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To L. Fuchs on his 70th birthday

Abstract. Let L be a lattice and let L1, L2 be sublattices of L. Let � be a

congruence relation of L1. We extend� to L by taking the smallest congruence

� of L containing �. Then we restrict � to L2, obtaining the congruence �L2
of L2. Thus we have de�ned a map ConL1 ! ConL2. Obviously, this is an

isotone 0-preservingmap of the �nite distributive lattice ConL1 into the �nite

distributive lattice ConL2.

The main result of this paper is the converse. Let D1 and D2 be �nite

distributive lattices, and let  : D1 ! D2 be an isotone map that preserves 0.

Then there is a �nite lattice L with sublattices L1 and L2 such that ConL1
represents D1 and ConL2 represents D2, and the map ConL1 ! ConL2
obtained by �rst extending each congruence relation of L1 to L by minimal

extension and then restricting the resulting congruence relation to L2 repre-

sents  .

1. Introduction

It is well-known that, given a lattice L and a convex sublattice K, the map of

restriction ConL ! ConK is a f0; 1g-preserving lattice homomorphism. In [3],

see also [10], the converse is proved: any f0; 1g-preserving homomorphism of �nite

distributive lattices can be realized as such a restriction and, indeed, as a restriction

to an ideal of a �nite lattice.

If the sublattice K is not a convex sublattice, then the restriction map ConL!

ConK need not preserve join, but it still preserves meet, 0, and 1.

Similarly, we can extend congruences from the sublattice K to L by minimal

extension. This map of extension need not preserve meet, but it does preserve join

and 0. Furthermore it separates 0, that is, nonzero congruences extend to nonzero

congruences.

Consequently, if L is a lattice and L1, L2 are sublattices of L, then there is a

map

ConL1 ! ConL2

obtained by �rst extending each congruence relation of L1 to L and then restricting

the resulting congruence relation to L2. All we can say about this map is that it is
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isotone and that it preserves 0. The main result of this paper is that this is in fact

a characterization of 0-preserving isotone maps between �nite distributive lattices:

Theorem. Let D1 and D2 be �nite distributive lattices, and let

 : D1 ! D2

be an isotone map that preserves 0. Then there is a �nite lattice L with sublattices

L1 and L2 and there are isomorphisms

�1 : D1 ! ConL1; �2 : D2 ! ConL2

such that the diagram

D1

 
����! D2

�=

??y�1 �=

??y�2

ConL1
extension

������! ConL
restriction

������! ConL2

is commutative.

We actually prove a slight generalization|see Theorem 3 in the following section.

In the title of this paper, \Abstract maps" refers to the fact that in the Theorem,

 is an isotone map from a �nite distributive lattice into another; these �nite

distributive lattices are \abstract" representations of congruence lattices. We can

make this setup \concrete" by starting with two �nite latticeK1 and K2, an isotone

map  from ConK1 into ConK2 that preserves the zero congruence, and we look

for a joint extension L of K1 and K2 that represents  . This problem is considered

in Part II of this paper [4].

2. Statement of the results

We formalize and slightly extend the ideas of Section 1. Let K and L be lattices

and let ' : K ! L be a lattice homomorphism (not necessarily an embedding). We

then have the associated restriction map

rs' : ConL! ConK

de�ned by setting

x � y ((rs')�) i� 'x � 'y (�)

for each � 2 ConL, that is,

rs' = ('2)�1
jConL;

where '2 : K2 ! L2 is the map induced by '. Now, rs' preserves ^ and 1. Observe

that rs' also preserves 0 i� ' is an embedding.

We also have a dual concept, in the technical sense also, as we demonstrate in

Section 6. We de�ne the extension of ',

xt' : ConK ! ConL

by setting, for each � 2 ConK, (xt')� to be the congruence relation of L generated

by the subset '2(�) of L2:

(xt')� =
_

(�L('x; 'y) j x � y (�) ):
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Now, xt' preserves _ (see Corollary 1 in Section 5 further on) and 0, and ' is an

embedding i� xt' separates 0, that is, i�

(xt')� = 0ConL implies � = 0ConK :

We prove here that these situations are typical for �nite lattices:

Theorem 1. Let D and E be �nite distributive lattices, and let

 : E ! D;

be a f0;_g-preserving map. Then there are �nite lattices K, L, a lattice homo-

morphism ' : K ! L, and isomorphisms

� : D ! ConL; � : E ! ConK

with

� �  = (xt') � �;

that is, such that the diagram

E
 

����! D

�=

??y� �=

??y�

ConK
xt'

����! ConL

is commutative. Furthermore, ' is an embedding i�  separates 0.

The special case of Theorem 1 when  is also an embedding was proved by

Huhn [6]. This special case also follows immediately from Theorems 5.5 and 5.6 in

Tschendorf's thesis [11].

Theorem 2. Let D and E be �nite distributive lattices, and let

 : D ! E;

be a f1;^g-preserving map. Then there are �nite lattices K, L, a lattice homo-

morphism ' : K ! L, and isomorphisms

� : D ! ConL; � : E ! ConK

with

� �  = (rs') � �;

that is, such that the diagram

D
 

����! E

�=

??y� �=

??y�

ConL
rs'

����! ConK

is commutative. Furthermore, ' is an embedding i�  preserves 0.

We henceforth refer to a f0;_g-preserving map as a f0;_g-homomorphism and

to a f1;^g-preserving map as a f1;^g-homomorphism.
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Theorem 3. Let D1 and D2 be �nite distributive lattices, and let

 : D1 ! D2

be an isotone map. Then there are �nite lattices L1, L2, L, a lattice embedding

'1 : L1 ! L;

a lattice homomorphism

'2 : L2 ! L;

and isomorphisms

�1 : D1 ! ConL1; �2 : D2 ! ConL2

such that

�2 �  = (rs'2) � (xt'1) � �1;

that is, such that the diagram

D1

 
����! D2

�=

??y�1 �=

??y�2

ConL1
xt'1
����! ConL

rs'2
����! ConL2

is commutative. Furthermore, '2 is also an embedding i�  preserves 0.

The major part of this paper is involved in proving Theorem 1. Theorem 2

follows quite easily from Theorem 1, and the proof of Theorem 3 is a combination

of the methods used to prove Theorem 1 and Theorem 2. Section 3 and Section 4

are preparatory to the proof of Theorem 1 in Section 5; our approach is more or

less explicit in [8] and [12]. In [7] it is presented explicitly as in this paper, as

is the construction in Section 5. This construction is actually closely related to a

construction in [8], and is virtually the same as one in [12].

3. Formal inequalities and congruence relations

The congruences of atomistic lattices are especially nice|a congruence relation

is determined by those atoms it identi�es with 0. The oldest way of constructing

lattices whose congruences represent a particular �nite distributive lattice (see [5]

and [8]) proceeds by constructing an atomistic lattice, controlling the congruences

on the atomic level. Such lattices grow very rapidly in size, and very quickly such

lattices are too large to investigate their congruences using their diagrams. The

method based on formal inequalities is a very e�cient method to control congru-

ences, obviating the necessity to draw lattice diagrams.

Let L be a �nite atomistic lattice, and let A be its set of atoms. The lattice L

can be described completely by listing those atoms below each nonzero element of

L. Since each nonzero element of L is a join of atoms, this listing can be presented

as a set of expression of the form

\ a �
_
B ";(1)

where a 2 A and B is a nonempty subset of A. If a 2 B, then no information is

provided by (1)|we thus exclude this case. Then each subset B of A must contain

at least two elements. Of course, L can often be determined by a proper subset of

the set of all expressions (1) that hold in L.
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We now reverse the above process. Given a �nite set A, a formal inequality on

A is an expression (1) where a 2 A, where B is a subset of A with at least two

elements, and where a =2 B. Starting with a �nite set A and a set � of formal

inequalities on A, we construct a �nite atomistic lattice. The set � of formal

inequalities on A gives rise to a preclosure system M� on A; for each subset X of

A and each a 2 A, we set a 2M�X if and only if either a 2 X or there is a formal

inequality \a �
W
B " in � with B � X. A subset X � A is �-closed ifM�X = X,

that is, if for each formal inequality \ a �
W
B " in �, B � X implies that a 2 X.

The set of �-closed subsets of A forms a lattice L�(A), where the meet operation

is set intersection. Often, when it is clear to which set of formal inequalities we are

referring, we shall omit the modi�er �, and we denote the �-closure of a subset

X � A by X .

We set

M0
�(X) = X

and, inductively,

Mn
�(X) =M�(M

n�1
� (X))

for n > 0. We then observe:

Lemma 1. If a 2 A and X � A, then

a 2 X i� a 2Mn
�(X) for some n � 0:

Since the right-hand side of each formal inequality contains at least two elements,

the singleton subsets fag of A are closed and so are distinct elements of L�(A).

Writing a for fag, we thus embed A in L�(A). We then have the following easy

lemma, whose proof is left to the reader:

Lemma 2. L�(A) is a �nite atomistic lattice, and A is its set of atoms. For each

formal inequality

\ a �
_
B "

in �, the inequality

a �
_
B

holds in L�(A).

Note that the last formula in the lemma can also be written as

a � B;

where we really mean fag on the left-hand side, or as

a 2 B:

We now turn to the congruence relations of the lattice L�(A). In dealing with

formal inequalities in general some subtle technicalities arise. If the set B on the

right-hand side of each formal inequality (1) has exactly two elements those di�-

culties disappear. We thus de�ne a binary formal inequality on the �nite set A as

an expression

\ a � b1 _ b2 ";(2)
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where a, b1, b2 are distinct elements of A. Then, given a set � of binary formal

inequalities on A, an element a 2 A, and a subset X � A, it follows that a 2M�X

i� either a 2 X or there is a formal inequality

\ a � b1 _ b2 "

in � with b1; b2 2 X. In this paper we need only binary formal inequalities.

The question of whether the expressions \a � b1_b2 " and \a � b2_b1 " are the

same|as they are if we think of them as another way of writing \a �
W
fb1; b2g "|

or whether they are di�erent is irrelevant to the de�nition of L�(A). We shall

subsequently express our de�nitions as if they are di�erent|if they are regarded

as the same, we shall just end up repeating ourselves.

The basic connection between binary formal inequalities and congruence rela-

tions is the following lemma.

Lemma 3. Let � be a set of formal inequalities on the set A, and let

\ a � b1 _ b2 "

be a binary formal inequality in �. Then, for each i = 1; 2,

�(0; a) � �(0; bi)

in the congruence lattice of L�(A).

Proof. Without loss of generality, let i = 1. Then, in L�(A),

a � b1 _ b2

and so, since a and b2 are distinct atoms in L�(A),

a ^ b2 = 0:

Now, if 0 � b1 (�), then

b2 � b1 _ b2 (�);

and so, taking the meet with a,

0 � a (�):

Lemma 3 enables us to determine the congruence lattice of L�(A) for any set

� of binary formal inequalities on A. We de�ne a digraph structure D� (A), the
dependency graph of �, on A. The nodes of the digraph are the elements of A, and

we have an edge

ha; bi 2 D� (A)

exactly when there is a c 2 A and either the formal inequality

\a � b _ c" or \ a � c _ b "

is in �.

A subset X of A is said to be �-arrow-closed if

ha; bi 2 D�(A) and b 2 X implies that a 2 X:

Since arrow-closure is a unary closure operation, the poset (under set-inclusion)

A � (A) of arrow-closed subsets of A, in distinction to the poset L�(A) of �-closed

sets of A, is a sublattice of the set of all subsets of A|join is set-union, as well as

meet being set-intersection. Again, as for �-closure, when the set � is evident we

shall use the term \arrow-closed".
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Since A � (A) is a distributive lattice, its join-irreducible members are of interest.

These are the principal arrow-closed sets|an arrow-closed subset C of A is the

principal arrow-closed subset generated by a 2 A if it is the smallest arrow-closed

subset of A containing a. To describe it, an element b 2 A is an element of C i�

either b = a or there is a sequence

a = a0; a1; : : : ; an�1 = b

with

hai+1; aii 2 D�(A) for all i:

The congruence lattice of L�(A) is determined by the following lemma.

Lemma 4. Let � be a set of binary formal inequalities on A. The map that asso-

ciates with each congruence relation � on L�(A) the subset

f a 2 A j a � 0 (�) g

of A is an isomorphism between the congruence lattice of L�(A) and the lattice

A � (A) of arrow-closed subsets of A. The inverse of this isomorphism associates

with each arrow-closed subset C of A the congruence
_
(�(0; a) j a 2 C )

of L�(A). Furthermore, with the principal arrow-closed subset determined by a 2 A

is associated the congruence �(0; a).

The concept of dependency graph was formulated by Pudl�ak and T�uma [9] and

this lemma is an easy consequence of Theorem 2.8 of that paper. A formulation

of this theorem more in keeping with the spirit of this paper is Lemma 3.4 and

Corollary 3.5 of [1]. The details of the relation of Lemma 4 to these results is

provided in the Appendix.

4. Representing finite distributive lattices as congruence lattices

In order to prove Theorem 1 we shall have to represent the distributive lattices

D and E as congruence lattices of �nite lattices and also represent the f0;_g-

homomorphism as xt' for some lattice homomorphism'. (xt', the extension of

', was de�ned in Section 2.) Both will be accomplished by means of binary formal

inequalities.

Let D be a �nite distributive lattice. We denote by J(D) its poset of (nonzero)

join-irreducible elements. The poset J(D) determines D completely, and to rep-

resent D as a congruence lattice of a �nite lattice we concentrate on J(D). The

advantage therein is that we need not control joins of congruences|we need only

control the partial order. A join-irreducible congruence relation on a �nite lattice

L is one determined by a prime interval, that is, a congruence relation of the form

�(x; y) with x � y in L. If L is atomistic, then all congruence relations are deter-

mined by which elements are identi�ed with 0. Consequently, in a �nite atomistic

lattice L, the join-irreducible congruence relations are those of the form �(0; a)

where a is an atom of L.

We use the concepts of the previous section to represent the �nite distributive

lattice as a congruence lattice of a �nite lattice L. We choose a �nite set A, which

will be the set of atoms of L. A coloring � of A by J(D) is a map

� : A! J(D):
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The congruence relation �(0; a) on L will represent the element �a of D. The

correct ordering on the congruence lattice of L will be determined by a set � of

binary formal inequalities on A. The lattice L will be L�(A). By Lemma 3, if

\ a � b1 _ b2 "(3)

is in �, then, in ConL�(A),

�(0; a) � �(0; bi)

for each i = 1; 2. Consequently, we shall require that

�a � �bi for i = 1; 2:(4)

A formal inequality (3) on A is said to be adapted to the coloring � : A! J(D) if

(4) holds. If the formal inequality is adapted to � then it cannot ruin the partial

order on J(D).

We now present a general lemma that will take care of both the congruences and

the homomorphisms.

Lemma 5. Let D be a �nite distributive lattice, let A be a �nite set, let A0 � A,

let

� : A! J(D)

be a coloring, and let � be a set of binary formal inequalities on A such that the

following �ve conditions hold:

(i) � is surjective.

(ii) Each member of � is adapted to �.

(iii) Given x; y 2 J(D) with y � x in J(D), there are a; b 2 A0 with �a = x,

�b = y, and hb; ai 2 D� (A).
(iv) Given distinct a; b 2 A0 with �a = �b, then both

hb; ai; ha; bi 2 D�(A):

(v) For each a 2 A �A0 there are b; b0 2 A0 with �b = �b0 = �a and

ha; bi; hb0; ai 2 D�(A):

Then the map " from D to the congruence lattice of L�(A) determined by

" : x 7!
_

(�(0; a) j a 2 A; �a � x )

is an isomorphism between D and the congruence lattice of L�(A). Furthermore,

for each a 2 A,

�(0; a) = "�a:

We remark that, in order to represent the congruence lattice, it su�ces to set

A = A0, obviating condition (v). The set A�A0 is only needed for homomorphisms,

as will be evident in Section 5.

Proof. By the second claim of Lemma 4, we need only show that the map "0 that

associates with each x 2 D the subset

"0x = f a 2 A j �a � x g

is an isomorphism

"0 : D ! A � (A):
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By condition (ii), each member of � is adapted to � and so, for each x 2 D, "0x

is arrow-closed. Thus "0 indeed maps to A � . Clearly, "0 is isotone. Thus, to show

that "0 is an isomorphism we need only �nd an isotone inverse � of "0.

De�ne

� : A � (A)! D

by setting

� : C 7!
_
(�a j a 2 C )

for each arrow-closed subset C of A. � is clearly isotone. Each element of D is

determined by the set of join-irreducibles below it; thus, by condition (i), we see

that � � "0 is the identity map on D.

We need now only show that "0 � � is the identity map on A � (A), that is, given
C 2 A � (A) and b 2 A with

�b �
_
(�a j a 2 C );

we must show that b 2 C. Since �b is join-irreducible, there is an a 2 C with

�b � �a. Since C is arrow-closed, we may assume that a; b 2 A0 by condition (v).

Then, by conditions (iii) and (iv), it follows that b 2 C. Consequently, "0� is the

identity map on A � (A).
Thus, "0 is an isomorphism, and so

" : x 7!
_

(�(0; a) j a 2 A; �a � x )

is an isomorphism as claimed.

Since "0 is an isomorphism and �a is join-irreducible, it follows that

"0�a = f b 2 A j �b � �a g

is a join-irreducible element of A � (A) and so is the principal arrow-closed subset

determined by some c 2 A. Now, clearly,

a; c 2 "0�a:

Thus, �c � �a. By condition (ii), �u � �v whenever hu; vi 2 D� (A). Thus, by the

description of principal arrow-closed subsets, �a � �c if a and c are distinct. Thus

�a = �c and, by conditions (iv) and (v), "0�a is the principal arrow-closed subset

determined by a. By the last claim of Lemma 4 it follows that

"�a = �(0; a);

concluding the proof.

To relate lattice homomorphisms to formal inequalities, we recall the following

lemma essentially due to P. Pudl�ak ([8], Lemma 4):

Lemma 6. Let A, B be �nite sets and let �A, �B be sets of formal inequalities on

A, B, respectively. Let

f : A! B

be a partial map such that

f�1(M�BX) =M�A(f
�1(X))

for each X � B. Then the map

' : X 7! f�1(X) for each �B-closed X � B;
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is a 0-preserving lattice homomorphism

' : L�B(B) ! L�A(A):

Furthermore, if f is surjective, then ' is an embedding.

Using Lemma 1, the proof is quite easy. Both �A and �B will consist of binary

formal inequalities in our applications of Lemma 6.

5. The proof of Theorem 1

Recall that if ' : K ! L is a lattice homomorphism, then xt' : ConK ! ConL

is de�ned by setting

(xt')� = �L('
2(�))

for each congruence relation � on K. Using Mal'cev's lemma, Theorem 1.10.4 of

[2], the proof of the following lemma is easy.

Lemma 7. Let K and L be lattices, let ' : K ! L be a lattice homomorphism, and

let X � K2. Then

(xt')�K(X) = �L('
2(X)):

Corollary 1. If ' : K ! L is a lattice homomorphism, then xt' : ConK ! ConL

preserves joins.

Proof. Let �1 and �2 be congruence relations on K. Since

�1 _�2 = �K (�1 [�2)

and

'2(�1 [�2) = '2(�1) [ '
2(�2);

we conclude by Lemma 7 that

(xt')(�1 _�2) = �L('
2(�1) [ '

2(�2))

= �L('
2(�1)) _�L('

2(�2)) = (xt')�1 _ (xt')�2;

concluding the proof.

We also remark that f0;_g-homomorphisms of �nite lattices are determined by

the join-irreducible elements of the lattices:

Lemma 8. Let D, D0 be �nite lattices, and let

 1;  2 : D ! D0

be f0;_g-homomorphisms. Then  1 =  2 if and only if, for each join-irreducible

x 2 D and join-irreducible y 2 D0,

y �  1x is equivalent to y �  2x:(5)

Proof. If  1 =  2 then (5) clearly holds. Conversely, let (5) hold. Since each

element of D0 is the join of the join-irreducibles beneath it, it follows that

 1x =  2x for each x 2 J(D):

Then, since each element of D is a join of join-irreducibles, we conclude that  1 =

 2.
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We now proceed to prove Theorem 1.

Let D and E be �nite distributive lattices and let

 : E ! D

be a f0;_g-homomorphism. We proceed in several steps.

Step 1. We represent E as the congruence lattice of a lattice K.

Let B be a �nite set with a coloring

�B : B ! J(E)

and a set 	 of binary formal inequalities such that the conditions of Lemma 5 hold,

whereby

� : E ! ConL	(B);

determined by

� : x 7!
_

(�(0; b) j b 2 B; �Bb � x );

is an isomorphism. We set K = L	(B).

We present an example of such a B. We set

B = B0 = fxi j x 2 J(E); i 2 f0; 1; 2g g;

and set

�Bxi = x:

	 consists of all formal inequalities

\xi � xj _ xk "; where x 2 J(E) and fi; j; kg = f0; 1; 2g(6)

and all formal inequalities

\yi � yj _ xk " where y � x in J(E) and fi; j; kg = f0; 1; 2g:(7)

The dependency graph D	 (B) consists of all edges

hxj; xii with i 6= j

and

hyj ; xii with y � x in J(E) and i 6= j:

It is easy to see that conditions (i){(v) (condition (v) vacuously) of Lemma 5 hold.

Step 2. We represent D as the congruence lattice of a �nite lattice L. We �rst

choose a �nite set A0 with a coloring

�A0 : A0 ! J(D)

and a set �0 of binary formal inequalities such that conditions (ii), (iii), (iv) of

Lemma 5, along with the following strengthening of condition (i), hold:

(i') For each x 2 J(D) there are at least two distinct a; a0 2 A0 with

�A0a = �A0a0 = x:

If we choose A0 and �0 as we chose B and 	 above, then condition (i') holds, since

each x 2 J(D) colors three distinct elements of A0, the elements x0; x1; x2.

Then A0 along with �0 already represents D. However, in order to get our map

' we must extend A0 to a set of atoms A. For each b 2 B and each x 2 J(D) with
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x �  �Bb we want an atom in 'b of color x. We arrange this by adding to A0, for

each b 2 B and a 2 A0 with

 �Bb � �A0a;

a new element hb; ai of color �A0a. For �xed b 2 B, the hb; ai will be all the atoms

of A lying below 'b.

Summarizing,

A = A0 [ f hb; ai 2 B � A0 j  �Bb � �A0a g

with a coloring �A : A! J(D) de�ned by setting

�Aa = �A0a

for a 2 A0 and

�Ahb; ai = �Aa(= �A0a):

To ensure that the hb; ai yield the correct congruences, we choose for each hb; ai 2

A an a0 6= a in A0 with �Aa
0 = �Aa (this is where condition (i') comes in), and add

to �0 the formal inequalities

\ hb; ai � a _ a0 "; \ a � hb; ai _ a0 ":(8)

These, furthermore, ensure that condition (v) of Lemma 5 hold. Note that the color

of each member of the right-hand side of each formal inequality is the same as that

of the left-hand side; thus each of these formal inequalities is adapted to �A.

We wish to de�ne ' so that

'b = f hb; ai j a 2 A0 with �Aa �  �Bb g:

Consequently, any formal inequality in 	 relating the various b's must be re
ected

in a formal inequality on A �A0. For each formal inequality

\ b � b1 _ b2 "(9)

in 	 and each a 2 A0 with  �Bb � �Aa, we take the binary formal inequality

\ hb; ai � hb1; ai _ hb2; ai"(10)

on A. Since (9) is adapted to �B , the right-hand side of (10) makes sense|

�Bbi � �Bb

for each i = 1; 2, and so

 �Bbi �  �Bb � �Aa:

Observe also that (10) is trivially adapted to �A|all elements there have the same

color.

We now let � be the set consisting of all the formal inequalities in �0 along

with all the formal inequalities (8) and (10). Set L = L�(A). The hypotheses of

Lemma 5 hold for �. We thus have an isomorphism

� : D ! Con(L)

given by

�x =
_
(�(0; u) j u 2 A; �u � x ):

Step 3. We now construct a 0-preserving lattice homomorphism ' : K ! L.
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We use Lemma 6. We de�ne a partial map

f : A! B

with domain A� A0 by setting

fhb; ai = b

for each hb; ai 2 A� A0. We then have:

Lemma 9.

f�1(M	X) =M�(f
�1(X))

for each X � B.

Proof. Let

u 2 f�1(M	X):

Since the domain of f is A� A0,

u = hb; ai 2 f�1(M	X)

for some hb; ai 2 A�A0. Then

b = fhb; ai 2M	X:

If b 2 X, then

hb; ai 2 f�1(X) �M�(f
�1(X)):

Otherwise, there are b1; b2 2 X and a formal inequality

\ b � b1 _ b2 "

in 	. Then the formal inequality

\ hb; ai � hb1; ai _ hb2; ai";

an instance of (10), is a member of �. Since

hb1; ai; hb2; ai 2 f
�1(X);

we get

u = hb; ai 2M�(f
�1(X));

thereby showing that

f�1(M	X) �M�(f
�1(X)):

Conversely, let

u 2M�(f
�1(X)):

If u 2 f�1(X), then, since X �M	X,

u 2 f�1(M	X):

Otherwise, the are u1; u2 2 f
�1(X) with

\u � u1 _ u2 "(11)

in �. Since the domain of f is A � A0, the formal inequality (11) must be an

instance of (10). That is, there are b; b1; b2 2 B and a 2 A0 with

u = hb; ai



14 G. GR�ATZER, H. LAKSER, AND E. T. SCHMIDT

and

ui = hbi; ai

for i = 1; 2 such that the formal inequality

\ b � b1 _ b2 "(12)

is a member of 	. Now

bi = fui 2 X

for each i = 1; 2. Thus, by (12),

b 2M	X

and, consequently,

u = hb; ai 2 f�1(M	X):

We have thus veri�ed that

M�(f
�1(X)) � f�1(M	X)

also, concluding the proof of the lemma.

By Lemma 6, we have a 0-preserving lattice homomorphism ' : K ! L given by

' : X 7! f�1(X)

for each 	-closed subset X of B. So,

' : b 7!
_
( hb; ai 2 A j �Aa �  �Bb ):(13)

Step 4. We show that

� �  = (xt') � �:

We apply Lemma 8. Let x 2 J(E). Any join-irreducible congruence on L is of the

form �(0; u) for some u 2 A. Since

� x =
_

(�(0; v) j �Av �  x )

and �(0; u) is join-irreducible, we have

�(0; u) � � x i� �(0; u) � �(0; v) for some v with �Av �  x

i� �Au �  x;
(14)

by the last statement of Lemma 5.

Now, choose any b 2 B with �Bb = x. Then

�(0; b) = �x

and

(xt')(�(0; b)) = �(0; 'b) =
_
(�(0; hb; ai) j �Aa �  �Bb =  x );

the �rst equality by Lemma 7, since ' preserves 0, and the second equality by (13).

Consequently,

�(0; u) � (xt')�x = (xt')(�(0; b))

i� �(0; u) � �(0; hb; ai) for some a 2 A0 with �Aa �  �Bb =  x

i� �Au �  x:

(15)
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By (14) and (15),

�(0; u) � � x i� �(0; u) � (xt')�x:

Thus, by Lemma 8,

� �  = (xt') � �:

Step 5. Since � and � are isomorphisms,  separates 0 i� xt' separates 0, and

so the �nal claim of Theorem 1 holds|see the comment just before the statement

of the theorem in Section 2.

We have thus concluded the proof of Theorem 1.

Observe how the construction neatly separates the determination of the congru-

ences of L and the determination of the homomorphism '|the lattice structure

of the congruences is determined in A0 by the formal inequalities �0, while ' is

determined in A � A0 by the formal inequalities (10). The formal inequalities (8)

serve only to identify congruences determined in A� A0 with those in A0.

6. The proof of Theorem 2

Theorem 2 follows quite easily from Theorem 1 by a rather straight-forward

duality theory between f0;_g-homomorphisms and f1;^g-homomorphisms of �nite

lattices.

Let D and D0 be �nite lattices, and let

' : D0 ! D

be a f0;_g-homomorphism. We de�ne the M-dual of ' (\M" for meet)

'M : D ! D0

by setting

'Mx =
_
( y 2 D0 j 'y � x )

for each x 2 D. Then 'M is completely determined by the condition

y � 'Mx i� 'y � x(16)

for all x 2 D, y 2 D0. Indeed, if y � 'Mx, then

'y � '
_

( z 2 D0 j 'z � x ) =
_
('z 2 D0 j 'z � x ) � x:

Conversely, if 'y � x, then, clearly, y � 'Mx.

From (16) we have, for all y 2 D0,

y � 'M1;

that is,

'M1 = 1:

Also, given x1, x2 2 D, then, for each y 2 D
0,

y � 'M (x1 ^ x2) i� 'y � x1 ^ x2

i� 'y � x1 and 'y � x2

i� y � 'Mx1 and y � 'Mx2

i� y � 'Mx1 ^ 'Mx2:

Thus,

'M (x1 ^ x2) = 'Mx1 ^ 'Mx2:
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Consequently, 'M : D ! D0 is a f1;^g-homomorphism.

By considering the dual ordering of D and D0, we get for each f1;^g-homomor-

phism ' : D0 ! D a f0;_g-homomorphism

'J : D ! D0;

the J-dual of ' (\J" for join) characterized by

'Jx � y i� x � 'y(17)

for all x 2 D, y 2 D0.

Since the J-dual and M-dual are dual concepts (in the sense of partial order),

each of their properties yields a dual property by exchanging the operators J and

M and reversing the partial order of the lattices involved.

We observe that the operators J and M are inverses of each other:

Lemma 10. If ' : D0 ! D is a f1;^g-homomorphism of �nite lattices, then

('J )M = ':

Proof. By (16), the characterization of M-dual, this is exactly what (17) states.

We, of course, have the dual result ('M )J = ' for any f0;_g-homomorphism '.

The operators M and (dually) J are (contravariantly) functorial:

Lemma 11. If D0, D, and D00 are �nite lattices and ' : D0 ! D,  : D ! D00 are

f0;_g-homomorphisms, then

( � ')M = 'M �  M :

Proof. Let x 2 D00. For each y 2 D0,

y � ( � ')Mx i�  'y � x

i� 'y �  Mx

i� y � 'M Mx;

proving the claim.

Next, we consider an isomorphism ' : D0 ! D. Then ' is both a f0;_g- and a

f1;^g-homomorphism. We have:

Lemma 12. If ' : D0 ! D is an isomorphism, then

'M = 'J = '�1:

Proof. Let x 2 D. Then, for each y 2 D0,

y � 'Mx i� 'y � x i� y � '�1x;

and so 'Mx = '�1x.

Dually, 'J = '�1.

Observe, �nally:

Lemma 13. If ' : D0 ! D is a f0;_g-homomorphism of �nite lattices, then '

separates 0 i� 'M preserves 0.

Proof.

' separates 0 i� 'x � 0 implies x = 0

i� x � 'M0 implies x = 0

i� 'M0 = 0:
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We now relate this duality theory to maps of congruences.

Lemma 14. Let K and L be �nite lattices, and let ' : K ! L be a lattice homo-

morphism. Then

rs' = (xt')M

and

xt' = (rs')J :

Proof. Let � be any congruence relation on L. Then, for each congruence relation

�0 on K,

�0 � (rs')(�) i� '2(�0) � �

by the de�nition of rs', and

'2(�0) � � i� (xt')(�0) � �

by the de�nition of xt'. Then, by (16) and (17),

rs' = (xt')M

and

xt' = (rs')J ;

concluding the proof.

Theorem 2 now follows quite easily from Theorem 1. If  : D ! E is a f1;^g-

homomorphism, then  J : E ! D is a f0;_g-homomorphism. By Theorem 1, there

are �nite lattices K and L, a lattice homomorphism ' : K ! L, and isomorphisms

� : D ! ConL, � : E ! ConK such that the diagram

E
 J

����! D

�=

??y� �=

??y�

ConK
xt'

����! ConL

is commutative. Taking the M-dual we get the commutative diagram

D
( J )M
����! E

x??�M
x??�M

ConL
(xt')M
�����! ConK

by Lemma 11. So, by Lemma 10, Lemma 12, and Lemma 14, we have the commu-

tative diagram

D
 

����! E

�=

x??��1 �=

x??��1

ConL
rs'

����! ConK

which is equivalent to the commutative diagram of Theorem 2.

An appeal to Lemma 13 completes the proof of Theorem 2.
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7. The proof of Theorem 3

The proof of Theorem 3 follows by combining the methods of Section 5 and

Section 6.

First, we show that any isotone map can be written as the composition of a

f0;_g-homomorphism and a f1;^g-homomorphism.

Lemma 15. Let D1 and D2 be �nite lattices, and let  : D1 ! D2 be an isotone

map. Then there are a �nite distributive lattice D, a f0;_g-homomorphism

 1 : D1 ! D

that separates 0, and a f1;^g-homomorphism

 2 : D ! D2

with

 =  2 �  1:

Proof. Recall that an order-�lter in a poset P is a subset X � P such that whenever

x 2 P and y � x, then y 2 P . If x 2 P then [x) denotes the order �lter

[x) = f y 2 P j y � x g:

We then let D be the set of order-�lters of D1, including the empty order-�lter

?. We partially order D by the opposite of set-containment:

X � Y i� Y � X:

Then D is a �nite distributive lattice, with

X _ Y = X \ Y and X ^ Y = X [ Y:

The 0 of D is the order-�lter D1 itself, and the 1 of D is the empty order-�lter. We

de�ne

 1 : D1 ! D

by setting

 1x = [x):

Then

 1x = 0D i� [x) = D1 i� x = 0

and

 1(x) _  1(y) = [x) \ [y) = [x_ y) =  1(x _ y);

that is,  1 is a f0;_g-homomorphism that separates 0.

We next de�ne

 2 : D ! D2

by setting

 2X =
^
 (X);

|where  (X) denotes the image of the subset X under  |for each order-�lter X

of D1. Then

 21D =
^
 (?) =

^
? = 1
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and

 2(X ^ Y ) =
^
( (X [ Y )) =

^
( (X) [  (Y )) =

^
 (X) ^

^
 (Y )

=  2X ^  2Y:

Thus  2 is a f1;^g-homomorphism.

Finally, for each x 2 D1,

 2 1x =
^
 [x) =  x;

since  is isotone and x is the smallest element of [x). Thus,

 =  2 �  1;

concluding the proof.

We now proceed to prove Theorem 3. We are given an isotone map

 : D1 ! D2:

So, by Lemma 15, we have a �nite distributive lattice D, a f0;_g-homomorphism

 1 : D1 ! D that separates 0, and a f1;^g-homomorphism  2 : D ! D2 with

 2 �  1 =  . We then have the f0;_g-homomorphism ( 2)J : D2 ! D. We shall

simultaneously represent  1 and ( 2)J as extension maps. We proceed exactly as

in Section 5.

For uniformity of notation, we set

 1 =  1

and

 2 = ( 2)J :

For each i = 1, 2, we choose a �nite set Bi, a coloring

�Bi : Bi ! J(Di)

and a set �i of binary formal inequalities onBi satisfying the conditions of Lemma5.

Again, exactly as in Section 5, we choose a �nite set A0, a coloring

�A0 : A0 ! J(D);

and a set of binary formal inequalities �0 such that the following conditions hold:

(ii), (iii), and (iv) of Lemma 5 and condition (i'),

For each x 2 J(D) there are at least two distinct a; a0 2 A0 with

�A0a = �A0a0 = x;

in Step 2 in Section 5.

We next extend A0 to A and �0 to �. Our procedure di�ers from that in Section 5

only in that we now take into account both B1 and B2. Set

A = A0 [ f hb; ai 2 B1 �A0 j  1�B1
b � �A0a g

[ f hb; ai 2 B2 �A0 j  2�B2
b � �A0a g

and set

�Aa = �A0a

for a 2 A0 and

�Ahb; ai = �Aa:
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For each hb; ai 2 A we choose an a0 6= a with �Aa
0 = �Aa and add to �0 the

formal inequalities

\ hb; ai � a _ a0 "; \ a � hb; ai _ a0 ":(18)

For each i = 1, 2, each formal inequality

\ b � b1 _ b2 "

in 	i, and each a 2 A0 with  i�Bib � �Aa, we further add to �0 the formal

inequality

\ hb; ai � hb1; ai _ hb2; ai ";(19)

thereby getting the set � of binary formal inequalities on A. Exactly as in Section 5,

the conditions of Lemma 5 hold.

For each i = 1, 2, we set

Li = L�i(Bi)

and we set

L = L�(A):

We then have isomorphisms

�i : Di ! ConLi

and

� : D ! ConL:

For each i = 1, 2, we de�ne a partial map

fi : A! Bi

with domain f hb; ai 2 A j b 2 Bi g by setting

fihb; ai = b if b 2 Bi:

These determine 0-preserving lattice homomorphisms

'i : Li ! L

such that the diagrams

Di
 i

����! D

�=

??y�i �=

??y�

ConLi
xt'i
����! ConL

are commutative. That is, the diagrams

D1
 1

����! D

�=

??y�1 �=

??y�

ConL1
xt'1
����! ConL

(20)
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and

D2

( 2)J
����! D

�=

??y�2 �=

??y�

ConL2
xt'2
����! ConL

(21)

are commutative.

Since  1 separates 0, it follows that '1 is an embedding.

Taking the M-dual of (21), exactly as in Section 6, we get the commutative

diagram

D
 2

����! D2

�=

??y� �=

??y�2

ConL
rs'2

����! ConL2

(22)

Combining (20) and (22) we get the commutative diagram of Theorem 3.

Finally, since  1 separates 0,  preserves 0 i�  2 preserves 0 i� '2 is an embed-

ding, concluding the proof of Theorem 3.

8. Concluding remarks

The construction in Lemma 15 can be dualized, expressing an isotone map as

a f1;^g-homomorphism followed by a f0;_g-homomorphism. Speci�cally, we can

let D be the lattice of order-ideals of D1 and de�ne  1 : D1 ! D by setting

 1 : x 7! (x] = f y 2 D1 j y � x g:

The map  1 is a f1;^g-homomorphism. We then de�ne a f0;_g-homomorphism

 2 : D ! D2 by setting

 2 : X 7!
_
 (X):

Then  =  2 �  1.

We then choose a �nite set A and a set of binary formal inequalities � on A

such that the congruence lattice of L = L�(A) represents D. As in Section 5, we

construct lattices L1, L2 and lattice homomorphisms '1 : L ! L1, '2 : L ! L2
such that xt'1 represents ( 1)J and xt'2 represents  2. Then (xt'2) � (rs'1)

represents  .

However, because of the special role played by the 0 congruence relation, the

conditions for '1 and '2 to be embeddings are more complicated than in Theorem 3.

Note, �rst, that, in the construction outlined, '1 will not be an embedding since

 10 = (0] 6= ? = 0D:

If  does not preserve 0, then  2 will separate 0:

 2X =
_
 (X) �  0 > 0 =  2?:

Thus, if  does not preserve 0, then '1 will not be an embedding and '2 will be an

embedding. It is also clear that if  does not preserve 0, then, no matter how we

choose D and the f1;^g-homomorphism  1 : D1 ! D,  1 will not preserve 0 since

 2 must preserve 0.

On the other hand, if  preserves 0, then we can change our choice of D|now

D will consist of the nonempty order-ideals of D1, whereby 0D = (0] and so  1
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preserves 0, and thus '1 is an embedding. Then, since  preserves 0,  2 : D ! D2,

given by

 2 : X 7!
_
 (X);

will preserve 0 and will furthermore separate 0 exactly when  separates 0.

We thus have the following theorem:

Theorem 4. Let D1 and D2 be �nite distributive lattices, and let

 : D1 ! D2

be an isotone map. Then there are �nite lattices L1, L2, L, lattice homomorphisms

'1 : L! L1; '2 : L! L2;

and isomorphisms

�1 : D1 ! ConL1; �2 : D2 ! ConL2

such that

�2 �  = (xt'2) � (rs'1) � �1;

that is, such that the diagram

D1

 
����! D2

�=

??y�1 �=

??y�2

ConL1
rs'1

����! ConL
xt'2
����! ConL2

is commutative.

If  does not preserve 0, then '1 cannot be an embedding, but '2 can be chosen

to be an embedding. If  preserves 0, then '1 can be chosen to be an embedding. If

 also separates 0, then both '1 and '2 can be chosen to be embeddings.

9. Appendix

In [9] and [1] the congruence lattice of a �nite lattice L is characterized in terms

of a dependency graph on the set J(L) of join-irreducible elements of L. Here we

are only concerned with �nite atomistic lattices L. In this case, the set J(L) is the

same as the set A(L) of atoms of L. We formulate the results in [9] and [1] for such

lattices.

We consider inequalities in L of the form

a �
_
B

where a 2 A(L) and B � A(L). Such an inequality is said to be minimal if

a =2 B

and, for all proper subsets B0 of B,

a �
_
B0:

We de�ne a digraph structure DL , the dependency graph of L, on A(L). The

nodes of the digraph are the elements of A(L), and we have an edge

ha; bi 2 DL
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exactly when there is a B � A(L) with b 2 B such that

a �
_
B

is is aminimal inequality in L.

A subset X of A(L) is said to be arrow-closed if

ha; bi 2 DL and b 2 X implies that a 2 X:

We denote by A L the set of arrow-closed subsets of A(L).

Then Theorem 2.8 of [9] and Lemma 3.4 and Corollary 3.5 of [1] can be formu-

lated for atomistic lattices as follows.

Lemma 16. Let L be a �nite atomistic lattice. The map that associates with each

congruence relation � on L the subset

f a 2 A(L) j a � 0 (�) g

of A(L) is an isomorphism between the congruence lattice of L and the lattice A L
of arrow-closed subsets of A(L). The inverse of this isomorphism associates with

each arrow-closed subset C of A(L) the congruence

_
(�(0; a) j a 2 C )

of L. Furthermore, with the principal arrow-closed subset determined by a 2 A(L)

is associated the congruence �(0; a).

Lemma 4 then follows immediately from the following observation.

Lemma 17. Let A be a �nite set and let � be a set of binary formal inequalities

de�ned on A. Then, setting L = L�(A),

A L = A �(A):

Proof. We need only show that a subset X of A is arrow-closed in the sense of this

section i� it is �-arrow-closed.

If X is arrow-closed, then X is �-arrow-closed since the formal inequalities in �

hold in L and are clearly minimal.

On the other hand, let X be �-arrow-closed. We show that X is arrow-closed.

Let b 2 X and let ha; bi 2 DL . Then some minimal inequality

a �
_
B

with b 2 B � A holds in L. Then, by Lemma 1 and in virtue of the fact that this

inequality is minimal, there is a sequence

b = a0; a1; : : : ; an�1 = a

with

hai+1; aii 2 D�(A) for all i:

It then follows that a 2 X, showing that X is arrow-closed and concluding the

proof.



24 G. GR�ATZER, H. LAKSER, AND E. T. SCHMIDT

References

[1] A. Day, Characterizations of �nite lattices that are bounded-homomorphic images or sublat-

tices of free lattices, Canadian J. Math. 31 (1979), 69{78.

[2] G. Gr�atzer, Universal Algebra, Second Edition, Springer-Verlag, New York, Heidelberg,

Berlin, 1979.

[3] G. Gr�atzer and H. Lakser, Homomorphisms of distributive lattices as restrictions of congru-

ences, Canadian J. Math. 38 (1986), 1122{1134.

[4] G. Gr�atzer, H. Lakser, and E. T. Schmidt, Representing isotone maps as maps of congru-

ences. II. Concrete maps. Manuscript.

[5] G. Gr�atzer and E. T. Schmidt, On congruence lattices of lattices, Acta Math. Acad. Sci.

Hungar. 13 (1962), 179{185.

[6] A. P. Huhn, On the representation of distributive algebraic lattices. I, Acta Sci. Math.

(Szeged) 45 (1983), 239{246.

[7] H. Lakser, The Tischendorf-T�uma characterization of congruence lattices of lattices, Manu-

script, 1994.

[8] P. Pudl�ak, On congruence lattices of lattices, Algebra Universalis 20 (1985), 96{114.

[9] P. Pudl�ak and J. T�uma, Yeast graphs and fermentation of algebraic lattices, in Colloq. Math.

Soc. J�anos Bolyai: Lattice Theory, pages 301{341, North-Holland, Amsterdam, 1974

[10] E. T. Schmidt, Homomorphisms of distributive lattices as restrictions of congruences, Acta

Sci. Math.(Szeged) 51 (1987), 209{215.

[11] M. Tischendorf, The representation problem for algebraic distributive lattices, Fachbereich

Mathematik der Technischen Hochschule Darmstadt, Darmstadt, 1992.

[12] M. Tischendorf and J. T�uma, The characterization of congruence lattices of lattices, Manu-

script, 1993.

Department of Mathematics, University of Manitoba, Winnipeg, Man. R3T 2N2,

Canada

E-mail address, G. Gr�atzer: George Gratzer@umanitoba.ca

E-mail address, H. Lakser: hlakser@cc.umanitoba.ca

Department of Mathematics, Transport Engineering Faculty, Technical University

of Budapest, M}uegyetem rkp. 9, 1111 Budapest, Hungary

E-mail address, E. T. Schmidt: schmidt@vma.bme.hu


