
A LATTICE CONSTRUCTION

AND CONGRUENCE-PRESERVING EXTENSIONS

G. GRÄATZER AND E. T. SCHMIDT

Abstract. A chopped lattice is a partial lattice we obtain from a bounded

lattice by removing the unit element.
Under a very natural condition, (FG), the ¯nitely generated ideals of a

chopped lattice M form a lattice which is a congruence-preserving extension

of M; that is, every congruence of M has exactly one extension to this lattice.
In this paper, we investigate how we can obtain from a pair of lattices A

and B by amalgamation a chopped lattice. We establish a set of six su±cient
conditions.

We then investigate when the chopped lattice so obtained will satisfy Con-
dition (FG). A typical result is the following: if C =A\B is a principal ideal
of both A and B and A is modular, then Condition (FG) holds.

We apply this to prove that if L is a lattice with a nontrivial distributive
interval, then L has a proper congruence-preserving extension.

1. Introduction

To ¯nd a simple proof of the congruence lattice characterization theorem of ¯nite
lattices, H. Lakser and the ¯rst author (see [1]) introduced a special type of ¯nite
partial lattices: a meet-semilattice in which any two elements with a common upper
bound have a join. If M is such a ¯nite partial lattice, then the ideal lattice of M is
a congruence-preserving extension of M ; that is, every congruence of M has exactly
one extension to the ideal lattice.

In [2], we introduced the name chopped lattice for such partial lattices, no longer
necessarily ¯nite. Of course, if M is no longer ¯nite, we cannot expect the ideal
lattice to be a congruence-preserving extension. It is natural to consider, instead,
¯nitely generated ideals; unfortunately, they do not, in general, form a lattice. In
Section 2 we introduce Condition (FG) under which the ¯nitely generated ideals
form a lattice.

Given two lattices A and B , sharing the sublattice C = A \ B, we obtain the
lattice M(A; B) by amalgamation. If C is a principal ideal of both A and B , then
M(A; B) is a chopped lattice.

In Section 3, we introduce (see De¯nition 3) a set of su±cient conditions under
which M(A; B) is a chopped lattice. If A and B satisfy the conditions of De¯ni-
tion 3, we shall call A, B a chopped pair. Theorem 1 states that if A, B is a chopped
pair, then M (A; B) is a chopped lattice. The concept of a chopped pair does not
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seem strong enough to compute with it. In Section 4, we introduce two stronger
versions: sharp and full chopped pairs.

In Section 5 we investigate ¯nitely generated ideals in M(A; B) for a chopped
pair A, B . For a sharp chopped pair A and B , if C = A \ B satis¯es the Ascending
Chain Condition, then we obtain Condition (FG) (which guarantees that the ¯nitely
generated ideals form a lattice) for M(A; B).

In Section 6 we investigate modular lattices. If A, B is a sharp chopped pair and
both A and B are modular, then M(A; B) satis¯es Condition (FG) (Theorem 3).
If A, B is a full chopped pair, then it is enough to assume that one of them is
modular to obtain the same conclusion (Theorem 4).

In Section 7 we deal with the problem whether every lattice has a proper con-
gruence-preserving extension. We apply Theorem 4 to prove that if there exist a
nontrivial distributive interval in a lattice, then it has a proper congruence-preserv-
ing extension.

A modular example of a congruence-preserving extension is outlined in Section 6.

1.1. Notation. We refer the reader to [1] for the basic concepts and notation.
In a lattice L, [x; y]L denotes the interval in L, and (a]L the principal ideal

generated by a. If there is no confusion, the subscript is dropped.
If L is a sublattice of K, then we call K an extension of L. If L has a zero, and

it is also the zero of K, then K is f0g-extension of L.

2. Chopped lattices

A chopped lattice M is a lattice L with zero, 0, and unit, 1, with the unit removed:
M = L ¡ f1g; on M , 0 is a nullary operation, ^ is an operation, and _ is a partial
operation. Equivalently, a chopped lattice M is a meet-semilattice with zero, 0, in
which any two elements having an upper bound have a join. M will be regarded as
a partial algebra hM ; ^;_; 0i.

We shall use the concept of extension for chopped lattices; observe that, by
de¯nition, an extension of a chopped lattice is a f0g-extension.

An ideal I of M is a subset of M containing 0 with the following two properties
for x, y 2 M :

x 2 I and y · x imply that x 2 I .
If x, y 2 I and x _ y exists, then x _ y 2 I .

For H µ M , there is a smallest ideal (H ] of M containing H . If an ideal I
can be generated in the form (H ] for some ¯nite set H , then the ideal I is called
¯nitely generated. In particular, for a 2 M , we let (a] = (fag] be the principal ideal
generated by a in M , that is,

(a] = fx j x 2 M and x · ag:
IdM denotes the lattice of ideals of M . Obviously, Id M is a lattice. Idfg M , the

¯nitely generated ideals of M , form a join-sublattice of Id M .
By identifying a 2 M with (a], we regard IdM an extension of M .

De¯nition 1. A chopped lattice M satis¯es Condition (FG) if every ¯nitely gen-
erated ideal is a ¯nite union of principal ideals.

If M satis¯es Condition (FG), then Idfg M is a sublattice of IdM . Indeed, if

I = (a1] [ : : : [ (an ];

J = (b1] [ : : : [ (bm];
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then

I \ J =
[

((ai ^ bj ] j 1 · i · n; 1 · j · m):

Lemma II.3.19 in [1] states the following:

Lemma 1. Let M be a ¯nite chopped lattice. Then IdM is a congruence-preserv-
ing extension of M .

The proof of this lemma implicitly contains the following two lemmas.

Lemma 2. Let M be a chopped lattice. Then every congruence relation of M has
an extension to Id M .

Proof. Let £ be a congruence of M ; de¯ne a relation ¹£ on IdM as follows:

I ´ J ( ¹£)

if for every i 2 I there exists a j 2 J such that i ´ j (£), and symmetrically. The
proof is the same as in [1].

Lemma 3. Let M be a chopped lattice, and let S ¶ M be a sublattice of Id M . Let
us assume that in S every ideal I 2 S is a ¯nite union of principal ideals. Then
every congruence relation of M has a unique extension to S.

Proof. First observe that if a 2 M and I 2 S, then (a] \ I is principal. Indeed,

I = (a1] [ : : : [ (an];

and so (a] \ I is generated by fa ^ a1; : : : ; a ^ ang. Since this set has an upper
bound (namely a), it has a join b (since M is a chopped lattice), and b obviously
generates (a] \ I .

Let © be an extension of £ from M to S. Let I , J 2 S, I ´ J (©), and a 2 I.
Then I ^ (a] ´ J ^ (a] (©). By the statement in the previous paragraph, there is a
b 2 J such that (a] ^ J = (b]; obviously, a ´ b (£). We conclude that I ´ J ( ¹£).
So © µ ¹£.

Conversely, let I , J 2 S with I ´ J ( ¹£). By the assumption on S, we can
represent these ideals as

I = (a1] [ : : : [ (an ];

J = (b1] [ : : : [ (bm]:

By the de¯nition of ¹£, for every ai there is a ci in J with ai ´ ci (£). Symmet-
rically, for every bj there is a dj in I with dj ´ bj (£). Since © is an extension of
£, these congruences hold for ©. The join of these n +m congruences yields I ´ J
(©), proving that ¹£ µ ©. Thus ¹£ = ©, and so every congruence of M has a unique
extension to S.

Therefore, the following is true:

Lemma 4. Let M be a chopped lattice satisfying Condition (FG). Then Idfg M is
a congruence-preserving extension of M .

In fact, a congruence-preserving f0g-extension.
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3. Chopped pairs

Let A and B be lattice, let C = A\B 6= ?. Then we can form the amalgamation
M = M(A; B) of A and B over C . It is well-known that on M we can de¯ne a
partial ordering:

De¯nition 2. The partial ordering ·M is de¯ned on M as follows:

1. For x, y 2 A, let x ·M y i® x ·A y.
2. For x, y 2 B, let x ·M y i® x ·B y.
3. For x 2 A and y 2 B, let x ·M y i® there exists a c 2 C such that x ·A c

and c ·B y; and symmetrically, for x 2 B and y 2 A.

The subscripts of · will be dropped whenever there is no danger of confusion.
We shall use the following notation: M(A; B) = A [ B is the poset obtained by

amalgamating A and B over C . In A we form the ideal IA generated by C; we
set CA = IA ¡ C; symmetrically, we de¯ne IB and CB . Note that the ideal CM

generated by C in M is the disjoint union of C, CA, and CB .
Sometimes, the poset M (A; B) is a chopped lattice. The next de¯nition formu-

lates some natural conditions under which this is the case.

De¯nition 3. A pair of lattices A and B is called a chopped pair i® the following
conditions are satis¯ed:

1. The lattices A and B have a common zero 0.
2. Let C denote the lattice A \ B. Then C has a largest element i.
3. For x 2 CM , there is a smallest x 2 C satisfying x · x.
4. For x 2 M (A; B), there is a largest x 2 C satisfying x · x.
5. For x 2 CA and y 2 CB , the two elements: x _ y (formed in A) and x _ y

(formed in B) are comparable (in M(A;B)).
6. For x 2 A ¡ B and y 2 B ¡ A, the two elements: x ^ y (formed in A) and

x ^ y (formed in B) are comparable (in M (A; B)).

Theorem 1. Let A, B be a chopped pair. Then M (A; B) is a chopped lattice.

Proof. There are two claims to verify.
Claim 1. M(A; B) is a meet-semilattice.
Let x, y 2 M(A; B). We have to ¯nd u = infM(A;B )fx; yg. We shall distinguish

several cases.
Case 1.1. x, y 2 A. Let u = x^ y be formed in A. Obviously in M(A;B), u · x

and u · y. Now let v 2 M(A; B) be a common lower bound of x and y. There are
two subcases to consider.

Case 1.1a. v 2 A. By De¯nition 2.1, v is a common lower bound of x and y
in A, hence, v · u.

Case 1.1b. v 2 B . By De¯nition 2.3, there are elements cx and cy in C such
that v ·B cx ·A x and v ·B cy ·A y. Then cx ^ cy 2 C, and v ·B cx ^ cy ·A u.
So indeed, u = inf M(A;B)fx;yg.

Case 1.2. x, y 2 B . Proceed as in Case 1.1.
Case 1.3. x 2 A, y 2 B. In view of the previous cases, we can assume that

x 2 A ¡ B and y 2 B ¡A. Since by De¯nition 2.3, any common lower bound must
be in CM , we can replace x by x^i and y by y ^i. So again referring to the previous
cases, we can assume that x 2 CA and y 2 CB . Now take a common lower bound
v of x and y.
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Now we claim that of the common lower bounds v 2 A, there is a largest one,
x ^ y. Indeed, x ^ y is a lower bound. If t 2 A is also a lower bound, then t · y

in M(A; B), hence by De¯nition 2.3, there is a c 2 C satisfying t ·A c ·B y.
Obviously, c · y, and so t ·A x ^ y, as claimed.

Now we claim that of the common lower bounds v 2 B, there is a largest one,
x ^ y. To prove this, proceed as in the previous paragraph.

Finally, by De¯nition 3.6, x ^ y and x ^ y are comparable, hence infM(A;B )fx;yg
exists and it equals supfx ^ y; x ^ yg.

Case 1.4. x 2 B , y 2 A. Proceed as in Case 1.3.
This completes the proof of Claim 1.
Claim 2. In M (A; B), any two elements, x and y, having a common upper

bound, v, have a join.
Let x, y 2 M (A; B), and let v be an upper bound of x and y. We have to ¯nd

u = supM(A;B)fx; yg. We shall distinguish several cases.

Case 2.1. x, y 2 A. Form u = x _ y in A. We have to show that if t is any upper
bound of x and y in M(A; B), then u · t.

Case 2.1a. t 2 A. This case is obvious.
Case 2.1b. t 2 B. By De¯nition 2.3, there are cx , cy 2 C so that x ·A cx ·B t

and y ·A cy ·B t. Therefore, u = x_y ·A cx _cy ·B t; so again, by De¯nition 2.3,
u ·M(A;B) t, completing Case 2.1.

Case 2.2. x, y 2 B . Proceed as in Case 2.1.
Case 2.3. x 2 A and y 2 B . In view of Cases 2.1{2.2, we can assume that

x 2 A ¡ B and y 2 B ¡ A. Without loss of generality, we can assume that t 2 A.
It follows that y 2 CB . Again, we distinguish two subcases.

Case 2.3a. x 2 CA . If t 2 A is an upper bound of x and y, then x _ y · t.
Similarly, if t 2 B is an upper bound of x and y, then x _ y · t. By De¯nition 3.5,
the elements x _ y and x _ y are comparable, hence,

supfx; yg = inffx _ y; x _ yg

Case 2.3b. x =2 CA. In this case, no upper bound of x is in B , hence,
supfx; yg = x _ y formed in A.

Case 2.4. x 2 B and y 2 A. Proceed as in Case 2.3.
This completes the proof of Claim 2 and of the lemma.

4. Some examples and special cases

It is easy to give examples that last two strange conditions of De¯nition 3 do
not follow from the others. Here is one: let A = B be the direct product of the
two element chain f0; 1g with the three element chain f0; a; 1g. The elements are of
the form hx; yi, where x 2 f0; 1g and y 2 f0; a; 1g. We make A and B disjoint (we
shall denote hx; yi 2 A by hx; yiA, and the same for B), then we identify elements
as follows:

h0; 0iA with h0;0iB ;
h1; 0iA with h0;1iB ;
h0; 1iA with h1;0iB ;
h1; 1iA with h1;1iB .
So C = fh0; 0iA ; h1; 0iA; h0; 1iA; h1; 1iAg is a four-element Boolean lattice. It

is easy to see that De¯nitions 3.1{3.4 hold, but both De¯nitions 3.5 and 3.6 fail.
Indeed, let x = ha;0iA 2 CA and y = ha; 0iB 2 CB . Then x = h1; 0iA and
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y = h1; 0iB = h0; 1iB . Hence,

x _ y = ha; 1iA and x _ y = ha; 1iB ;

and these two elements are not comparable.
If A, B is a chopped pairs, then we know that in M(A; B) any pair of elements

with a common upper bound has a join. To perform computations we need more;
we must have a formula for the join we can work with.

De¯nition 4. A chopped pair of lattices A and B, is called sharp i®

x _ y = x _ y;

for x 2 CA and y 2 CB , and

x ^ y = x ^ y;

for x 2 A ¡ B and y 2 B ¡ A.

There are many equivalent forms of these conditions; for instance, the ¯rst is
equivalent to

x _ y 2 C;

for x 2 CA and y 2 CB ; or to

x _ y = x _ y:

Observe that if A and B form a sharp chopped pair, then in M(A; B), we have
x ^ y 2 C , for x 2 CA and y 2 CB ; and x _ y 2 C, for x 2 CA and y 2 CB .

Two important examples of chopped pairs follow in which C is largest and small-
est possible:

Example 1. C = (i] is a principal ideal of both A and B.

We considered this special case for ¯nite lattices in a previous paper [2]. In this
case, CA = CB = ?; for every x 2 M (A; B), x = x ^ i; and for every x 2 C = CM ,
x = x. The conditions of De¯nition 3 and De¯nition 4 are trivially satis¯ed|in
fact,

x _ y = x _ y = x _ y and x ^ y = x ^ y = x ^ y ^ i:

Example 2. C = f0; ig.

In this case, again, the conditions of De¯nition 3 are trivially satis¯ed|in fact,

x _ y = x _ y = i and x ^ y = x ^ y = 0:

In these two examples, the conditions of De¯nition 3 and De¯nition 4 hold in a
much stronger form.

We name the ¯rst example:

De¯nition 5. A chopped pair of lattices, A and B, is called full if C = (i]A = (i]B .

5. Finitely generated ideals

In this section, we shall investigate conditions under which M (A; B) satis¯es
Condition (FG). The following two lemmas are easy to verify, but they are crucial
to our investigations. First some de¯nitions.
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De¯nition 6. Let A, B be a chopped pair, C = A \ B. Let a 2 A ¡ C and
b 2 B ¡ C. We de¯ne the elements:

a0 = a;

b0 = b;

b1 = b0 _ a0 ^ i (formed in B),

a1 = a0 _ b1 ^ i (formed in A),

b2 = b1 _ a1 ^ i (= b _ a1 ^ i) (formed in B),

a2 = a1 _ b1 ^ i (= a _ b1 ^ i) (formed in A),

: : :

bn+1 = bn _ an ^ i (= b _ an ^ i) (formed in B),

an+1 = an _ bn+1 ^ i (= a _ bn+1 ^ i) (formed in A),

: : :

See Figure 1|the white ¯lled elements are in A (and maybe in C); the shaded
elements are in B (and maybe in C), and the black ¯lled elements are in C.

Lemma 5. Let A and B be a sharp chopped pair. Then in M(A; B), the following
inequalities hold:

a = a0 · a1 · a2 · : : : (in A), (1)

b = b0 · b1 · b2 · : : : (in B), (2)

and

a0 ^ i · b1 ^ i · a1 ^ i · b2 ^ i · a2 ^ i · : : : (in C ): (3)

If, for some n, an = an+1, then (1) terminates at n, and (2) terminates at n + 1;
and symmetrically, for (2). If (3) does not terminate, neither do (1) and (2).

So either all three sequences terminate or none terminate.

Proof. Let an = an+1; then an ^ i = an+1 ^ i. Therefore,

bn+2 = b _ an+1 ^ i = b _ an ^ i = bn+1;

and so bn+1 ^ i = bn+2 ^ i. By the de¯nition of an+1 and an+2, it follows that
an+1 = an+2. Hence, an+1 ^ i = an+2 ^ i, so bn+2 = bn+3. It is now clear that

an = an+1 = an+2 = : : : ;

and

bn+1 = bn+2 = : : :

Finally,

an ^ i · bn+1 ^ i · an+1 ^ i · bn+2 ^ i;

an ^ i = an+1 ^ i and bn+1 ^ i = bn+2 ^ i; therefore,

an ^ i = bn+1 ^ i = an+1 ^ i = bn+2 ^ i; : : : ;

so sequence (3) also terminates. Conversely, if sequence (3) terminates, then
sequences (1) and (2) terminate by the de¯nitions of an+1 and bn+1 in De¯ni-
tion 6.
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Lemma 6. Let A and B be a sharp chopped pair; let a 2 A ¡ C, b 2 B ¡ C. The
ideal (a; b] of M(A; B) generated by fa; bg can be described as follows:

(a; b] =
[

((an]A j n < !) [
[

((bn ]B j n < !):

This is not a ¯nitely generated ideal if, and only if, none of the sequences of
Lemma 5 terminate. If (a;b] is a ¯nitely generated ideal, then (a; b] = (an] [ (bn]
for some n < !.

Proof. Let R =
S

((an]A j n < !) [
S

((bn]B j n < !). If we know that R is an
ideal of M (A; B), then it is straightforward to verify that R is the ideal of M(A; B)
generated by fa;bg, and the rest follows from Lemma 5.

So we verify that R is an ideal of M(A; B).
Firstly, let x 2 R and y · x in M(A; B). Without loss of generality we can

assume that x · an for some n and y · x. If y 2 A, then y · an; therefore y · an

in A, and so y 2 R. If y 2 B , then y · an, and so y · an ^ i · bn. This implies
that y · bn in B , therefore y 2 R; completing the proof of y 2 R.

Secondly, let x, y 2 R, and let x and y have a common upper bound z in
M(A; B). Without loss of generality we can assume that z 2 A. We want to show
that x _ y 2 R. We shall distinguish several cases.

Case 1. x, y 2 A.
Case 1.1. x · an and y · am for some n and m. In this case, as in all the

subsequent cases, we can assume without loss of generality that n = m. Then
x _ y · an, so x _ y 2 R.

Case 1.2. x · an and y · bn. Since y 2 A and bn 2 B, the condition y · bn

implies that y · i. Hence, y · bn ^ i · an, and so x _ y · an, yielding x _ y 2 R.
Case 1.3. x · bn and y · an. Proceed as in Case 1.2.
Case 1.4. x · bn and y · bn. As in Case 1.2, we can verify that x · an and

y · an, so Case 1.1 completes this case.
Case 2. x 2 A, y 2 B . Observe that y · i since y · z, y 2 B and z 2 A.

Case 2.1. x · an and y · an. So x _ y = x _ y · an , hence x _ y 2 R.
Case 2.2. x · an and y · bn. Since y · i, it follows that y · bn ^i, so y · an;

hence x _ y · an, yielding x _ y 2 R.
Case 2.3. x · bn and y · an. Proceed as in Case 2.2.
Case 2.4. x · bn and y · bn. Then as in Case 2.2, x · an and y · an, so we

can proceed as in Case 1.
Case 3. x 2 B, y 2 A. This is symmetric to Case 2.
Case 4. x, y 2 B .

Case 4.1. x · an and y · an. Using the argument of Case 2.2, we obtain that
x · bn+1 and y · bn+1, which is symmetric to Case 1.1. Hence x _ y 2 R.

Case 4.2. x · an and y · bn. Again, x 2 B and x · an imply that x · bn+1,
which is symmetric to Case 1.1.

Case 4.3. x · bn and y · an. Proceed as in Case 4.2.
Case 4.4. x · bn and y · bn . This is symmetric to Case 1.1.

Observe that this lemma fully describes all ¯nitely generated ideals, since a
¯nitely generated ideal of M(A; B) is obviously one- or two-generated.

Now we prove:

Theorem 2. Let A and B be form a sharp chopped pair, and let C = A \ B. Let
us assume that C satis¯es the Ascending Chain Condition. Then M(A; B) satis¯es
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condition (FG), and Idfg M (A; B) is a congruence-preserving extension of M(A; B)
(in fact, a congruence-preserving f0g-extension).

Proof. If C satis¯es the Ascending Chain Condition, then sequence (3) of Lemma 5
must terminate. By Lemma 5, the sequences (1) and (2) terminate, and so the
statement of the Theorem follows from Lemma 6.

Finally, the statement concerning congruence-preserving extension follows from
Lemma 4.

For full chopped pairs, De¯nition 6, Lemma 5, and Lemma 6 take on a much
simpler form:

De¯nition 7. Let A, B be a full chopped pair, C = A \ B. Let a 2 A ¡ C and
b 2 B ¡ C. Then we de¯ne the elements:

a0 = a;

b0 = b;

b1 = b0 _ (a0 ^ i);

a1 = a0 _ (b1 ^ i);

b2 = b1 _ (a1 ^ i) (= b _ (a1 ^ i));

a2 = a1 _ (b1 ^ i) (= a _ (b1 ^ i));

: : :

bn+1 = bn _ (an ^ i) (= b _ (an ^ i));

an+1 = an _ (bn+1 ^ i) (= a _ (bn+1 ^ i));

: : :

See Figure 2|the white ¯lled elements are in A (and maybe in C); the shaded
elements are in B (and maybe in C), and the black ¯lled elements are in C.

Lemma 7. Let A and B be a full chopped pair. Then in M(A;B), the following
inequalities hold:

a = a0 · a1 · a2 · : : : (in A), (4)

b = b0 · b1 · b2 · : : : (in B), (5)

and

a0 ^ i · b1 ^ i · a1 ^ i · b2 ^ i · a2 ^ i · : : : (in C ): (6)

If, for some n, an = an+1, then (4) terminates at n, and (5) terminates at n + 1;
and symmetrically, for (5). If (6) does not terminate, neither do (4) and (5).

The proof of this lemma is a simplī ed version of the proof of Lemma 5. Lemma 6
remains valid for full chopped pairs; in this case, the sequences an and bn will be
the ones de¯ned in De¯nition 7.

6. Modular lattices

By inspecting Figure 1, we can see that if A and B are modular, then a lot of
elements must collapse. In fact, we have the following result:
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Theorem 3. Let A and B form a sharp chopped pair. Let us assume that both
A and B are modular. Then M (A; B) satis¯es condition (FG), and Idfg M(A; B)
is a congruence-preserving extension of M(A; B) (in fact, a congruence-preserving
f0g-extension).

Proof. Let A and B be modular. The equations (see Figure 1)

a0 ^ b1 ^ i = a0 ^ (a1 ^ i) = a0 ^ i;

a0 _ b1 ^ i = a0 _ (a1 ^ i) = a1

hold in M(A; B). By the modularity of A, the two equations imply that b1 ^ i =
a1 ^ i. So

a1 ^ i = b1 ^ i = b1 ^ i:

By the modularity of B, a similar argument yields that b2 ^ i = a1 ^ i, and so on.
So the sequence (3) has only one or two members; it terminates. By Lemma 5, the
sequences (1) and (2) terminate. So the statement of the Theorem follows from
Lemma 6.

Finally, the statement concerning congruence-preserving extension follows from
Lemma 4.

We can prove a stronger statement for full chopped pairs.

Lemma 8. Let A, B be a full chopped pair. If A is a modular lattice, then

(a; b] = (a1] [ (b1]:

Proof. As in Theorem 3, the modularity of A implies that b1 ^ i = a1 ^ i. Hence
b2 = b1 _ (a1 ^ i) = b1 _ (b1 ^ i) = b1, and a2 = a1 _ (b2 ^ i) = a1 _ (b1 ^ i) =
a1 _ (a1 ^ i) = a1. So the statement of the Lemma follows from Lemma 6.

So now we can conclude a stronger form of Theorem 3 for full chopped pairs:

Theorem 4. Let A, B be a full chopped pair. If A is a modular lattice, then
M(A; B) satis¯es condition (FG).

7. congruence-preserving extensions

In [2] we raised the following question:

Problem . Is it true that every lattice with more than one element has a proper
congruence-preserving extension?

We proved in [2] that in the ¯nite case this is true. This result is generalized by
the following theorem:

Theorem 5. Let L be a lattice with zero, 0. If there exists an element ® > 0 in L
such that the interval [0; ®] is distributive, then L has a proper congruence-preserv-
ing extension K.

Proof. To prove this result, we need a construction due to the second author. Let
M3 denote the ¯ve-element modular nondistributive lattice on the set f0; a; b;c; 1g,
and let D be a bounded distributive lattice. Let

M3[D ] = fhx; y; zi 2 D3 j x ^ y = x ^ z = y ^ zg:

Then M3[D] is a modular lattice; it contains M3 as a f0; 1g-sublattice (on the
set fh0;0; 0i; h1; 0; 0i; h0; 1; 0i; h0; 0; 1i; h1; 1; 1ig), and each prime interval of this M3
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contains (in M3[D ]) a copy of D; for instance, the interval [h0;0; 0i; h1;0; 0i] can be
described as fhd; 0; 0i j d 2 Dg. If we identify D with fhd; 0; 0i j d 2 Dg, we ¯nd
that the lattice M3[D] is a congruence-preserving f0g-extension of D .

Now let D = [0; ®], and let A = M3[D]. Then A has a spanning M3; let
i = ha; 0; 0i. Let B = L, and de¯ne i = ® in B. Then A \ B = (i], and A,
B form a full chopped pair in which A is modular. So we can form the chopped
lattice M(A; B). Obviously, M(A; B) is a proper congruence-preserving f0g-ex-
tension of L. By Theorem 4, (FG) holds for M(A; B). Therefore, by Lemma 4,
Idfg M(A; B) is a congruence-preserving f0g-extension of M (A; B). We conclude
that Idfg M (A; B) is a proper congruence-preserving f0g-extension of L.

The following result is a generalization of Theorem 5.

Theorem 6. Let L be a lattice. If there exist a nontrivial distributive interval in
L, then L has a proper congruence-preserving extension K.

Proof. Let [®; ¯] be a nontrivial distributive interval in L. Let us form the lattice
B = [®) in L. Obviously, B satis¯es the conditions of Theorem 5; therefore, B has
a congruence-preserving f0g-extension K1. Clearly, B is an ideal of K1 and a dual
ideal of L; hence we can glue L and K1 over B ; let K be the resulting lattice.

Let £ be a congruence relation on L. Let £B be the restriction of £ to B. Since
K1 is a congruence-preserving extension of B, there is a unique extension © of £B

to K1. It is easy to see that £ = £[© is the unique extension of £ to K . Hence K
is a congruence-preserving extension of L. Obviously, it is a proper extension.

8. A modular example

It is easy to give examples of classes of lattices that have proper congruence-pre-
serving extensions that have nothing to do with distributivity. For instance, every
simple lattice with more than one element has a proper simple extension; this is
obviously a proper congruence-preserving extension.

In this section we outline a modular example with no proper distributive sub-
lattice.

Let C be a continuous geometry with zero, 0, and unit, 1. Then C has the
following properties:

1. For a < b, the interval [a; b] is isomorphic to C .
2. C is a simple lattice.

Let I be a nonprincipal ideal of C and F a nonprincipal dual ideal of C satisfying
I \ F = ?. Let L be the sublattice I [ F . The congruence lattice of L is the three
element chain.

We choose in C a spanning M3 = f0 < a; b; c < 1g. The interval [0; a] is
isomorphic to C. Therefore, we ¯nd in [0; a] a copy Ia of I and a copy Fa of F .
The projectivities in the spanning M3 de¯ne the ideals and dual ideals, Ib , Ic, Fb,
Fc in the intervals [0; b] and [0; c]. Similarly, we obtain the ideal Iu

a and dual ideal
Fu

a in [a; 1], Iu
b and F u

b in [b; 1], Iu
c and F u

c in [c; 1].
Let I be the ideal of C generated by the three \small" ideals, Ia, Ib , Ic. Similarly,

the three dual ideals F u
a , F u

b ,F u
c generate a dual ideal F . We consider the sublattice

K = I [ F [ Fa [ Fb [ Fc [ Iu
a [ Iu

b [ Iu
c :

It is easy to see that K is a sublattice of C, and it is a congruence-preserving
extension of the sublattice L µ [0; a].
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