A LATTICE CONSTRUCTION
AND CONGRUENCE-PRESERVING EXTENSIONS

G. GRATZER AND E. T. SCHMIDT

ABSTRACT. A chopped lattice is a partial lattice we obtain from a bounded
lattice by removing the unit element.

Under a very natural condition, (FG), the finitely generated ideals of a
chopped lattice M form a lattice which is a congruence-preserving exrtension
of M; that is, every congruence of M has exactly one extension to this lattice.

In this paper, we investigate how we can obtain from a pair of lattices A
and B by amalgamation a chopped lattice. We establish a set of six sufficient
conditions.

We then investigate when the chopped lattice so obtained will satisfy Con-
dition (FG). A typical result is the following: if C = AN B is a principal ideal
of both A and B and A is modular, then Condition (FG) holds.

We apply this to prove that if L is a lattice with a nontrivial distributive
interval, then L has a proper congruence-preserving extension.

1. INTRODUCTION

To find a simple proof of the congruence lattice characterization theorem of finite
lattices, H. Lakser and the first author (see [1]) introduced a special type of finite
partial lattices: a meet-semilattice in which any two elements with a common upper
bound have a join. If M is such a finite partial lattice, then the ideal lattice of M is
a congruence-preserving extension of M; that is, every congruence of M has exactly
one extension to the ideal lattice.

In [2], we introduced the name chopped lattice for such partial lattices, no longer
necessarily finite. Of course, if M is no longer finite, we cannot expect the ideal
lattice to be a congruence-preserving extension. It is natural to consider, instead,
finitely generated ideals; unfortunately, they do not, in general, form a lattice. In
Section 2 we introduce Condition (FG) under which the finitely generated ideals
form a lattice.

Given two lattices A and B, sharing the sublattice C = AN B, we obtain the
lattice M (A, B) by amalgamation. If C' is a principal ideal of both A and B, then
M(A, B) is a chopped lattice.

In Section 3, we introduce (see Definition 3) a set of sufficient conditions under
which M (A, B) is a chopped lattice. If A and B satisfy the conditions of Defini-
tion 3, we shall call A, B a chopped pair. Theorem 1 states that if A, B is a chopped
pair, then M (A, B) is a chopped lattice. The concept of a chopped pair does not
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seem strong enough to compute with it. In Section 4, we introduce two stronger
versions: sharp and full chopped pairs.

In Section 5 we investigate finitely generated ideals in M (A, B) for a chopped
pair A, B. For a sharp chopped pair A and B, if C = AN B satisfies the Ascending
Chain Condition, then we obtain Condition (FG) (which guarantees that the finitely
generated ideals form a lattice) for M (A, B).

In Section 6 we investigate modular lattices. If A, B is a sharp chopped pair and
both A and B are modular, then M (A, B) satisfies Condition (FG) (Theorem 3).
If A, B is a full chopped pair, then it is enough to assume that one of them is
modular to obtain the same conclusion (Theorem 4).

In Section 7 we deal with the problem whether every lattice has a proper con-
gruence-preserving extension. We apply Theorem 4 to prove that if there exist a
nontrivial distributive interval in a lattice, then it has a proper congruence-preserv-
ing extension.

A modular example of a congruence-preserving extension is outlined in Section 6.

1.1. Notation. We refer the reader to [1] for the basic concepts and notation.

In a lattice L, [z,y]; denotes the interval in L, and (a] the principal ideal
generated by a. If there is no confusion, the subscript is dropped.

If L is a sublattice of K, then we call K an extension of L. If L has a zero, and
it is also the zero of K, then K is {0}-extension of L.

2. CHOPPED LATTICES

A chopped lattice M is a lattice L with zero, 0, and unit, 1, with the unit removed:
M =L —{1}; on M, 0is a nullary operation, A is an operation, and V is a partial
operation. Equivalently, a chopped lattice M is a meet-semilattice with zero, 0, in
which any two elements having an upper bound have a join. M will be regarded as
a partial algebra (M; A,V,0).

We shall use the concept of extension for chopped lattices; observe that, by
definition, an extension of a chopped lattice is a {0}-extension.

An ideal I of M is a subset of M containing 0 with the following two properties
forz, y € M:

xz € I and y < x imply that x € I.
Ifx,y €l and x V y exists, then zV y € 1.

For H C M, there is a smallest ideal (H] of M containing H. If an ideal I
can be generated in the form (H] for some finite set H, then the ideal I is called
finitely generated. In particular, for a € M, we let (a] = ({a}] be the principal ideal
generated by a in M, that is,

(a] ={z |z € M and z < a}.

Id M denotes the lattice of ideals of M. Obviously, Id M is a lattice. Idg M, the
finitely generated ideals of M, form a join-sublattice of Id M.
By identifying a € M with (a], we regard Id M an extension of M.

Definition 1. A chopped lattice M satisfies Condition (FG) if every finitely gen-
erated ideal is a finite union of principal ideals.

If M satisfies Condition (FG), then Ideg M is a sublattice of Id M. Indeed, if

I=(a1]U...U(ay],
J=(b]U...U (b,
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then
InJ=J(ainb]|1<i<n, 1<j<m).

Lemma II.3.19 in [1] states the following:

Lemma 1. Let M be a finite chopped lattice. Then Id M is a congruence-preserv-
ing extension of M.

The proof of this lemma implicitly contains the following two lemmas.

Lemma 2. Let M be a chopped lattice. Then every congruence relation of M has
an extension to Id M.

Proof. Let © be a congruence of M; define a relation © on Id M as follows:
I=J (©)

if for every ¢ € I there exists a j € J such that i = j (0), and symmetrically. The
proof is the same as in [1]. -

Lemma 3. Let M be a chopped lattice, and let S O M be a sublattice of Id M. Let
us assume that in S every ideal I € S is a finite union of principal ideals. Then
every congruence relation of M has a unique extension to S.

Proof. First observe that if a € M and I € S, then (a]N I is principal. Indeed,
1= (a,l]U...U(an],

and so (a] N I is generated by {a Aa1,...,a A a,}. Since this set has an upper
bound (namely a), it has a join b (since M is a chopped lattice), and b obviously
generates (a] N T .

Let ® be an extension of © from M to S. Let I, J € S, I =J (®),and a € I.
Then I A (a] = J A (a] (®). By the statement in the previous paragraph, there is a
b € J such that (a] A J = (b]; obviously, a = b (©). We conclude that I = .J (©).
So ® C O.

Conversely, let I, J € S with I = J (). By the assumption on S, we can
represent these ideals as

By the definition of ©, for every a; there is a ¢; in J with a; = ¢; (©). Symmet-
rically, for every b; there is a d; in I with d; = b; (©). Since ® is an extension of
O, these congruences hold for ®. The join of these n +m congruences yields I = J
(®), proving that © C ®. Thus © = @, and so every congruence of M has a unique
extension to S. A

Therefore, the following is true:

Lemma 4. Let M be a chopped lattice satisfying Condition (FG). Then Idg M is
a congruence-preserving extension of M.

In fact, a congruence-preserving {0}-extension.
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3. CHOPPED PAIRS

Let A and B be lattice, let C = ANB # &. Then we can form the amalgamation
M = M(A,B) of A and B over C. It is well-known that on M we can define a
partial ordering;:

Definition 2. The partial ordering <p; is defined on M as follows:

1. Forxz,ye A, letx <y yiffc<avy.

2. Forxz,ye B, letx <pyiff t <py.

3. Forx € A andy € B, let x <j; y iff there exists a ¢ € C such that x <4 ¢
and ¢ <p y; and symmetrically, for x € B and y € A.

The subscripts of < will be dropped whenever there is no danger of confusion.

We shall use the following notation: M (A, B) = AU B is the poset obtained by
amalgamating A and B over C. In A we form the ideal I, generated by C; we
set C'4 = I4 — C; symmetrically, we define Ig and Cg. Note that the ideal Cy,
generated by C' in M is the disjoint union of C, C'4, and Cp.

Sometimes, the poset M (A, B) is a chopped lattice. The next definition formu-
lates some natural conditions under which this is the case.

Definition 3. A pair of lattices A and B is called a chopped pair iff the following
conditions are satisfied:

1. The lattices A and B have a common zero 0.

Let C' denote the lattice AN B. Then C has a largest element i.

For x € Cyy, there is a smallest © € C satisfying x < T.

For x € M (A, B), there is a largest x € C satisfying z < x.

Forx € Cy and y € Cg, the two elements: x V7Y (formed in A) and TV y

(formed in B) are comparable (in M(A,B)).

6. Forx € A— B andy € B — A, the two elements: x Ay (formed in A) and
z Ay (formed in B) are comparable (in M (A, B)).

Gl D

Theorem 1. Let A, B be a chopped pair. Then M (A, B) is a chopped lattice.

Proof. There are two claims to verify.

Claim 1. M (A, B) is a meet-semilattice.

Let z, y € M(A, B). We have to find u = inf,;4 p){7,y}. We shall distinguish
several cases.

Case 1.1. =,y € A. Let u = x Ay be formed in A. Obviously in M(A,B), u < z
and u <y. Now let v € M(A, B) be a common lower bound of  and y. There are
two subcases to consider.

Case 1.1a. v € A. By Definition 2.1, v is a common lower bound of z and y
in A, hence, v < u.

Case 1.1b. v € B. By Definition 2.3, there are elements ¢, and ¢, in C' such
that v <pcy <paxand v <pc¢y <ay. Then ¢, Acy € C,and v <p c; Acy <4 u.
So indeed, v = inf y(a, 8y {7, 9}

Case 1.2. z, y € B. Proceed as in Case 1.1.

Case 1.3. z € A, y € B. In view of the previous cases, we can assume that
x € A— B and y € B — A. Since by Definition 2.3, any common lower bound must
be in Cjs, we can replace x by x A7 and y by y Ai. So again referring to the previous
cases, we can assume that x € C'4 and y € Cp. Now take a common lower bound
v of  and y.
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Now we claim that of the common lower bounds v € A, there is a largest one,
z Ay. Indeed, x A y is a lower bound. If £ € A is also a lower bound, then ¢t < y
in M (A, B), hence by Definition 2.3, there is a ¢ € C satisfying t <4 ¢ <B y.
Obviously, ¢ <y, and so t <4 x Ay, as claimed.
Now we claim that of the common lower bounds v € B, there is a largest one,
x A y. To prove this, proceed as in the previous paragraph.
Finally, by Definition 3.6, 2 Ay and z A y are comparable, hence inf ;4 p){z,y}
exists and it equals sup{z A y,z A y}.
Case 1.4. x € B, y € A. Proceed as in Case 1.3.
This completes the proof of Claim 1.
Claim 2. In M (A, B), any two elements, x and y, having a common upper
bound, v, have a join.
Let z, y € M (A, B), and let v be an upper bound of z and y. We have to find
U =supy; 4 p){2,y}. We shall distinguish several cases.
Case 2.1. z, y € A. Form u =z Vy in A. We have to show that if ¢ is any upper
bound of x and y in M (A, B), then u < t.
Case 2.1a. t € A. This case is obvious.
Case 2.1b. t € B. By Definition 2.3, there are c;, ¢y, € C sothat x <4 ¢, <p t
and y <4 ¢y <p t. Therefore, u = xVy <4 ¢, Ve, <pt; so again, by Definition 2.3,
u <jp7a,p) b, completing Case 2.1.
Case 2.2. z, y € B. Proceed as in Case 2.1.
Case 23. z € A and y € B. In view of Cases 2.1-2.2, we can assume that
x € A— B and y € B— A. Without loss of generality, we can assume that ¢t € A.
It follows that y € Cp. Again, we distinguish two subcases.
Case 2.3a. x € C4. If t € A is an upper bound of z and y, then z Vy < t.
Similarly, if t € B is an upper bound of z and y, then T Vy < t. By Definition 3.5,
the elements z Vy and TV y are comparable, hence,

sup{z,y} = inf{x Vy,TVy}

Case 2.3b. z ¢ C4. In this case, no upper bound of x is in B, hence,
sup{z,y} = x VY formed in A.
Case 2.4. z € B and y € A. Proceed as in Case 2.3.
This completes the proof of Claim 2 and of the lemma. H

4. SOME EXAMPLES AND SPECIAL CASES

It is easy to give examples that last two strange conditions of Definition 3 do
not follow from the others. Here is one: let A = B be the direct product of the
two element chain {0, 1} with the three element chain {0, a,1}. The elements are of
the form (z,y), where x € {0,1} and y € {0,a,1}. We make A and B disjoint (we
shall denote (x,y) € A by (x,y) 4, and the same for B), then we identify elements
as follows:

<070>A with <0,0>B;
(1,0) 4 with (0,1)5;
(0,1) 4 with (1,0)p;
<171>A with (1,1>B
So C' = {{0,0)4,(1,0)4,(0,1) 4,(1,1) 4} is a four-element Boolean lattice. It

is easy to see that Definitions 3.1-3.4 hold, but both Definitions 3.5 and 3.6 fail.
Indeed, let * = (a,0)4 € Cy and y = {(a,0)p € Cp. Then T = (1,0)4 and
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vy =(1,0)p = (0,1)5. Hence,
xVy= <(1, 1>A and TVy= <aa 1>B7
and these two elements are not comparable.
If A, B is a chopped pairs, then we know that in M (A, B) any pair of elements

with a common upper bound has a join. To perform computations we need more;
we must have a formula for the join we can work with.

Definition 4. A chopped pair of lattices A and B, is called sharp iff

TVYy =T Vy,
forx e Cy and y € Cp, and

T ANy =z Ny,
forxre A—B andy € B— A.

There are many equivalent forms of these conditions; for instance, the first is
equivalent to
xVyed,

forx € C4 and y € Cp; or to

TVy =T VY.

Observe that if A and B form a sharp chopped pair, then in M (A, B), we have
zANyeC,forr eCyandye Cp;andaeVye C, forx € Cy and y € Cp.

Two important examples of chopped pairs follow in which C' islargest and small-
est possible:

Ezample 1. C = (i] is a principal ideal of both A and B.

We considered this special case for finite lattices in a previous paper [2]. In this
case, Cyp = Cp = &; for every € M (A, B), x = x A i; and for every z € C = C)yy,
x = x. The conditions of Definition 3 and Definition 4 are trivially satisfied—in
fact,

Vy=TVy=asVyandsAy=xAy=zAyAl.
Ezample 2. C = {0, i}.
In this case, again, the conditions of Definition 3 are trivially satisfied—in fact,
srVy=zVy=iandz Ay=zAy=0.

In these two examples, the conditions of Definition 3 and Definition 4 hold in a
much stronger form.
We name the first example:

Definition 5. A chopped pair of lattices, A and B, is called full if C' = (i|4 = (i] 5.

5. FINITELY GENERATED IDEALS

In this section, we shall investigate conditions under which M (A, B) satisfies
Condition (FG). The following two lemmas are easy to verify, but they are crucial
to our investigations. First some definitions.
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Definition 6. Let A, B be a chopped pair, C = ANDB. Leta € A —C and
be B—C. We define the elements:

ap = a,
bo =0,
by = bV m (formed in B),
ay =ap Vb Ai (formed in A),
by =byVa Ai (=bVa; Ai) (formed in B),
ay =a1 Vb Ai (=aVb Ai) (formed in A),
bui1 =bu Va, Ai (=bVa, Ai) (formed in B),

Apt1 =@ Vbpp1 Ad (=aV by ANi)  (formed in A),

See Figure 1—the white filled elements are in A (and maybe in C); the shaded
elements are in B (and maybe in C), and the black filled elements are in C.

Lemma 5. Let A and B be a sharp chopped pair. Then in M (A, B), the following
inequalities hold:

a=ag<a; <ay<... (in A), (1)
and
(Lo/\igbl/\igal/\igbg/\igag/\ig...(i?’LC). (3)

If, for some n, a, = any1, then (1) terminates at n, and (2) terminates at n + 1;
and symmetrically, for (2). If (3) does not terminate, neither do (1) and (2).

So either all three sequences terminate or none terminate.

Proof. Let a,, = a,41; then a, Ai = any1 A i. Therefore,

bn+2 =bV Ap+1 ANi=bV Ay N\ = bn+1;

and so b,y1 At = bpio Ai. By the definition of a,4+1 and a9, it follows that
Gpy1 = Qp42. Hence, apy1 At = apya A1, 80 byt = byis. It is now clear that

p = Gpi1 = Apt2 = ...,
and
bpt1=bpya=...
Finally,

anAiSbn+1Ai§an+1Ai§bn+2Ai,

an N1 = ap41 AN and by41 A i = byyo At; therefore,
an/\i:bn+1/\i:an+1/\i:bn+2 /\i,...,

so sequence (3) also terminates. Conversely, if sequence (3) terminates, then

sequences (1) and (2) terminate by the definitions of a,4+1 and b,4+1 in Defini-
tion 6. |
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Lemma 6. Let A and B be a sharp chopped pair; leta € A—C,be B— C. The
ideal (a,b] of M(A, B) generated by {a,b} can be described as follows:

(a,b] = U((an}A |n <w)U U(<b”]B |n <w).

This is not a finitely generated ideal if, and only if, none of the sequences of
Lemma 5 terminate. If (a,b] is a finitely generated ideal, then (a,b] = (an] U (by]
for some n < w.

Proof. Let R = J((ap]la | n < w) UU((bp] | n < w). If we know that R is an
ideal of M (A, B), then it is straightforward to verify that R is the ideal of M (A, B)
generated by {a,b}, and the rest follows from Lemma 5.

So we verify that R is an ideal of M (A, B).

Firstly, let z € R and y < = in M (A, B). Without loss of generality we can
assume that ¢ < a,, for some n and y < z. If y € A, then y < a,; therefore y < a,
in A, and soy € R. If y € B, then y < a,, and so §y < a, At < b,. This implies
that y < b, in B, therefore y € R; completing the proof of y € R.

Secondly, let z, ¥y € R, and let x and y have a common upper bound z in
M (A, B). Without loss of generality we can assume that z € A. We want to show
that zV y € R. We shall distinguish several cases.

Case 1. z, y € A.

Case 1.1. < a, and y < a,, for some n and m. In this case, as in all the
subsequent cases, we can assume without loss of generality that n = m. Then
zVy<ap soxVycER.

Case 1.2. x < a, and y < b,,. Since y € A and b, € B, the condition y < b,
implies that y < 1. Hence, y < b, Ai < a,, and so x Vy < a,, yielding x Vy € R.

Case 1.3. x < b, and y < a,. Proceed as in Case 1.2.

Case 1.4. x < b, and y <b,. Asin Case 1.2, we can verify that z < a,, and
y < ay, so Case 1.1 completes this case.

Case 2. x € A, y € B. Observe that y < i since y < z,y € B and z € A.
Case2.l. z<a,andy<a, SoxVy=zVy<a,, hence xVy € R.
Case2.2. x < a,and y < b,. Since y < i, it follows that y < b, A, soy < an;

hence zV y < a,, yielding z Vy € R.

Case 2.3. x < b, and y < a,. Proceed as in Case 2.2.

Case 24. £ < b, and y < b,,. Then as in Case 2.2, x < a,, and y < a,, so we
can proceed as in Case 1.

Case 3. x € B, y € A. This is symmetric to Case 2.

Case 4. z, y € B.

Case 4.1. z < a, and y < a,,. Using the argument of Case 2.2, we obtain that
< bpy1 and y < b,41, which is symmetric to Case 1.1. Hence z V y € R.

Case 4.2. x < a, and y < b,. Again, x € B and = < a,, imply that z < b, 1,
which is symmetric to Case 1.1.

Case 4.3. x < b, and y < a,. Proceed as in Case 4.2.

Case 44. x < b, and y < b,. This is symmetric to Case 1.1. [

Observe that this lemma fully describes all finitely generated ideals, since a
finitely generated ideal of M (A, B) is obviously one- or two-generated.
Now we prove:

Theorem 2. Let A and B be form a sharp chopped pair, and let C = AN B. Let
us assume that C satisfies the Ascending Chain Condition. Then M (A, B) satisfies
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condition (FG), andIdg M (A, B) is a congruence-preserving extension of M (A, B)
(in fact, a congruence-preserving {0}-extension).

Proof. If C satisfies the Ascending Chain Condition, then sequence (3) of Lemma 5
must terminate. By Lemma 5, the sequences (1) and (2) terminate, and so the
statement of the Theorem follows from Lemma 6.

Finally, the statement concerning congruence-preserving extension follows from
Lemma 4. ([

For full chopped pairs, Definition 6, Lemma 5, and Lemma 6 take on a much
simpler form:

Definition 7. Let A, B be a full chopped pair, C = AN B. Let a € A— C and
be B—C. Then we define the elements:

ap = a,
bo =0,

by = by V (ag A1),

a1 =ao V(b A1),

by =b1 V(a1 ANi) (=DV (a1 A7),
as =a1 V(b A1) (=aV (b A1),

b1 =by V(a, Ni) (=bV (an A1),
Qi1 = an V (bugr A7) (= aV (buss Ad)),

See Figure 2—the white filled elements are in A (and maybe in C'); the shaded
elements are in B (and maybe in C), and the black filled elements are in C.

Lemma 7. Let A and B be a full chopped pair. Then in M(A,B), the following
inequalities hold:

a=apg<a; <ay<... (in A), (4)
and
ao/\i§blAiSal/\igbg/\igag/\ig...(inC). (6)

If, for some n, a, = any1, then (4) terminates at n, and (5) terminates at n + 1;
and symmetrically, for (5). If (6) does not terminate, neither do (4) and (5).

The proof of this lemma is a simplified version of the proof of Lemma 5. Lemma 6
remains valid for full chopped pairs; in this case, the sequences a,, and b,, will be
the ones defined in Definition 7.

6. MODULAR LATTICES

By inspecting Figure 1, we can see that if A and B are modular, then a lot of
elements must collapse. In fact, we have the following result:
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Theorem 3. Let A and B form a sharp chopped pair. Let us assume that both

A and B are modular. Then M (A, B) satisfies condition (FG), and Idgg M (A, B)

is a congruence-preserving extension of M(A, B) (in fact, a congruence-preserving

{0}-extension).

Proof. Let A and B be modular. The equations (see Figure 1)
ao/\blAi:ao/\(al/\i) :ao/\i,
a0Vb1/\i:a0V(a1/\i) = a

hold in M(A, B). By the modularity of A, the two equations imply that by A i =

a1 Ni. So

al/\i:blA’i:bl/\’i.
By the modularity of B, a similar argument yields that by Ai = ay A 1, and so on.
So the sequence (3) has only one or two members; it terminates. By Lemma 5, the
sequences (1) and (2) terminate. So the statement of the Theorem follows from
Lemma 6.

Finally, the statement concerning congruence-preserving extension follows from
Lemma 4. A

We can prove a stronger statement for full chopped pairs.
Lemma 8. Let A, B be a full chopped pair. If A is a modular lattice, then
(a,0] = (a1] U (b].

Proof. As m Theorem 3, the modularity of A implies that b; Ai = a1 Ai. Hence
b2 = b1V(a1 /\Z) = bl\/(blAi) :bhand as :a1V(b2Ai): a1V(b1/\i) =
ay V (a1 A1) = ap. So the statement of the Lemma follows from Lemma 6. [

So now we can conclude a stronger form of Theorem 3 for full chopped pairs:

Theorem 4. Let A, B be a full chopped pair. If A is a modular lattice, then
M (A, B) satisfies condition (FG).

7. CONGRUENCE-PRESERVING EXTENSIONS
In [2] we raised the following question:

Problem . Is it true that every lattice with more than one element has a proper
congruence-preserving extension ?

We proved in [2] that in the finite case this is true. This result is generalized by
the following theorem:

Theorem 5. Let L be a lattice with zero, 0. If there exists an element o > 0 in L
such that the interval [0, o] is distributive, then L has a proper congruence-preserv-
ing extension K.

Proof. To prove this result, we need a construction due to the second author. Let
M3 denote the five-element modular nondistributive lattice on the set {0, a, b, ¢, 1},
and let D be a bounded distributive lattice. Let

M;[D] = {{z,y,2) €D* |z Ay=aAz=yAz}.

Then M;3[D] is a modular lattice; it contains M3 as a {0,1}-sublattice (on the
set {(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,1)}), and each prime interval of this M3
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contains (in M3[D]) a copy of D; for instance, the interval [(0,0,0), (1,0,0)] can be
described as {(d,0,0) | d € D}. If we identify D with {(d,0,0) | d € D}, we find
that the lattice M3[D] is a congruence-preserving {0}-extension of D.

Now let D = [0,q], and let A = M3[D]. Then A has a spanning Ms; let
it = (a,0,0). Let B = L, and define i = o in B. Then AN B = (i], and A,
B form a full chopped pair in which A is modular. So we can form the chopped
lattice M (A, B). Obviously, M(A, B) is a proper congruence-preserving {0}-ex-
tension of L. By Theorem 4, (FG) holds for M (A, B). Therefore, by Lemma 4,
Idg; M (A, B) is a congruence-preserving {0}-extension of M (A, B). We conclude
that Idg M (A, B) is a proper congruence-preserving {0}-extension of L. (I

The following result is a generalization of Theorem 5.

Theorem 6. Let L be a lattice. If there exist a montrivial distributive interval in
L, then L has a proper congruence-preserving extension K.

Proof. Let [a, 8] be a nontrivial distributive interval in L. Let us form the lattice
B = [a) in L. Obviously, B satisfies the conditions of Theorem 5; therefore, B has
a congruence-preserving {0}-extension K;. Clearly, B is an ideal of K; and a dual
ideal of L; hence we can glue L and K over B; let K be the resulting lattice.

Let © be a congruence relation on L. Let Op be the restriction of © to B. Since
K is a congruence-preserving extension of B, there is a unique extension ® of Op
to K1. It is easy to see that © = O U® is the unique extension of © to K. Hence K
is a congruence-preserving extension of L. Obviously, it is a proper extension. [

8. A MODULAR EXAMPLE

It is easy to give examples of classes of lattices that have proper congruence-pre-
serving extensions that have nothing to do with distributivity. For instance, every
simple lattice with more than one element has a proper simple extension; this is
obviously a proper congruence-preserving extension.

In this section we outline a modular example with no proper distributive sub-
lattice.

Let C be a continuous geometry with zero, 0, and unit, 1. Then C has the
following properties:

1. For a < b, the interval [a, ] is isomorphic to C.
2. C'is a simple lattice.

Let I be a nonprincipal ideal of C' and F a nonprincipal dual ideal of C' satisfying
INF =@. Let L be the sublattice I UF. The congruence lattice of L is the three
element chain.

We choose in C' a spanning M3 = {0 < a, b, ¢ < 1}. The interval [0, a] is
isomorphic to C. Therefore, we find in [0,a] a copy I, of I and a copy F, of F.
The projectivities in the spanning Mj3 define the ideals and dual ideals, Iy, I., Fy,
F. in the intervals [0,b] and [0, ¢]. Similarly, we obtain the ideal I* and dual ideal
F* in [a,1], I and F* in [b, 1], I* and F* in [c, 1].

Let I be the ideal of C generated by the three “small” ideals, I, Iy, I.. Similarly,
the three dual ideals I}, F',F'!* generate a dual ideal F'. We consider the sublattice

K=IUFUF,UFRUF, UI*UL*UI"

It is easy to see that K is a sublattice of C, and it is a congruence-preserving
extension of the sublattice L C [0, a].
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