a ≤ i, uIB ≤ i. Define a = o ∨ a ∈ I.

Note that the projection of B into C is either a one- or a two-element chain. If
it is a one-element chain, then { bI | b ∈ B } is an eight-element Boolean sublattice
of I ⊆ K with unit uIB ≥ a and bI = b ∧ i, for all b ∈ B. Apply the 2-distributivity
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of K to the atoms of BI and a, and compute:

a = (a ∧ dI1) ∨ (a ∧ dI2) ∨ (a ∧ dI3)
= ((a ∧ i) ∧ dI1) ∨ ((a ∧ i) ∧ dI2) ∨ ((a ∧ i) ∧ dI3)
= (a ∧ (i ∧ dI1)) ∨ (a ∧ (i ∧ dI2)) ∨ (a ∧ (i ∧ dI3))
= (a ∧ (i ∧ d1)) ∨ (a ∧ (i ∧ d2)) ∨ (a ∧ (i ∧ d3))

= ((a ∧ i) ∧ d1) ∨ ((a ∧ i) ∧ d2) ∨ ((a ∧ i) ∧ d3)

= (a ∧ d1) ∨ (a ∧ d2) ∨ (a ∧ d3),

verifying (4).
If the projection of B into C is a two-element chain BC = {c1, c2} with c2 ≤ c1,

but { bI | b ∈ B } is still an eight-element Boolean sublattice of I ⊆ K, we proceed
as in the previous paragraph. The alternative is that BI = { bI | b ∈ B } is a
four-element Boolean sublattice of I ⊆ K, so B = BC × BI . Then uIB = dIi , for
some i, say, uIB = dI3. This implies that a ≤ d3, in which case (4) is trivial.

Let d1, d2, d3, a satisfy (SC2). Let

B1 = {d1 ∧ d2, d1, d2, uB},
B2 = {vB , d1 ∧ d3, d2 ∧ d3, d3}.

Then BI1 is a Boolean sublattice of I. If BI1 has one or two elements, then we can
argue as in Lemma 8 that this contradicts that d1 ‖ d2. So BI1 has four elements.

We distinguish two cases.
Case 1: a ∈ L. Then a = 〈aC , aI〉, where aC ≤ uCB , and aI ≤ dI1 ∨ dI2. BI ∪ B2

is an eight-element Boolean sublattice of K; apply the 2-distributivity of K to the
three atoms of BI ∪B2 and to a to obtain

a = (a ∧ dI1) ∨ (a ∧ dI2) ∨ (a ∧ d3).(6)

Note that a ∧ d3 = aI ∧ d3, so we can rewrite (6):

aI = (aI ∧ dI1) ∨ (aI ∧ dI2) ∨ (aI ∧ d3).(7)

Since the first coordinate of both a and (a ∧ d1) ∨ (a ∧ d2) ∨ (a ∧ d3) is aC and
the second coordinate of a is aI and of (a∧ d1)∨ (a∧ d2)∨ (a∧ d3) is the right side
of (7), we conclude that (4) holds.

Case 2: a ∈ K. This is easier: a ∧ d1 = a ∧ dI1, a ∧ d2 = a ∧ dI2, and a = a ∧ i ≤
uB ∧ i = dI1 ∨ dI2, so we obtain (4) by applying the 2-distributive identity in K to
the atoms of the Boolean lattice generated by dI1, d

I
2, d3 and to a.

Now we are ready to prove that the lattices K and L are 2-distributive. K was
constructed as a planar lattice, so by Corollary 5, K is 2-distributive.

In Step 2, the lattices Kc, c ∈ C, are planar, hence L0, their direct product, is
also 2-distributive.

In Step 3, L1 is planar, so it is 2-distributive. In Step 4, the modular lattice M
is in the variety generated by M3; since M3 as a planar lattice is 2-distributive, so
is M .

In Step 5, we obtain L2 by gluing together L1 and M over a chain; hence, by
Lemma 8, L2 is 2-distributive.

Finally, in Step 6, we glue together L0 and L3 over B0 and B′, where L3 is the
dual of L2. We could do this in two steps. First glue to L0 the dual of B × H0.
This lattice is 2-distributive by Lemma 9. Then we extend the dual of B ×H0 to
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the dual of M . This retains 2-distributivity by Lemma 6. Indeed, if we take a B
and a as in the lemma, the only way it could fail in the extended lattice if a is
one of the new elements m(b1, b2). But then b2 ∧ d1, b2 ∧ d2, b2 ∧ d3 ∈ B ×H0, so
they generate a Boolean sublattice. Apply the 2-distributivity of the dual of M to
obtain that the 2-distributive identity holds for a and the atoms of B.

The resulting lattice is L.

6. Verifying the dual 2-distributive identity

In this section we verify that K and L are dually 2-distributive.

Lemma 10. Let K be a lattice with the dual ideal D and let L be a lattice with
the ideal I. Let D and I be isomorphic under a fixed isomorphism and let N be
obtained from K and L by gluing them together over D and I.

Let us further assume that K = C ×D, where C is a chain with a unit element.
If L is 2-distributive, then so is N .

Proof. The conditions of Lemma 7 are all assumed except that K be 2-distributive.
This trivially holds sinceK = C×D,where I = D is a sublattice of the 2-distributive
lattice L and C is a chain. We write any x ∈ K as 〈xC , xD〉, where xC ∈ C and
xD ∈ D. By Lemma 7, we only have to verify that (SC) holds in N .

So let B, a, d1, d2, d3, and uB be given as in (SC); we have to compute that (4)
holds.

Let d1, d2, d3, a satisfy (SC1). Then

aD = (aD ∧ d1) ∨ (aD ∧ d2) ∨ (aD ∧ d3).

since L is 2-distributive (we apply the 2-distributive identity in L to the atoms of
B and to aD), which immediately implies (4).

Let d1, d2, d3, a satisfy (SC2). Let us choose o ≤ i in D = I satisfying o ≤ d1∧d2

and d3 ≤ i.
We distinguish two cases.
Case 1: a ∈ L. Set a = a ∧ i. Then a ∧ d3 = a ∧ d3 = 〈dC3 , dD3 ∧ a〉. So

(a ∧ d1) ∨ (a ∧ d2) ∨ (a ∧ d3)

= (a ∧ d1) ∨ (a ∧ d2) ∨ 〈dC3 , dD3 ∧ a〉
= (a ∧ d1) ∨ (a ∧ d2) ∨ (o ∨ 〈dC3 , dD3 ∧ a〉)
= (a ∧ d1) ∨ (a ∧ d2) ∨ (dD3 ∧ a),

which is the right side of (4) for d1, d2, dD3 , and a.
Now observe that d1, d2, dD3 generate an eight-element Boolean lattice in L with

atoms d1 ∧ d2, d1 ∧ dD3 , d2 ∧ dD3 (because K = C ×D). Since a ≤ d1 ∨ d2 ∨ dD3 and
L is 2-distributive, we have

a = (a ∧ d1) ∨ (a ∧ d2) ∨ (dD3 ∧ a)

in L and so by (8), equation (4) holds, verifying (SC).
Case 2: a ∈ K. Set a = 〈c, g〉. It is easy to argue that if p1, p2, p3 are the atoms

of B (so the pairwise joins give d1, d2, d3) and p1, p2 ≤ d3, then p1 ∨ o, p2 ∨ o,
and p3 also generate an eight element Boolean lattice B′ with dual atoms d1, d2,
and g3. Moreover, B′ ⊆ L, so the 2-distributive identity applies to p1, p2, p3, and
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g, and we obtain that

g = (g ∧ d1) ∨ (g ∧ d2) ∨ (g ∧ g3).(8)

It is now clear that (4) holds for d1, d2, d3, and a.

Now we prove that L is dually 2-distributive as we did it in Section 5 except
that we use Lemma 10 in place of Lemma 9.

7. Discussion

We justify proving the main theorem for doubly 2-distributive lattices with the
following:

Lemma 11. The 2-distributive identity is not selfdual.

Proof. Let L be the nine-element lattice constructed from the eight-element Boolean
lattice with atoms b1, b2, b3 by adding an element a between the zero element and
b1. Then L is 2-distributive by Lemma 6 and fails the dual identity with a and b1,
b2, b3.

Many lemmas in this paper prove that 2-distributivity is preserved under gluing
under special circumstances. The following example shows that this does not hold,
in general.

Figure 2

Figure 1

L

I

KD

Figure 1 show the lattice L with the ideal I (∼= M3) and the lattice K with the
dual ideal D (∼= M3). Both L and K are 2-distributive. Figure 2 show the lattice
we obtain from L and K by gluing them together over I and D; this lattice is not
2-distributive.

We raise the following problem: can this construction be continued, that is, can
we construct for Theorem 2 a lattice L that can serve as the starting lattice for
the representation of a {0,∨}-homomorphism ψ : E → F . If this could be done,
then we could represent distributive algebraic lattice with countably many compact
elements as congruence lattice of 2-distributive lattices.
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