HOMOMORPHISMS OF DISTRIBUTIVE LATTICES AS RESTRICTION OF CONGRUENCES: THE PLANAR CASE

E. T. SCHMIDT

Given a lattice L and a sublattice L', then the map of $\operatorname{Con} L$ to $\operatorname{Con} L'$ determined by restriction is a meet-homomorphism preserving 0 and 1. If L' is a convex sublattice, then this map is a lattice homomorphism. G. Grätzer and H. Lakser [1] proved that any $\{0,1\}$ -preserving homomorphism of finite distributive lattices can be realized by restricting the congruence lattice of some finite planar lattice L to the congruence lattice of an ideal L' of L. In this note we give a short proof of this result.

THEOREM. Let D and D' be finite distributive lattices and let $\Psi \colon D \to D'$ be a $\{0,1\}$ -preserving lattice homomorphism. Then there exist a finite planar lattice L, an ideal L' of L and lattice isomorphisms

$$\rho: D \to \operatorname{Con} L, \quad \rho': D' \to \operatorname{Con} L'$$

such that $\Psi \rho'$ is the composition of ρ with the restriction of Con L to Con L'. Moreover, the lattices L and L' have no nontrivial automorphisms (see Figure 1).

Fig. 1

PROOF. Let $\Psi: D \to D'$ be the given $\{0,1\}$ -preserving homomorphism. By the duality between finite distributive lattices and finite posets Ψ determines an isotone map $\varphi: \mathcal{J}(D') \to \mathcal{J}(D)$. Conversely, Ψ is determined by φ .

¹⁹⁹¹ Mathematics Subject Classification. Primary 06B10; Secondary 08A30. Key words and phrases. Restriction of congruences, lattice homomorphisms.

Let T be the set $\mathcal{J}(D) \cup \mathcal{J}(D')$. We can extend φ to T by setting $x\varphi =$ =x for $x\in\mathcal{J}(D)$. Denote p_1,p_2,\ldots,p_m resp. p_{m+1},\ldots,p_n the elements of $\mathcal{J}(D')$ resp. $\mathcal{J}(D)$. φ can be characterized by a quasi-ordering \leq on T:

(*)
$$p_i \leq p_j$$
 if and only if $\begin{cases} p_i \leq p_j \text{ in } \mathcal{J}(D'), & i, j \leq m \text{ and } \\ p_i \varphi \leq p_j \varphi \text{ in } \mathcal{J}(D) & \text{otherwise.} \end{cases}$

It is easy to check that \leq is a quasi-ordering. Let Θ be the equivalence relation of T induced by this relation, i.e., $p_i\Theta p_j$ iff $p_i \leq p_j$ and $p_j \leq p_i$. Then T/Θ is a poset. By (*) if $0 < i \le m$ then $p_i \le p_i \varphi$ and $p_i \varphi \le p_i$, i.e., $p_i \Theta p_i \varphi$. This implies $T/\Theta \cong \mathcal{J}(D)$.

We define two types of lattices A_{ij} and B_{ij} , $0 < j < i \le n$ by the diagrams illustrated in Figure 2. Let $\underline{n} = \{0 < 1 < \dots < n\}$ be an n+1-element chain. A_{ij} is the direct product $\underline{n} \times \underline{2}$ augmented with the elements $c_i, c_j, c_{j-1}, \ldots, c_0$. B_{ij} is $\underline{n} \times \underline{2}$ augmented with the elements $d_j, d_i, d_{i+1}, \ldots$ \ldots, d_n .

Fig. 2

Let \mathcal{J}_{ij} be the ideal of A_{ij} (resp. B_{ij}) generated by (n,0) and let F_{ij} be the filter of A_{ij} (resp. B_{ij}) generated by (0,1). Then $\mathcal{J}_{ij} \cong F_{ij} \cong \underline{n}$. An easy computation shows that the following hold:

- (i) Every congruence relation of A_{ij} (resp. B_{ij}) is determined by its
- restriction to \mathcal{J}_{ij} and similarly to F_{ij} . (ii) If $l \neq k$ then $(l-1,0) \equiv (l,0)$ forces $(k-1,0) \equiv (k,0)$ in A_{ij} iff l=iand k = j.

(iii) For $l \neq k$ $(l-1,0) \equiv (l,0)$ forces $(k-1,0) \equiv (k,0)$ in B_{ij} iff l=j, k=i. We define the lattice L. Consider the bijection $\sigma: [i-1,i] \to p_i$ between the prime intervals of \underline{n} and the elements of T (σ is called a coloring of \underline{n}). For $1 \leq j < i \leq n$ define

$$R_{ij} \cong \left\{ egin{array}{ll} A_{ij} & & ext{if } p_j \prec p_i ext{ in } T, \ B_{ij} & & ext{if } p_i \prec p_j ext{ in } T. \end{array}
ight.$$

Order the pairwise disjoint R_{ij} -s say $R_{i_0j_0}, R_{i_1j_1}, \ldots, R_{i_sj_s}, \ldots$ such that $(i_0, j_0), (i_1, j_1), \ldots, (i_s, j_s)$ are exactly the pairs which satisfy $1 \leq i_k, j_k \leq m$ and either $p_{i_k} < p_{j_k}$ or $p_{j_k} < p_{i_k}$ in $\mathcal{J}(D')$. Now we apply the Hall-Dilworth gluing: the filter $F_{i_0j_0}$ of $R_{i_0j_0}$ is isomorphic to the ideal $\mathcal{J}_{i_1j_1}$ of $R_{i_1j_1}$. Identify $F_{i_0j_0}$ and $\mathcal{J}_{i_1j_1}$ via the isomorphism, we obtain the lattice $R_{i_0j_0} \cup U$ of U which contains U is a filter. Then take U and its ideal U is a polyagain the gluing construction, by identifying U is and U is an ideal of U. Then U is isomorphic to one of the U is isomorphic to one of U is isomorphic to one of U is isomorphic to one of U is isomorphic to the element U is incomplete.

The properties (i), (ii) and (iii) imply that every congruence relation of L is determined by its restriction to \mathcal{J} and $(j-1)^* \equiv j^*$ forces $(i-1)^* \equiv i^*$ $(i \neq j)$ in L iff $p_i \leq p_j$ in T. Consequently, $\mathcal{J}(\operatorname{Con} L) \cong T/\Theta$ which proves $\operatorname{Con} L \cong D$.

Finally, we define the ideal L' of L. If D' is a Boolean lattice then $L' = \{0^* < 1^* < \cdots < s^*\}$.

 $R_{i_sj_s}$ is isomorphic to one of the A_{ij} -s or B_{ij} -s. Denote $t \in R_{i_sj_s} \subseteq L$ the element which corresponds to $(0,1) \in A_{ij}$ (or B_{ij}) by this isomorphism, $m^* \in \mathcal{J}_{i_0j_0}$ (m is the cardinality of $\mathcal{J}(D')$) and consider the ideal L' generated by the element $m^* \vee t$ (see Figure 3).

Fig. 3

By the given ordering of the "rows" R_{ij} we obtain that in $\mathcal{J} \cap L' = \mathcal{J}_{i_0j_0} \cap L'$, $(j-1)^* \equiv j^*$ forces $(i-1)^* \equiv i^*$ $(i \neq j)$ iff $p_i < p_j$ in $\mathcal{J}(D')$, i.e., $\mathcal{J}(\operatorname{Con} L') \cong \mathcal{J}(D')$. This is equivalent to $\operatorname{Con} L' \cong D'$. It is clear that the restriction of $\operatorname{Con} L$ to $\operatorname{Con} L'$ is just the given $\{0,1\}$ -preserving homomorphism Ψ .

If α is an arbitrary automorphism of L (and similarly of L') then its restriction to a "row" $R_{i_kj_k}$ is an automorphism of $R_{i_kj_k}$. Therefore we have only two special cases if α is a nontrivial homomorphism of $R_{i_kj_k}$. In these cases we modify the construction slightly.

(1) If $R_{i_0j_0} \cong A_{ij}$ and i = n. Then the interval [(n-1,0),(n,1)] is isomorphic to M_3 . We replace this block by the lattice illustrated in Figure 4.

If [(n-1,0),(n,1)] is isomorphic to the lattice illustrated by Figure 5a, then replace this lattice defined by Figure 5b.

(2) We use the same modificated construction if $R_{i_k j_k}$ is the least row and $R_{i_k j_k} \cong A_{ij}$ or B_{ij} where j=1 then the first block is again M_3 or the lattice illustrated by the dual of the lattice defined by Figure 5a.

REFERENCE

[1] GRÄTZER, G. and LAKSER, H., Homomorphisms of distributive lattices as restrictions of congruences II. Planarity and automorphisms, Canadian J. Math. 38 (1986), 1122-1134.

(Received August 2, 1991)

BUDAPESTI MŰSZAKI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR MATEMATIKA TANSZÉK EGRY JÓZSEF U. 1 H-1521 BUDAPEST HUNGARY