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Abstract.
Let K and L be lattices, and let ϕ be a homomorphism of K into L. Then ϕ
induces a natural 0-preserving join-homomorphism of ConK into ConL.

Extending a result of A. Huhn, the authors proved that if D and E are
finite distributive lattices and ψ is a 0-preserving join-homomorphism from D
into E, then D and E can be represented as the congruence lattices of the
finite lattices K and L, respectively, such that ψ is the natural 0-preserving
join-homomorphism induced by a suitable homomorphism ϕ : K → L. Let m
and n denote the number of join-irreducible elements of D and E, respectively,
and let k = max(m,n). The lattice L constructed was of size O(22(n+m)) and
of breadth n+m.

We prove that K and L can be constructed as ‘small’ lattices of size O(k5)
and of breadth three.
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1. Introduction

The congruence lattice, ConL, of a finite lattice L is a finite distributive lattice
(Funayama and Nakayama [2]). The converse is a result of Dilworth, first published
in Grätzer and Schmidt [9].

For a distributive lattice D with n join-irreducible elements, the original con-
structions (Dilworth’s and also the one in Grätzer and Schmidt [9]) produced lat-
tices of size O(22n) and of order dimension O(2n). In Grätzer and Lakser [4], this
was improved to size O(n3) and order dimension 2 (therefore, planar and breadth 2).
Finally, in Grätzer, Lakser, and Schmidt [5], a size O(n2) planar lattice was con-
structed:

Theorem 1. Let D be a finite distributive lattice with n join-irreducible elements.
Then there exists a planar lattice L of O(n2) elements with ConL ∼= D.

Let K and L be lattices, and let ϕ be a homomorphism of K into L. Then ϕ
induces a map Conϕ of ConK into ConL: for a congruence relation Θ of K, let
the image Θ under Conϕ be the congruence relation of L generated by the set
Θϕ = { 〈aϕ, bϕ〉 | a ≡ b (Θ) }.

The following result was proved by Huhn in [11] for embeddings and for arbitrary
ψ in Grätzer, Lakser, and Schmidt [7]:
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tific Research, under Grant No. T023186.
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Theorem 2. Let D and E be finite distributive lattices, and let

ψ : D → E

be a 0-preserving join-homomorphism. Then there are finite lattices K and L,
a lattice homomorphism ϕ : K → L, and isomorphisms

α : D → ConK, β : E → ConL

with

ψβ = α(Conϕ).

Furthermore, ϕ is an embedding iff ψ separates 0.

Theorem 2 concludes that the following diagram is commutative:

D
ψ−−−−→ E

∼=
�α ∼=

�β

ConK
Conϕ−−−−→ ConL

See Grätzer, Lakser, and Schmidt [6] for a short proof.
A lattice L is said to be of breadth p, if p is the smallest integer with the property

that for every finite X ⊆ L, there exists a Y ⊆ X such that |Y | ≤ p and
∧

X =
∧

Y .
Note that this concept is self-dual. If L is of breadth p, then for every finite X ⊆ L,
there exists a Y ⊆ X such that |Y | ≤ p and

∨
X =

∨
Y . If a finite lattice L is of

breadth p, then there is an element a ∈ L with at least p covers. The breadth of
the Boolean lattice Cn

2 is n.
In this paper, we prove the following improvement of Theorem 2 along the lines

of Theorem 1:

Theorem. Let D be a finite distributive lattice with n join-irreducible elements, let
E be a finite distributive lattice with m join-irreducible elements, let k = max(m,n),
and let

ψ : D → E

be a 0-preserving join-homomorphism. Then there is a finite lattice L of breadth 3
with O(k5) elements, a planar lattice K with O(n2) elements, a lattice homomor-
phism ϕ : K → L, and isomorphisms

α : E → ConL, β : D → ConK

with

ψα = β(Conϕ),

that is, such that the diagram

D
ψ−−−−→ E

∼=
�β ∼=

�α

ConK
Conϕ−−−−→ ConL

is commutative. Furthermore, ϕ is an embedding iff ψ separates 0.

In the last sentence of the Theorem, ‘ψ separates 0’ means that only the zero of
D is mapped under ψ to the zero of E.
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Outline. Function lattices play a crucial role in the construction. Section 2 deals
with funtion lattices, in general, while Section 3 discusses function lattices over M3

and N5. Actually, we need a somewhat more general construction, which we name
generalized function lattices; these are discussed in Section 4.

Coloring is useful for the presentation of the first construction; it is introduced
in Section 5.

The first construction produces the planar lattice K of the Theorem; it is bor-
rowed from Grätzer, Lakser, and Schmidt [5] and briefly described in Section 6.

The second construction is based on multi-coloring, introduced in Section 7;
given a finite lattice M and a multi-coloring κ, we construct a generalized function
lattice M [κ].

The main construction is given, in four steps, in Section 8. The verification is
presented in Section 9.

Section 10 discusses the Theorem and the related open problems.

Notation. We use the notation of Grätzer [3].
Cn denotes the n-element chain with 0 < 1 < · · · < n−1. Let N5 = {o, a, b, c, i},

where a < b, denote the five-element nonmodular lattice and let M3 = {o, a, b, c, i}
be the five-element modular nondistributive lattice, both with zero o and unit i.

2. Function lattices, general observations

For a lattice M , let MCn denote the set of all order-preserving maps of Cn to M ,
partially ordered by

α ≤ β iff xα ≤ xβ, for all x ∈ Cn.

Then MCn is a lattice; it is called a function lattice. (In general, a function lattice
MP is defined for any poset P .) The lattice MCn is a subdirect product of n copies
of M ; we shall use vector notation for the (isotone) maps.

As illustrations, Figure 1 shows NC3
5 and Figure 2 depicts MC2

3 .
In this section, we prove some general properties of function lattices.

Lemma 1. 〈a1, . . . , an〉 ≺ 〈b1, . . . , bn〉 in MCn iff there exists a k with 1 ≤ k ≤ n
such that ak ≺ bk in M and ai = bi, for i �= k.

Proof. Let 〈a1, . . . , an〉 ≺ 〈b1, . . . , bn〉 in MCn . If there are 1 ≤ k < l ≤ n such that
ak < bk and al < bl, then define ci = ai, for i < l and ci = bi, for i ≥ l. Obviously,
〈a1, . . . , an〉 < 〈c1, . . . , cn〉, since al < bl = cl, and 〈c1, . . . , cn〉 < 〈b1, . . . , bn〉, since
ck = ak < bk. The lemma now easily follows.

A sublattice of a finite lattice is called cover-preserving, if a prime interval of the
sublattice is a prime interval of the whole lattice.

Lemma 2. MCn is a cover-preserving sublattice of Mn.

Proof. Indeed, if 〈a1, . . . , an〉 ≺ 〈b1, . . . , bn〉 in MCn , then by Lemma 1, there exists
a k with 1 ≤ k ≤ n such that ak ≺ bk and ai = bi, for i �= k. But then 〈a1, . . . , an〉 ≺
〈b1, . . . , bn〉 in Mn is clear.

For x ∈ M , let xn denote the constant function 〈x, . . . , x〉 in MCn ; if n is clear
from the context, it will be dropped. The constant maps form a sublattice of MCn ;
we identify M with this sublattice. In Figure 1 and Figure 2, the elements of the
form x are black filled.
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Figure 1. The lattice NC3
5 .

Figure 2. The lattice MC2
3 .

Lemma 3. If p = [u, v] is a prime interval of M , then the corresponding interval
[u,v] of MCn is isomorphic to Cn+1.

Proof. The interval [u,v] in MCn consists of the elements

u = 〈u, u, . . . , u, u〉, 〈u, u, . . . , u, v〉, 〈u, u, . . . , v, v〉, . . . ,

〈u, v, . . . , v, v〉, 〈v, v, . . . , v, v〉 = v,
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and the coverings

u = 〈u, u, . . . , u, u〉 ≺ 〈u, u, . . . , u, v〉 ≺ 〈u, u, . . . , v, v〉 ≺
· · · ≺ 〈u, v, . . . , v, v〉 ≺ 〈v, v, . . . , v, v〉 = v

are clear from Lemma 1.

Take the following elements of Mn:

oi = 〈0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
i

〉,

for 0 ≤ i ≤ n, where 0 and 1 is the zero and unit of M , respectively. Then M is
naturally isomorphic to the interval Oi = [oi−1, oi] ⊆ Mn, for 1 ≤ i ≤ n, under the
isomorphism

x −→ 〈0, . . . , 0, x, 1, . . . , 1︸ ︷︷ ︸
i

〉, x ∈ M.

Observe that all these elements belong to MCn , hence the intervals Oi = [oi−1, oi] ⊆
MCn , for 1 ≤ i ≤ n. (These elements and intervals are marked in Figures 1 and 2.)
So we can consider MCn as a subdirect product of the Oi, 1 ≤ i ≤ n, that is,
a sublattice of

∏
(Oi | 1 ≤ i ≤ n ) ∼= Mn. Let O(M) denote the sublattice⋃

(Oi | i ≤ n ) of Mn; note that O(M) is a sublattice of MCn .
A finite lattice K is a congruence-preserving extension of L, if L is a sublattice

of K and every congruence of L has exactly one extension to K. Of course, then
the congruence lattice of L is isomorphic to the congruence lattice of K.

Lemma 4. Let E be a sublattice of Mn containing O(M). Then Mn is a congru-
ence-preserving extension of E. In particular, Mn is a congruence-preserving ex-
tension of MCn .

Proof. Let Θ be a congruence relation of E. Since Oi ⊆ E, for 1 ≤ i ≤ n, we can
restrict Θ to Oi, to obtain the congruence Θi. Then

∏
( Θi | 1 ≤ i ≤ n ) is (up to

isomorphism) a congruence of Mn that extends Θ. To show the uniqueness of the
extension, let Φ be a congruence of Mn that extends Θ. Then Φ restricted to any
Oi will agree with Θ restricted to Oi, hence Φ = Θ.

Observe that this proof holds for function lattices (with finite exponents, P ),
in general, so we obtain a result of Duffus, Jónsson, and Rival [1]: ConMP ∼=
(ConM)n, where n = |P |.

3. Function lattices over M3 and N5

In this section, we investigate, in detail, the cases M = M3 and M = N5. See
Figure 1 and Figure 2, for illustration. Note that NC2

5 is planar, that is why we
show NC3

5 .
The structure of MCn

3 is rather well known (Schmidt [12]):

Lemma 5. MCn
3 is a modular lattice containing {o,a,b, c, i} as a {0, 1}-sublattice

isomorphic to M3. The interval [o,a] is isomorphic to Cn+1 and MCn
3 is a congru-

ence-preserving extension of the chain [o,a] ∼= Cn+1. In particular, every prime
interval of MCn

3 is projective to a prime interval of [o,a].

Now we proceed to describe the structure of NCn
5 .
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Lemma 6. Let Θ be the kernel of the n-th projection on NCn
5 , that is, of the

homomorphism 〈x1, . . . , xn〉 → xn of NCn
5 to N5. Let Ax, x ∈ {o, a, b, c, i}, denote

the five congruence classes (Ax contains x). Then
(i) Ao = {o}.
(ii) Aa = [〈o, . . . , o, a〉,a] ∼= Cn.
(iii) Ab = [〈o, . . . , o, b〉,b] ∼= C

Cn−1
3 .

(iv) Ac = [〈o, . . . , o, c〉, c] ∼= Cn.
(v) Ai = [〈o, . . . , o, i〉, i] ∼= N

Cn−1
5 .

(vi) Aa is isomorphic to [on−1,an−1] ⊆ N
Cn−1
5 .

(vii) Ab is isomorphic to [on−1,bn−1] ⊆ N
Cn−1
5 .

(viii) Ac is isomorphic to [on−1, cn−1] ⊆ N
Cn−1
5 .

(ix) Ao ∪Aa ∪Ab ∼= CCn
3 .

Moreover,

Aa ∪ [〈o, . . . , o, b〉, 〈a, . . . , a, b〉] ∪ [〈o, . . . , o, i〉, 〈a, . . . , a, i〉](x)
∼= Aa × C3

∼= [on−1,an−1] × C3.

(xi) Ab ∪ [〈o, . . . , o, i〉, 〈b, . . . , b, i〉] ∼= Ab × C2
∼= [on−1,bn−1] × C2.

(xii) Ac ∪ [〈o, . . . , o, i〉, 〈c, . . . , c, i〉] ∼= Ac × C2
∼= [on−1, cn−1] × C2.

Proof. Obvious, by direct computation.

For a finite lattice M , an edge Ep of MCn is an interval [u,v] of MCn , where
p = [u, v] is a prime interval of M .

Lemma 7. Every prime interval p of NCn
5 is projective to a prime interval q in

one of the edges [o,a], [a,b], [b, i] of NCn
5 .

Proof. We prove this by induction on n.
If n = 1, then every prime interval is either one of the edges listed or it is

projective to one of the edges listed by Lemma 6.
Let us assume that the statement is proved for n− 1. Let p be a prime interval

of NCn
5 . We partition NCn

5 as in Lemma 6 into the sets Ax, x ∈ {o, a, b, c, i}. Then
Ai ∼= N

Cn−1
5 , so the statement of this lemma is assumed for Ai.

Let p = [u, v] be a prime interval of NCn
5 .

First, let p ⊆ Ai.
For a prime interval q of N5, let Eq,i−1 and Eq,i be the corresponding edges of

Ai and NCn
5 , respectively. By Lemma 6, either Eq,i−1 ⊆ Eq,i, or Eq,i−1 and Eq,i

are contained in a distributive sublattice of NCn
5 , in which every prime interval of

Eq,i−1 is perpective to a prime interval of Eq,i; so the statement follows for p.
Second, let p � Ai.
If p ⊆ Ao∪Ac, then the statement is trivial since the prime interval is perspective

to one in [b, i].
If p ⊆ Ao ∪Aa ∪Ab, then the statement is trivial since the edges of NCn

5 in this
distributive lattice form maximal chains.

Finally, if u ∈ Ac or u ∈ Ab and v ∈ Ai, then pick q = [on, w], where w is the
least element of Aa or of Ac, respectively, and observe that q is in the edge [o,a]
or it is perspective to a prime interval in the edge [b, i].

Finally, in this section, we look at size and breadth.
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Lemma 8. NCn
5 and MCn

3 are lattices of breadth 3. The lattice NCn
5 has O(n3)

elements and MCn
3 has O(n2) elements.

Proof. An arbitrary element of NCn
5 has either the form

〈 o, . . . , o︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, b, . . . , b︸ ︷︷ ︸
k

, i, . . . , i︸ ︷︷ ︸
l

〉,(1)

where i + j + k + l = n (0 ≤ i, j, k, l ≤ n) or the form

〈 o, . . . , o︸ ︷︷ ︸
i

, c, . . . , c︸ ︷︷ ︸
j

, i, . . . , i︸ ︷︷ ︸
k

〉,(2)

where i + j + k = n (0 ≤ i, j, k ≤ n).
To prove the first statement of the lemma, we prove the stronger statement that

an element of NCn
5 can have at most three upper covers. We get an upper cover of

u, represented as in (1), by replacing the last o by a, or the last a by b, or the last
b by i, proving the statement for u. The proof for an element u represented as in
(2) is similar.

The number of elements of NCn
5 represented as in (1) is the number of ways we

can choose i, j, and k so that i+ j + k + l = n, for some l; there are O(n3) choices.
Similarly, the number of elements of NCn

5 represented as in (2) is O(n2), proving
both statements for NCn

5 . The proof for MCn
3 is similar.

4. Generalized function lattices

For a lattice M , a finite chain Cn, and congruences Θ1, . . . , Θn of M , a gen-
eralized function lattice over M is the sublattice of M/Θ1 × · · · × M/Θn defined
by

{ 〈[a1]Θ1, . . . , [an]Θn〉 | 〈a1, . . . , an〉 ∈ MCn }.
Equivalently, let Θ be a congruence of MCn ; by Lemma 4, Θ can be described

by the restrictions Θ1, . . . , Θn of Θ to the intervals O1, . . . , On. The generalized
function lattice defined in the previous paragraph is isomorphic to MCn/Θ.

Now we borrow the arguments of Lemma 1 and Lemma 2:

Lemma 9. The covering relation

〈[a1]Θ1, . . . , [an]Θn〉 ≺ 〈[b1]Θ1, . . . , [bn]Θn〉
holds in the generalized function lattice iff there exists a k with 1 ≤ k ≤ n such that
[ak]Θk ≺ [bk]Θk in M/Θk and [ai]Θi = [bi]Θi, for i �= k.

Lemma 10. The generalized function lattice is a cover-preserving sublattice of
M/Θ1 × · · · ×M/Θn.

To prove these two lemmas, observe that if

〈[a1]Θ1, . . . , [an]Θn〉 ≤ 〈[b1]Θ1, . . . , [bn]Θn〉,
then

〈[b1]Θ1, . . . , [bn]Θn〉 = 〈[a1 ∨ b1]Θ1, . . . , [an ∨ bn]Θn〉,
and 〈a1 ∨ b1, . . . , an ∨ bn〉 ∈ MCn , so we can assume without the loss of generality
that ai ≤ bi, 1 ≤ i ≤ n. Now we can follow the arguments of Lemmas 1 and 2,
mutatis mutandis.

Similarly, we can borrow the argument of Lemma 8:
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Lemma 11. A generalized function lattice over N5 is of breadth 3.

We do not need the corresponding statement for M3 since every generalized
function lattice over M3 is a function lattice over M3.

5. Coloring

Let M be a finite lattice, and let Q be a finite set; the elements of Q will be
called colors. Following Teo [13], a coloring µ of M over Q is a map

µ : P(M) → Q

of the set of prime intervals P(M) of M into Q satisfying the condition: if two
prime intervals generate the same congruence relation of M , then they have the
same color; that is,

p, q ∈ P(M) and Θ(p) = Θ(q) imply that pµ = qµ.
Since the join-irreducible congruences of M are exactly those that can be gen-

erated by prime intervals, equivalently, µ can be regarded as a map of the set
J(ConM) of join-irreducible congruences of M into Q:

µ : J(ConM) → Q.

If all prime intervals of M have the same color q ∈ Q, then we speak of a
monochromatic lattice of color q.

We shall define a coloring by specifying µ on a large enough subset of P(M)
so that for every prime interval of M there is one in the subset that generates the
same congruence.

Let Mi be a lattice colored by µi over Qi, for 1 ≤ i ≤ n. Then
∏

(Mi | 1 ≤ i ≤ n )
has a natural coloring over

⋃
(Qi | 1 ≤ i ≤ n ), since every prime interval of∏

(Mi | 1 ≤ i ≤ n ) is uniquely associated with a k, 1 ≤ k ≤ n, and a prime interval
of Mk.

Definition 1. We call M ⊆
∏

(Mi | 1 ≤ i ≤ n ) a colored subdirect product of the
Mi, 1 ≤ i ≤ n, if the following conditions are satisfied:

(i) M is a subdirect product of the Mi, 1 ≤ i ≤ n;
(ii) M is a cover-preserving sublattice of

∏
(Mi | 1 ≤ i ≤ n );

(iii) the coloring of M is the coloring inherited from the coloring of
∏

(Mi | 1 ≤
i ≤ n ).

By Lemma 2, if M is colored over Q, then MCn is also colored over Q.

6. The first construction: a planar lattice

The proof of the Theorem starts with the planar construction of Grätzer, Lakser,
and Schmidt [5]. We shall outline it in a somewhat simplified form.

Let D be a finite distributive lattice, and let J = J(D) = {d1, . . . , dn} be the
set of join-irreducible elements of D. Let S0 be a chain of length 2n. We color the
prime intervals of S0 over J as follows: we color the lower-most two prime intervals
of S0 with d1, the next two with d2, and so on. For each d ∈ J , there is a unique
subchain db ≺ dm ≺ dt of S0 such that the prime intervals [db, dm] and [dm, dt] have
color d, and no other prime interval of S0 has color d.

Let S1 be a chain of length n. We color the prime intervals of S1 by an arbitrary
bijection. Thus, for each d ∈ J , there is in S1 exactly one prime interval of color d;
we denote it by [do, di].
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We set K0 = S0 × S1. We shall regard S0 and S1 as sublattices of K0, in the
usual manner. We extend the lattice K0 to a lattice K: for each d ∈ J , we adjoin
two new elements m0(d) and m1(d), as illustrated in Figure 3, and for each pair
a > c in J , we add a new element n(a, c), as illustrated in Figure 4. To d ∈ J ,
assign the congruence of K generated by any/all prime intervals of this color. This
defines an isomorphism between J and the poset of join-irreducible congruences of
K; consequently, the congruence lattice of L is isomorphic to D.

Note that K is a planar lattice and |K| < 3(n + 1)2.
For instance, if D is the five-element distributive lattice of Figure 5, then J(D)

is the poset {d1, d2, d3} with d1 < d3, d2 < d3, and we obtain the lattice K of
Figure 5.

7. Multi-coloring and the second construction

Let M be a finite lattice, and let Q be a finite set. A multi-coloring of M over Q
is an isotone map µ from P(M) into P+(Q) (the set of all nonempty subsets of Q);
isotone means that if p, q ∈ P(M) and Θ(p) ≤ Θ(q), then pµ ⊆ qµ. Equivalently,
a multi-coloring is an isotone map of the poset J(ConM) into the poset P+(Q).

Figure 3. Adding the elements m0(d) and m1(d).

Figure 4. Adding the element n(a, c).
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Figure 5. The lattice K constructed from D.

The second construction starts with a lattice M multi-colored by κ and con-
structs a generalized function lattice M [κ] with coloring µ[κ]. The lattice M em-
beds into M [κ] such that the congruence structure of M [κ] is easy to work with
and κ is determined by µ[κ]. We construct M [κ] as a generalized function lattice.

Let M be a finite lattice with a multi-coloring κ over the n-element set Q =
{q1, q2, . . . , qn}. For any k with 1 ≤ k ≤ n, define the binary relation Φk on M as
follows:

u ≡ v (Φk) iff qk /∈ pκ, for any prime interval p ⊆ [u ∧ v, u ∨ v].

Lemma 12. Φk is a congruence relation on M .

Proof. The relation Φk is obviously reflexive and symmetric. To show the transi-
tivity of Φk, assume that u ≡ v (Φk) and v ≡ w (Φk), and let q be a prime interval
in [u ∧ w, u ∨ w]. Then q is collapsed by Θ(u, v) ∨ Θ(v, w), hence there is a prime
interval p in [u∧ v, u∨ v] or in [v∧w, v∨w] satisfying Θ(q) ≤ Θ(p). It follows from
the definition of multi-coloring that qκ ⊆ pκ; since qk /∈ pκ, it follows that qk /∈ qκ,
hence u ≡ w (Φk). The proof of the Substitution Property is similar.

We define M [κ] as the generalized function lattice over M determined by the
congruences Φ1, . . . , Φn. Set Mi = M/Φi, for 1 ≤ i ≤ n.

For a ∈ M , define

a[κ] = 〈[a]Φ1, . . . , [a]Φn〉.
Then the map a → a[κ] maps M into M [κ].

For 1 ≤ i ≤ n, the lattice Mi is colored over Q; in fact, it is monochromatic.
So we can regard M1 × · · · × Mn as colored over Q. By Lemma 10, M [κ] is a
cover-preserving sublattice of M1 × · · · ×Mn, so M [κ] inherits the coloring, which
we shall denote by µ[κ].

Let us color the chain Cn+1 by Q as follows: the color of the prime interval
[i − 1, i] of Cn+1 is qi, for 1 ≤ i ≤ n. For a prime interval p = [a, b] in M , we
denote by Cn+1,p the homomorphic image of Cn+1 obtained by collapsing all prime
intervals of color not in pκ.

The following lemma states the most important properties of M [κ]:

Lemma 13. M [κ] with the coloring µ[κ] over Q has the following properties:
(i) M [κ] with the coloring µ[κ] is a colored subdirect product of the monochromatic

lattices Mi, of color qi, 1 ≤ i ≤ n.
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(ii) The map a → a[κ] is a lattice embedding of M into M [κ].
(iii) For any prime interval p = [a, b] in M , the interval [a[κ], b[κ]] is isomorphic

to Cn+1,p.
(iv) The coloring µ[κ] of M [κ] determines the multi-coloring µ of M , namely, for

every prime interval p = [a, b] of M ,

pµ = { qµ[κ] | q ∈ P(M [κ]) and q ⊆ [a[κ], b[κ]] }.
(v) For any prime interval p = [a, b] in M [κ], there is a unique k with 1 ≤ k ≤

n, and a prime interval q in Mk such that p is projective to q. Define a
congruence relation

Φp = ω1 × · · · × ωk−1 × Θ(q) × ωk+1 × · · · × ωn

of
∏

(Mi | 1 ≤ i ≤ n ), where ωj is the trivial congruence ω on Mj, for j �= k.
Then Θ(p) is the restriction of Φp to M [κ].

(vi) The congruence lattice of M [κ] is described by the following formula:

ConM [κ] ∼=
∏

( ConMi | 1 ≤ i ≤ n ).

Proof. (i) and (iii) obviously hold.
(ii) The map a → a[κ] is obviously a lattice homomorphism. We have to prove

that it is one-to-one. Let a, b ∈ M and a �= b; we have to prove that a[κ] �= b[κ].
Let p be a prime interval in [a ∧ b, a ∨ b]. Since µ[κ] is a multi-coloring, there is a
qi ∈ pµ[κ]. Obviously, then a �≡ b (mod Φi), from which the statement follows.

(iv) Let a ≺ b in M . Then [a,b] in MCn is isomorphic to Cn+1 (∼= CCn
2 ). By the

definition of Φ, we get the fourth statement.
(v) and (vii) are also trivial.

Let A = [a, b] be an interval of M . Then the multi-coloring κ of M defines a
multi-coloring κA on A; so the lattice A[κA] is defined. On the other hand, A is
a sublattice of M [κ] (by identifying x ∈ A with x[κ]), so it defines an interval
(A)M [κ] = [a[κ], b[κ]] of M [κ].

Lemma 14. The lattices, A[κA] and (A)M [κ] are isomorphic.

Proof. Let A denote the interval [a,b] of MCn . Then obviously A is isomorphic to
ACn . The lattice A[κA] is A/ΦA, where ΦA is the congruence defined on A by the
multi-coloring κA. It is obvious from the definition of Φ that ΦA is the restriction
of Φ to A, from which the isomorphism follows.

8. The main construction

Let D and E be finite distributive lattices, and let

ψ : D → E

be a 0-preserving join-homomorphism. We can trivially assume that ψ separates
0 (see [7]). Let n = | J(D)|, m = | J(E)|, k = max(n,m). We proceed in several
steps.

We suggest that the reader follow the construction with the example shown on
Figure 6. Note that the lattice D of Figure 6 is the same as the lattice D of
Figure 5, for which the small planar lattice K satisfying ConK ∼= D is already
shown in Figure 5.

We do the construction in four steps.
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Figure 6. A simple example of a join-homomorphism ψ.

Step 1. We represent D as the congruence lattice of a planar lattice K as described
in Section 6. To simplify the notation, we identify D with ConK.

Step 2. We color Cm+1 with J(E) so that there is a bijection between the prime
intervals of Cm+1 and J(E).

We define a map κ of P(K) to subsets of J(E):

pκ = J(E) ∩ (Θ(p)ψ]E = {x | x ∈ J(E), x ≤ Θ(p)ψ }.
κ is obviously isotone. ψ separates 0, so pκ �= ∅. Therefore, κ is a multi-coloring of
K over J(E). (Figure 7 shows the lattice K of Figure 5 multi-colored with subsets
of J(E).) Now we apply the construction in Section 7 to obtain the generalized
function lattice K[κ] with the coloring µ[κ].

Step 3. For every k = 〈k0, k1〉 ∈ K0, k0 < 1S0 , k1 < 1S1 , define the interval

Bk = [〈k0, k1〉, 〈k†0, k†1〉]

of K0, where k†0 is the covering element of k0 in S0 and k†1 is the covering element
of k1 in S1. Since K0 is a sublattice of K, which in turn, is a sublattice of K[κ], it
follows that Bk defines an interval (Bk)K of K, and an interval (Bk)K[κ] of K[κ].
Observe that Bk is C2

2 ; (Bk)K is C2
2 , or N5, or M3. Lemma 14 describes (Bk)K[κ]:

Lemma 15. (Bk)K[κ] is isomorphic to ((Bk)K)[κ].

Figure 7. A multi-colored lattice K.
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We define a subset K+ of K[κ] as follows, see Figure 8 (the elements of K are
black-filled):

K+ =
⋃

( (Bk)K[κ] | k = 〈k0, k1〉 ∈ K0, k0 < 1S0 , k1 < 1S1 ).

Then K+ is a sublattice of K[κ]. Note that the grid K0 is a sublattice of K+. The
extended grid K ′

0 is K0[κ]∩K+, which is of the form S′
0 ×S′

1, where we obtain the
chain S′

0 from S0 by replacing a prime interval p by the chain Cm+1,p in which the
prime intervals of color not in pκ are collapsed, and similarly for S1.

Observe that K ′
0 ∩ (Bk)K[κ], the extended grid restricted to a (Bk)K[κ] is a

sublattice of (Bk)K[κ] of the form Cm+1/Φ0 × Cm+1/Φ1, where Φ0 factors out
Cm+1 by the colors of [k0, k

†
0]κ, and Φ1 factors out Cm+1 by the colors of [k1, k

†
1]κ.

We define an ideal I of K+ as the restriction of the extended grid to

[〈0S0 , 0S1〉, 〈0S0 , 1S1〉]+K ,

which is a chain.

Lemma 16.

(i) K0 is a sublattice of K, and K is a sublattice of K+. Moreover, K+ is a
cover-preserving sublattice of K[κ]. Therefore, K+ is a colored lattice with
the coloring µ[κ] restricted to it.

(ii) q ∈ J(E) is the color of a prime interval of I iff q ≤ aψ, for some a ∈ J(D).
(iii) For every prime interval p of K+, there is a prime interval q ⊆ I of the same

color (that is, pµ[κ] = qµ[κ]) such that p and q generate the same congruence
in K+.

(iv) O(|K+|) = n5.

Proof. (i) and (ii) follow from the definitions.

1

Figure 8. The lattice K+.



14 G. GRÄTZER, H. LAKSER, and E. T. SCHMIDT

(iii) Let p be a prime interval of K+; then p is a prime interval of some (Bk)K[κ].
By Lemma 7, there is a prime interval t of Bk, such that p is projective to a prime
interval r in an edge Et of (Bk)K[κ].

If Et is a prime interval of the extended grid, then Et is associated with a prime
interval of S′

0 or of S′
1. In the latter case, Et is perpective to a prime interval of I.

In the former case, take the prime interval of S0 that contains the prime interval
of the extended grid associated with Et. By the construction of K, there is an M3

in K that will identify this edge with one in I.
If Et is not a prime interval of the extended grid, then Bk is an N5 and t is

[o, a] or [a, b] (or dually). By Lemma 7, r is projective to a prime interval s in the
maximal chain containing the interval [on,bn] of (Bk)K[κ]. By the construction
of K, such a prime interval projects up or down in an N5, making it projective to
a prime interval of the extended grid.

(iv) is easy, since |(Bk)K[κ]| = O(m3) by Lemma 8, and there are O(n2) such
blocks by Step 1.

Step 4. We represent E as the congruence lattice of a planar lattice L0 as in
Section 8 with the ”grid”, T0 × T1, where T1 is a chain of length m = | J(E)|. We
have O(|L0|) = m2. We again identify E with ConL0, and we regard L0 as colored
over J(E) by coloring the prime interval p with Θ(p) ∈ J(E).

L0 has a dual ideal

D0 = { 〈x, 1T1〉 | x ∈ T0 }
isomorphic to T0.

We form the lattice

L1 = T0 × I,

with the ideal

I1 = { 〈x, 0I〉 | x ∈ T0 }
isomorphic to T0 and dual ideal

D1 = { 〈1T0 , x〉 | x ∈ I }
isomorphic to I. Since both T0 and I are colored over J(E), there is a coloring of
L1 over J(E).

We glue L0 and L1 together over D0 and I1; the resulting lattice has D1 as a
dual ideal; so we can glue this lattice together with K+ over D1 and I, to obtain L2.
Since the gluing preserves the coloring, L2 is colored over J(E).

Finally, we obtain the lattice L from L2 as follows: take any ‘prime square’ of L1

(that is, any interval of the form [〈a0, a1〉, 〈b0, b1〉], where [a0, b0] is a prime interval
of T0 and [a1, b1] is a prime interval of I) that is monochromatic (that is, [a0, b0]
in L0 and [a1, b1] in K+ have the same color), and add an element to make the
interval [〈a0, a1〉, 〈b0, b1〉] in L isomorphic to M3.

9. Proof of the Theorem

Obviously, L has O(k5) elements.
Let ϕ denote the embedding of K into L.
We have to verify that Conϕ = ψα. It is enough to prove that Θ(Conϕ) = Θψα

for join-irreducible congruences Θ in K.



CONGRUENCE REPRESENTATIONS OF JOIN-HOMOMORPHISMS 15

So let Θ = Θ(p), where p = [a, b] is a prime interval of K. By Lemma 13,
Θ(p) Conϕ = Θ(a[κ], b[κ]) collapses in K[κ] the prime intervals of color ≤ Θψ; the
same holds in L0 and in L.

Let us assume that an element a of L has more than three covers. Since L is
glued together over chains from three lattices, K+, L0, and L1, it follows that a
and its covers must be in one of these lattices. The element a and its covers cannot
be in L0 because the construction in Section 8 is planar. The lattice L1 is a direct
product of two chains with some additional elements to form M3-s, so no element
of L1 has more than three covers. Finally, if a and its covers belong to K+, then
there is a largest grid element k = 〈k0, k1〉 ∈ K0 (k0 < 1S0 , k1 < 1S1) contained in a
and then a and its covers belong to (Bk)K[κ], which by Lemma 15 is isomorphic to
((Bk)K)[κ]. Since (Bk)K is C2

2 , or N5, or M3, the lattice ((Bk)K)[κ] is of breadth
3 by Lemma 11.

10. Discussion

Grätzer, Rival, and Zaguia [8] proved that the O(n2) result of Grätzer, Lakser,
and Schmidt (see the Introduction) is ‘best possible’ in the sense that in Theorem 1
size O(n2) cannot be replaced by size O(nα), for any α < 2. This was improved in
Zhang [14] and in Grätzer and Wang [10].

There are two crucial questions left open in this paper.
The first question is whether O(k5) is the optimal size for the lattice L in the

Theorem. Can one prove (analogously to Grätzer, Rival, and Zaguia [8]) that size
O(k5) cannot be replaced by size O(kα), for any α < 5? Can one find a lower
bound for |L| as in the result of Grätzer and Wang [10]?

The second question is whether breadth 3 is optimal for L? This is almost
certainly so since a breadth 2 lattice cannot contain a C3

2 , making it very difficult
to direct the congruences.

It seems to us that the lattice L we construct in this paper is of order dimension 3.
It would be interesting to prove this.

Although this whole paper deals with the construction of the lattice L, it should
be pointed out that we could not have started with a different K. The properties
of the lattice K (borrowed from Grätzer, Lakser, and Schmidt [5]) are crucial for
the construction of L. Can one construct L starting from a different lattice K?
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