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Multipasting of lattices

E. FRIED, G. GRATZER AND E. T. SCHIMIDT*

Abstract. In this paper we introduce a lattice construction, called muftipasting, which is a commeon
generalization of gluing, pasting, and S-glued sums. We give a Characterization Theorem which
generalizes results for earlier constructions. Multipasting is too general to prove the analogues of many
known results. Therefore, we investigate in some detail three special cases: strong multipasting,
multipasting of convex sublattices, and multipasting with the Interpolation Property.

1. Introduction

Lattice constructions, such as direct products, prime products, formation of
ideal lattices, and so on, play an important part in lattice theory.

An important group of constructions is the Hall-Dillworth gluing and its
generalizations; see §2 for the definitions of some of these constructions.

Gluing constructs a lattice by identifying an ideal of a given lattice with the dual
ideal of another lattice.

Ch. Herrmann [10] extends this construction to S-glued sum, where S is a lattice
of finite length, to provide a structural tool for examining modular lattices of finite
length. There is a further generalization in A, Day and Ch. Herrmann [1].

Another important generalization of gluing is pasting, see V. Slavik [11] and
G. Gritzer [8, Exercise 12 of §V.4]. Intuitively, the lattice L is the pasting of its
sublattices A and B iff L is the union of 4 and B and all the joins and meets in L
can be computed from the joins and meets in 4 and B.

The main application of this notion is the following important result of A. Day
and J. Jezek [2] (see also §V.4 and Problem V.11 in G. Gritzer [ 8]):

There are precisely three varieties of lattices satisfying the amalgamation property:
the trivial one, the variety of the distributive lattices, and the variety of all lattices.
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There are many recent results on pasting; see E. Fried and G. Gratzer [4], [5],
[6], and E. Fried, G. Grétzer, and H. Lakser [7].

In this paper we introduce a new lattice construction: multipasting; this is a
common generalization of gluing, pasting, and S-glued sum.

In §2 we define the known basic constructions. Multipasting is introduced in §3,
where we also present the Characterization Theorem. In §4 we define multipasting
as a construction under the name X-pasting, and we prove that multipasting and
Z-pasting are “equivalent.” For lattices of finite length, strong multipasting is
introduced in §5; we show that it is a generalization of pasting but more restrictive
than multipasting. It is also a generalization of S-glued sum; see §6. We examine
multipasting of convex sublattices in §7; this construction is more general than
pasting but different from strong multipasting for lattices of finite length. In §8 we
introduce the (Upper) Interpolation Property; the Interpolation Property always
holds for pasting. For finite lattices, multipasting with the Upper Interpolation
Property preserves semimodularity, and multipasting with the Interpolation Prop-
erty preserves modularity. Finally, §9 presents some concluding comments.

For the basic concepts of lattice theory and for the notation, we refer the reader
to G. Griétzer [8].

The authors wish to express their gratitude to the members of the Lattice
Theory and Universal Algebra Seminar at the University of Manitoba for their
many incisive comments on the second draft of this paper.

2. Earlier constructions

In this section, we define the known lattice constructions we shall need in this
paper. We start with gluing:

DEFINITION 1 (Gluing). Let D be a dual ideal of the lattice A, let I be an ideal
of the lattice B, and let @ be an isomorphism ¢ : D » 1. In P = A U B, identify every
d € D with do € I. Define the partial ordering on P as the transitive closure of the
partial order of A and the partial order of B. Then P becomes a lattice, the gluing of
A and B.

Observe that the partial ordering on P has a simpler description; it is given in
Condition (P) below.
Next we define pasting, see Figure 1:

DEFINITION 2 (Pasting). Let the lattice L be the union of its sublattices A and
B,andlet S=ANB. Letf,: A— L and f5 : B— L be the natural embeddings. Then
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s “K

Figure 1

L pastes A and B together over S, iff whenever K is a lattice and g, 1 A —» K and
g5 : B — K are homomorphisms satisfying xg, = xgp for every x € S, then there exists
a homomorphism h : L — K satisfying f h =g, and fph = gg.

Note that in some papers this definition is given in terms of embeddings rather
than homomorphisms, In [5], there is a proof of the equivalence of the two forms
of this definition. See also Corollaty 14 in this paper.

It seems appropriate to state the following variant of Definition 2; it is more
closely related to the definition of multipasting as given in Definition 6.

DEFINITION 2’ (Pasting). Let the lattice L be the union of its sublattices A and
B,andlet S=AnB. Let f,: A— L and fg : B— L be the natural embeddings. Then
L pastes A and B together over S iff whenever h : L — K is a map of L into a lattice
K such that the restrictions g, : A — K and gz : B — K are homomorphisms, then h is
a homomorphism.

In their paper [2], Day and JeZek give the following variant of Slavik’s
characterization [11] of pasting for finite lattices:

Let A and B be sublattices of the lattice L; let L =AUB and AnB=S. Then L
pastes A and B together over S iff the following two conditions hold:

(P) If a < b holds in L for a € A and b € B, then there exists an s € S such that
as<sinAands <bin B; and dually for b < a.
(Cov) All upper covers in L of an element s € S belong either to A or to B; and
dually for lower covers.

E. Fried and G. Gritzer [5] generalize the characterization theorem for pasting
to infinite lattices; the result is almost the same as in the finite case, except that
conditions (Cov) is replaced by the following:

(1d) If the ideals C and Y of L satisfy
X—Y<A—B and Y—-X<B—A4,
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then
XcY or YEUX,
and dually for dual ideals.

Next, we define an S-glued system and S-glued sum as in Ch. Herrmann [10]
(s <t denotes that s is covered by 1):

DEFINITION 3 (S-glued system). Let S and L, s €S, be lattices of finite
length. The system L,, s €8S, is called an S-glued system iff the following conditions
are satisfied:
(1) Forall s,teS, if s<t, then either L.~nL, = or L, L, is a dual ideal in
L, and an ideal in L,.

(2) Forall s,t € S withs < tand for all a, b € L, L,, the relation a < b holds in
L ifa<binL,.

(3) For all s, t € S, the covering s <t implies that L,nL, # (.

4 Ifs,teS, then LLnL cL,,,nL,,,.

DEFINITION 4 (S-glued sum). Let L =\ (L, |s € S), where L,, s€ S, is an
S-glued system. Let the partial order < in L be defined as follows: for a, b € L, let
a <b iff there exist a sequence a =Xxg,Xy,...,%, =b of elements of L and a
sequence S, . . .,S, of elements of S such that s;<s;,,inS,i=1,...,n~1, and
Xy <Xx;in Ly, i=1,...,n Then L is a lattice, the S-glued sum of L,, s € S.

Let L be the S-glued sum of L, s € S. We call the components the blocks of the
S-glued sum. The following facts are easy to verify (see Ch. Herrmann [10]):

(a) An S-glued sum has as many blocks as § has elements.

(b) Any block is an interval in L.

(¢) If A and B are blocks indexed by comparable elements of S, then A UB is
a sublattice of L; this sublattice is the gluing of 4 and B, except if 4 and B are
disjoint.

(d) If S is a two-element lattice, then an S-glued sum is the gluing of the two
blocks.

(e) a<bin L iff a <b in some block.

() Ifs,teS, L,={abl, L, =]c,d],then L, is of the form [a v ¢, €], for some
eelL.

(g) Every modular lattice L of finite length is the S-glued sum of its maximal
complemented intervals.
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3. Multipasting

There are two ways to approach multipasting: by generalizing Definition 2 to
more than two lattices (internal definition) as in the following definition, or to view
it as a construction somewhat analogous to Definitions 3 and 4, see §4.

To present the internal definition of multipasting of more than two lattices we
need some definitions first:

DEFINITION 5. Let L be a lattice with the sublattices L, A € A.

(D) Ly, AeA isacover of Liff L={)(L;|4¢€A).

(2) For a,be|J(L;|A€A), let a < b denote that there exists a sequence
a==sy, Sy,...,5, =b of elements of L such that, for each i with 0 <i <n,
there is a A; € A satisfying s, 5;, 1€ L, and s; < s;, , in L,

(3) A cover L, A€ A, of L is full iff a <b in L is equivalent to a < 4 b.

(4) A cover L, A € A, of L is compatible iff, for a, b, ¢ € L, whenever a < ,c,
b<,c,abelL,, forsomeie A thenavb < ,c, where a v b is the join of
aand b in L;; and dually.

Note that <, is a partial ordering on | J (L, |4 € 4). A full cover is a cover
that induces the partial ordering of L, that is, for which the partial ordering relation
< of L equals the relation < ,. For a finite lattice (or for a lattice of finite length),
a cover is full iff every covering pair is contained in some L;. A compatible cover
is a cover that induces a relation <, which is compatible with the two partial
operations; that is, < , preserves the join and the meet for any two elements in L,,
A € A. Obviously, every full cover is a compatible cover. It is easy to construct
covers that are not compatible, and compatible covers that are not full.

Let us examine these concepts for the case |[4|=2.Let 4 ={0,1}. Then L,, A e 4
isacoveriff L=L,uL,. NowifaelLybelL,, and a <, b, then obviously there
exists a sequence @ = g, §y, . . . , 5, = b of elements of L such that a =5, < s, in L,
si<s,inLy,...,s,_,<s,=bin L,. Since s,,...,s,_,€LynL,, it follows that
a <s,in Lyand s, < bin L,. So we can always assume that n = 2, and therefore < ,
is the same as the binary relation described in (P).

Thus L;, A €{0, 1}, is a full cover iff (P) holds for Ly=4 and L, = B.

Note also that, in this case, every cover is compatible. Indeed, let A = {0, 1},
a<,¢b=<,c,abelL, We have to prove that a vb < ,c, where a v b is the
join in L. If ¢ € L, then this is obvious. If ¢ € L, — L,, then, by the discussion
above, there are s,,5, € LynL, such that a <5,,b <5,in Ly, and s, < ¢, 5, Scin
L. Lets=s,vs,eLsnL,. Then avb<sin Ly and s <c in L,, proving that
a v b £ ,c; along with the dual argument, this proves compatibility.

Now we are ready to state the definition of our central concept.
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DEFINITION 6 (Multipasting). Let L be a lattice, and let L;, A€ A, be a
compatible cover of L. Then L is a multipasting of L,, A € A, iff for any lattice K and
any map ¥ of L into K, if all the restrictions i, : L, —» K are homomorphisms, for
Ae A, then  is a homomorphism of L into K.

If |4| =2, then — as we noted above — every cover is compatible. Thus for
|4] = 2, Definition 6 is the same as Definition 2’; so for two lattices multipasting is
the same as pasting.

It may appear to the reader that the natural generalization of pasting is as stated
in Definition 6 but without the assumption of the compatibility of the cover. Note,
however, that compatibility is used throughout our proofs. See also §9.

Many lattice properties are pre'served under pasting, for instance, modularity
and distributivity (see [4] and [5]; see also [7]). However, multipasting cannot be
expected to preserve any lattice properties; in fact, every lattice is the multipasting
of Boolean lattices. Indeed, consider any lattice L with more than one element and
let L,,, for a#b, a, b€ L, denote the sublattice generated by @ and b. These
sublattices are either two-element or four-element Boolean lattices, and they form a
full cover. Clearly, L multipastes them.

Three stronger forms of multipasting (strong multipasting, multipasting convex
sublattices, and multipasting with the Interpolation Property) will be considered in
this paper.

A more interesting example of multipasting is shown in Figure 2. Consider the
lattice L of Figure 2(a). L is the multipasting of four sublattices, 4, B, C, and D,
as illustrated by Figure 2(b). This example is not very surprising because A UB is
the gluing of 4 and B; similarly, C u D is the gluing of C and D; finally, L is the

{a) (b)
Figure 2



Vol. 30, 1993 Multipasting of lattices 247

gluing of A UB and CuD. Thus L is a “repeated gluing” of the four components.
It is easy to see that repeated gluing is always a multipasting. However, L is also a
multipasting of the following sublattices: B, C, {0,5,d, g}, {0,a, ¢, h}, {a,d, h, 1},
{b, g, e, 1}, and this is quite unlike any pasting or gluing.

In this section, we shall characterize multipasting in a manner similar to the
characterization of pasting in E. Fried and G. Gritzer [5]. The principal tool is the
construction of a structure Part A formed from the lattices L,, A € A4, with a binary
relation and two partial binary operations:

DEFINITION 7 (Part A). Let L,, A € A, be a family of lattices such that for
wved, p#v, if L,nL,#J, then it is a sublattice of L, and L,. On the set
P=\{J (L, |A€A), define a binary relation <, as the transition extension of
\U(<,|A€A), where <, is the partial ordering on L,. On the set P, define two
partial operations v and A:avb=ciffa b,celL,, forsomeie A, andavb=c
in Ly; and similarly for A. The structure Part A is the set P equipped with the
relation < , and the partial operations v and A.

Note that if L;, A e A, are sublattices of a lattice, then the definition of <,
given here agrees with the definition in (5.2); however, in general, <, is not a
partial ordering.

As in [5], we proceed by defining ideals in Part A:

DEFINITION 8. A nonempty subset I of the structure P = Part A is called an
ideal iff it is closed under the partial operation v and a < , b € I implies that a e I.
Dual ideal is defined dually.

It is obvious that 7€ P, I # (, is an ideal of P =Part A iff I N L, is an ideal
or ¢, for every 4 e A.

Since, in P = Part A, a nonempty intersection of ideals in an ideal again, we can
define an ideal (or dual ideal) generated by a set H, denoted by (H],, for H < P,
H # (&, a finitely generated ideal and a finitely generated dual ideal; a principal ideal
(al, = ({a}l4, and a principal dual ideal, in the usual manner.

The set of all ideals of Part A with the empty set form a lattice denoted by
Id Part A.

The structure P = Part A we obtain from a compatible cover of a lattice has
some special properties:

DEFINITION 9. The structure P =Part A is called smooth iff the foltewing
conditions are satisfied:
(1) <, is a partial ordering on P.
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(2yabel,,ceL,(uved),a <, c,andb <,cimply thatav b < ,c, where
a v b is the join of a and b in L,; and dually.

The crucial part in the proof of the Characterization Theorem is an understand-
ing of how ideals are generated in structures, in general, and smooth structures, in
particular. The following concept is the “structure” analogue of the “{a, b}-
sequences’’ of [5]:

DEFINITION 10. Let H be a nonempty subset of the structure P = Part A.
Define an H-sequence as a sequence sy, Sy, - - . , 8, of elements of P satisfying s, € H,
and, for each i with 0 <i < n, one of the following conditions holds:

(1) s, e H.

(2) There is a jwith0<j<iands; <,s;.

(3) There are j, k with 0<j, k <i and 5, = s; v 5.

Now we are ready to describe how ideals are generated:

LEMMA 11. Let H be a nonempty subset of the structure P = Part A. Then
a € (H), iff there exists an H-sequence sg, 8,,...,8, =4d.

Proof. 1t follows by induction on »n from the definition of an ideal that if there
is an H-sequence sq, 5y, ..., 5, =4, then a € (H],. Conversely, let H be defined as
the set of all a € P such that there is an H-sequence s, 5y, ..., 5, =a. By (10.1),
H < H. If b e H is established by the H-sequence sy, 5,,...,5, =5, and a <, b,
then by (10.2) s,, 1, . .., S,, a is an H-sequence; it establishes that @ € H. Finally,
let the H-sequence s,,s,,...,s,=a establish that ae H, let the H-sequence
fos tys - .. b, = b establish that b e H, and let avb=c in L,, for some e A,
Observe that so, 51, ..., 8,, to, t1, .- . » I, 18 also an H-sequence; hence by (10.3) so
1S S0s 515+« s Sus L0s 113+« - 5 by Sy V 1,y = C, establishing that H is closed under joins.
Thus H is an ideal and H < H < (H],, hence H = (H],, as claimed.

If the structure is smooth, we can say more:

LEMMA 12. Let P =Part A be smooth. Then

(1) P is partially ordered by < ,.

(2) Ifavb=c,and a, b, c € L, for some . € A, then c is the least upper bound
of a and b in P with respect to < ,; and dually.

(3) (@, ={x|x < a}.

Proof. (1) and (2) just restate (9.1) and (9.2). In view of (2), Condition (3) is
trivial,

Note that {x | x < ,a} is, in general, not an ideal of Part A.
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Now we are ready to characterize multipasting in terms of Part A:

THEOREM 13 (Characterization Theorem). Let L be a lattice, and let the
sublattices L;, A € A, form a compatible cover of L. Then L is a multipasting of L,,
A € A, iff the following two conditions are satisfied:

(1) <, is the partial ordering of L (that is, L;, A € A, is a full cover of L).

(2) Every finitely generated ideal of Part A is principal, and dually.

Proof. Let us assume that L is a multipasting of L,, A € A. We shall verify
Conditions (1) and (2).

Form P =Part A; we claim that it is smooth (see Definition 9). Obviously,
P = L; since each L;, A € A, is a sublattice of L, it follows that < , is contained in
<. Hence, <, is a partial ordering, verifying (9.1). Since Condition (9.2) is
assumed, it follows that P = Part 4 is smooth.

Consider the embedding ¢ : x —»(x] = {y | y <, x} of L into P*, the MacNeille
completion of {P; < ,>. Since Part A is smooth, y preserves the v and A on each
L;, 2 € A, and so by the definition of multipasting, with K = P, we conclude that
¥ is a homomorphism of L into P¢. Therefore, for x,y € L, x <y implies that
xy <y, and so x € yy, that is, x <, y, verifying Condition (1).

Now consider the lattice K = Id Part A and the map ¥ : x - (x], of L into K.
Since P = Part A is smooth, by Lemma 12, the map ¢ restricted to any L,, 4 € 4,
is a homomorphism (in fact, an embedding). By the definition of multipasting, with
K =1d Part A, we conclude that ¢ is a homomorphism of L into Id Part A. Thus
the principal ideals in K =1Id Part A form a sublattice (namely, Ly). This verifies
that every finitely generated ideal is principal. The dual argument completes the
proof of (2).

Conversely, let us now assume that (1) and (2) hold. Form the structure
P =Part A; recall that it is smooth.

To show that L is a multipasting, take a lattice K and a map ¥ of L into K such
that all the restrictions ¥, : L, — K are homomorphisms, for 4 € A. We have to
prove that { is a homomorphism of L into K.

Since y; is a homomorphism, for a,b € L;, a < b in L; implies that af < by in
K. So, fora,be L, a <, b implies that ay < by in K. By (1), a < ,biffa<bin
L. We conclude that a < b in L implies that ay < by in K, that is, ¥ is isotone.

Letavb=cin L. By (2), (al, v (bl, = (4] ,, for some u € L. Since P = Part A
is smooth, Lemma 12 applies. By (12.3), a <u and b <u, so ¢ < u. Conversely,
(al4, (bl4 =(cly, s0 ¢ =u. By Lemma 11, there is an {a, b}-sequence s,,...,S,
terminating in c¢. Then soy, ..., s,¥, is an {ay, by }-sequence terminating in cy.
Therefore, ¢ € (ay] v (byY] in K, proving that ay v by = cf. Along with the dual
argument, this shows that ¢ is a homomorphism, proving that L is a multipasting.
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Maybe, at this point, it is appropriate to point out that in the definition of
multipasting {Definition 6) we may use embeddings in place of homomorphisms:

COROLLARY 14. Let L be a lattice, and let L,, i € A, be a compatible cover
of L. Then L is a multipasting of L;, A € A, iff for any lattice K and any map  of
L into K, if all the restrictions i, : L, - K are embeddings, for A € A, then y is an
embedding of L into K.

Proof. Let L,;, A € A, be a multipasting of L. Let K be any lattice and let  be
any map of L into K such that all the restrictions ¥, : L, — K are embeddings, for
A€ A. It follows from Theorem 13 that ¢ is a homomorphism. If ¢ <4 in L and
ayy = by, then by (13.1), a <, b; but ¥ is one-to-one on each L,, so a = b, that is,
¥ is one-to-one.

Conversely, Let L satisfy the condition of Corllary 14, and let X and y be given
as in Definition 6. Then we can define K’ = K x L and the map ' : L - K’ by

xy’ = (g, x5

It is clear that ¢ restricted to any L, is an embedding, hence v’ is an embedding
by the assumption of this corollary. Thus y* followed by the first projection map
is a homomorphism of L into K, and this map is the same as y, proving that ¥ is
a homomorphism, completing the proof of the coroliary.

4. X-pasting

To treat multipasting as a construction, we introduce X-pasting. We proceed as
we did for S-glued sum; while for S-glued sum we need a lattice to “index” a family
of lattices, for multipasting we start with a semilattice:

DEFINITION 15 (X-system). Let £ be a meet-semilattice. A X-system L,,
o € X, is defined by the following conditions:

(1) L, is a lattice or &, for . € X.

(2) There is an embedding @, p5:L,—Lg, for o, e Z witha < f in 2.

(3) @.. is the identity map on L,, for a € Z.

(4) Qup®Ppy = Puys for o, B,y Z witha < <yin X

(5) Imo, .5, =Imeo,, nImgeg,, for o, f,ye X witha <y and f <y in X.

In this definition, Im ¢ is the image of the map ¢. Given a X-system, we can define
a Z-pasting:

DEFINITION 16 (Z-pasting). A lattice L is a X-pasting of the Z-system L,
o € X, iff the following conditions are satisfied:
(1) There is an embedding ¢, L, — L, for a € .
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(2) Q395 = @,, for a, Be X witha < B in X.

3) Ime,nIm @z =Im ¢, .4, for «, f € Z.

(4) Im ¢,, a € Z, is a compatible cover of L.

(5) Let K be a lattice and let \, be a homomorphism of L, into K, for o € X, such
that @, g5 = V,, for a, B € Z with « < B in X. Then there exists a homomorphism
of L into K such that o,y =y, for o € X.

Note that not every X-system yields a Y-pasting. For instance, let £ be the
semilattice {w,a, f,7} with a Af=aAry=BAry=w, let L, ={0}, L, ={0, a},
Ly ={0,b}, L, ={0, c}, and let 0¢,,, =0, 09,5 =0, 0¢,,, = 0. This Z-system has
no X-pasting.

It is clear that if a Z-pasting exists, then it is unique up to isomorphism.
Indeed, let L and L’ be Z-pastings of a Z-system with embeddings ¢, and ¢,
aeX. Then, by (16.5), there is a homomorphism  : L —L’, satisfying
o, ¥ =¢,, and a homomorphism ¢’:L"—L, satisfying ¢ Y =¢,, for
o € 2. Therefore, both Yy’ and Y’y must be identity maps on all L,¢,
and L,¢,, respectively. It follows from (16.4) that Yy’ and ¥y must be identity
maps on L and L’, respectively. Therefore, { is an isomorphism, proving the
statement.

PROPOSITION 17. The concepts of multipasting and X-pasting are naturally
equivalent.

Proof. To see the “equivalence” of Definitions 6 and 16, we start with a lattice
L that is a multipasting of its sublattices L,, 1 € A. Let X be the free meet-semilat-
tice generated by A. An element « of X is of the form a =4, A -+ A 4,; define
L,=L; n---nL; We consider L,, « € 2, a X-system with the natural embed-
dings as the ¢,; and the ¢,. Conditions (15.1)—(15.5) are obvious. Conditions
(16.1)—(16.4) hold, so to show that L is a X-pasting of L,, a € X, it is sufficient to
check (16.5). Let K be a lattice and let i, be a homomorphism of L, into K, for
a € X, as required by (16.5). Since, for «, B € X, we have ¢, . gV, =¥, , 5, it follows
that y ={) (¥, |x€2) is a map of L into K, and ¥ obviously satisfies the
assumptions of Definition 6 for . The homomorphism required in (16.5) is now
provided by Definition 6.

Conversely, let the lattice L be a X-pasting of the X-system L,, o € X. Let
A={o|aeZandL, # }. Fora € A, define 4, = L,¢,. By (15.1) and (16.1), the
A, are sublattices of L, and the 4,, a € 4, form a compatible cover of L, by (16.4).
Let the map ¥ be given as in Definition 6. Then we can apply (16.5) to the
homomorphisms ¥, : A; — K, and conclude that y is a homomorphism of L into K.
Thus, L is a multipasting of the 4,, a € A.
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5. Strong multipasting

In this section, we consider only lattices of finite length. In this class of lattices,
we introduce a stronger version of multipasting for which the analogue of the Day
and Jezek characterization theorem of pasting holds (see §2). In fact, we define this
new concept via the characterization theorem of pasting, and relate it then to
multipasting.

We start with a lattice L of finite length and a cover of L by the sublattices L,
Ae A

We generalize (P) (of §2) according to Definition 6 as follows:

(Ord) Fora,b e L,let a <biff there exists a sequence a = s, §1,..., 8, =b of
elements of L such that, for each i with 0 <i<n, there is a 4,e 4
satisfying s;,5,,,€L; and 5, <5, in L.

Note that (Ord) simply means that the cover L;, 2 € A, of L is full.
We rewrite the covering condition (Cov) in the following way:

(Cov,) Any two upper covers of an element a € L belong to some L;, 1€ A;
and dually for lower covers.

DEFINITION 18 (Strong multipasting). Let L be a lattice of finite length, and
let L;, A € A, be a cover of L. Then L is the strong multipasting of its sublattices L;,
A € A, iff the conditions (Ord) and (Cov,) are satisfied.

To prove that this concept is stronger than multipasting, we need a property of
lattice maps:

PROPOSITION 19. Let L be a lattice of finite length, let K be any lattice, and
let Y : L — K be an order preserving map. If § preserves the join for any two upper
covers of an element of L, then \ is a join-homomorphism.

Proof. Let y be given satisfying the assumptions of the proposition. We proceed
by induction on the length of L. For lattices with less than four elements the
statement is trivial,

Let L have length 7, n > 1, and let the statement be true for any L having length
n. Note that the restriction of Y to any proper interval of L satisfies the assumption
of the proposition, so by the induction hypotheses, ¢ is a homomorphism on any
proper interval.

Let a, b € L; we want to prove that (¢ v by = ayy v . This is obvious if ¢ and
b are comparable. So let @ and b be incomparable.
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Let us choose atoms p in the interval [a@ A b, a] and ¢ in the interval [a A b, b];
set r=p v q. Then ry =py¥ v q by assumption. Define c =a v g (=a vr) and
d =p v b(=r v b). By the induction hypotheses, (x v y)¥ =xy vy if p < x, y or
if ¢ < x, y. Then compute:

(avby =(vdy=cyvdf (since p < ¢, d),
=(avrwvrvby=a)vryvby (since p <a,r,and g<b,r),
=ay v(pvoyvby  (since ry =py v qy),
=ay vpyvqyvby=ayvby,

proving the proposition.
Now, we are ready to prove

THEOREM 20. Let L be a lattice of finite length. Every strong multipasting of
L is a multipasting, but there are multipastings that are not strong multipastings.

Proof. Let the lattice L of finite length be the strong multipasting of its
sublattices L,, A € A. Consider P =Part A. The sets P and L coincide. By (Ord),
they are equal as partially ordered sets. By Theorem 13, we only have to show that
Part A satisfies (13.2). To this end, consider the map  : L —Id Part A defined by
xy = (x]4. By Condition (Cov,), ¢ preserves the join of any two covers of an
element in L. Using Proposition 19, we get that ¥ is join-preserving. The duality of
the assumptions and the dual of Proposition 19 yield that i is meet-preserving.
Hence, every two-generated ideal or dual ideal is principal. An obvious induction
completes the proof.

Consider the lattice L of Figure 3, and let L,, 1 € 4, be the following sublattices
of L:

L,={a,b,cd}, L,={x,y,u,v},
and the following intervals (considered as sublattices) of L:

byavul, [byevul, [xadv], [yaduvl

These sublattices form a full cover of L. Condition (13.1) is obvious. To verify Con-
dition (13.2), the only nontrivial case is the ideal (and the dual ideal) I generated
by {avucvu} It is easy to see that I is generated by d; indeed, d is an
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Figure 3

upper bound of {& v u, ¢ v u} and d belongs to I because a <avuand c<cvu
are in I and, in L, a v ¢ =d. However, condition {Cov,) is not satisfied, because
the two upper covers of u# do not belong to any one of the given sublattices.

The following is obvious without reference to Theorem 20 (and the remark
concerning |4| = 2 following Definition 6):

PROPOSITION 21. A strong multipasting of two lattices of finite length is a
pasting of the two lattices.
Proof. Indeed, for two lattices, Condition (Cov,) is the same as (Cov).

An important tool used for pasting in E. Fried and G. Gritzer [5] holds true for
strong multipasting:

PROPOSITION 22. Let L be a lattice of finite length. Let L be a strong
multipasting of its sublattices L;, A € A, and let K be a convex sublattice of L. Then
K is the strong multipasting of KL, # 3, A e A.

Proof. Both conditions, {Ord) and (Cov,), remain true in K.
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The most important positive result proved for pasting (namely that the variety
of modular and the variety of distributive lattices are closed under pasting) trivially
fails even for strong multipasting. Let Ns denote the five-element nonmodular
lattice with elements {0, 1, a, b, ¢}, where a <b, 0 is the zero, and 1 is the unit.
Consider the following three sublattices: {a, b}, {0, 1, 4, ¢}, {0, 1, b, c}. Both Condi-
tions (Ord) and (Cov,) are satisfied. Still, the sublattices are distributive and the
result is not even modular.

6. Multipasting and S-glued sum

In this section, we prove that multipasting and strong multipasting both
generalize S-glued sum.

THEOREM 23. Let L be a lattice of finite length. An S-glued sum of L is a
strong multipasting of L but not conversely.

Proof. Suppose L is the S-glued sum of the lattices L, s € S. Then, clearly,
L=|J(L,]|seS). By Definition 4, L,,s € S, is a full cover. So we only have to
prove (Cov,).

Let b and ¢ be two upper covers of a in L. Then, by the remark (e) follow-
ing Definition 4, there are s, t € S, such that ¢, b e L anda,ce L,, Nowae L,nL,
implies, by (3.4), thatae L, ,. Thus,ae L,nL,,,. By (3.1), s <s v t implies that
b belongs to the dual ideal L,nL,,, of L,. Hence, be L,,,. By symmetry,
celL,,,, verifying the first clause of (Cov,). By duality, we conclude (Cov,).

Now we give an example of a strong multipasting that is not an S-glued sum.
Consider M, the five-element modular nondistributive lattice, with the elements
{0,1,a,b,c}. M, is a strong multipasting of the three sublattices: {0, 1, a, b},
{0,1,a,c}, {0,1,b, c}. However, it is not an S-glued sum, since these sublattices
are not intervals in M;.

Thus, for finite lattices, strong multipasting is a common generalization of
pasting and S-glued sum. Let us remark that most results proved for pasting of
finite lattices also hold for lattices of finite length.

7. Multipasting and convex sublattices
It may seem that multipasting is not as well-behaved as S-glued sum because

the components need not be convex sublattices. In this section, we shall investigate
multipasting of convex sublattices. First of all, we shall show that
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PROPOSITION 24. For lattices of finite length, a multipasting of convex sub-
lattices need not be a strong multipasting.

Proof. We start with the direct product L = C, x C; x C; of two two-element
chains and a three-element chain, see Figure 4. Take all convex four-element
sublattices of length two, except the sublattice

{€0,0,15,<1,0,15,<0, 1, 1>, {1, 1, 1>}.

They form a full cover of L. Since L is selfdual, to show that they form a
multipasting it is enough to consider ideals. There is only one nontrivial case: the
ideal I generated by <0,0,1)> and (0, 1,1). Since {1,1,1) is the least upper
bound of (1,0, 1) and (0, 1, 1), to prove that [ is principal, it is enough to show
that <1, 1, 1> is in . Since {1,0,0> < (1,0, 1> and <0, 1, 0> < <0, 1, 1), it follows
that {1,1,00 =<1,0,0> v {0,1,0>el; and therefore, (1,1,1>=<0,1,1>v
{1, 1,05 e I (all the joins are taken in the structure Part A).

However, this multpasting is not strong; indeed, (Cov,) is not satisfied, since
the two upper covers <1, 0, 1> and <0, 1, 1> of (0,0, 1) are not contained in any
one of the components (the four-element sublattice generated by them is not a
component).
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The next result shows that, even for finite modular lattices, multipasting of
convex sublattices can construct lattices that cannot be obtained by pasting.

THEOREM 25. There exists a finite modular lattice that is a strong multipasting
of more than two of its convex proper sublattices, but which is not a pasting of two
of its proper sublattices.

We shall prove this theorem in the following stronger form:

THEOREM 25°. For every integer m 2 2, there exists a finite modular lattice
that can be represented as an S-glued sum of more than m proper blocks, but which
is not a strong multipasting of k of its proper sublattices, for any k < m.

Proof. Our construction is a simple special case of a construction in Ch.
Herrmann [10].

Let S be a finite projective geometry (i.e., a finite complemented modular
lattice). Let L be the sublattice of S? consisting of all pairs (x, y> with x < y.
Obviously, L is a finite modular lattice.

For s € S, let L, be the interval [<0,s), (s, 1)] of L. Observe that L is a
complemented sublattice of L. Indeed, if {x, y> e L, then let u be the relative
complement of x in [0, s}, and let v be the relative complement of y in [s, 1]. Since
u < s and s <v, it follows that ¥ < v; hence, (u,v) € L, and {u, v) is the comple-
ment of {x,y) in L,.

Next we prove that L, is a maximal complemented interval of L. Indeed, let
[€0, s>, {s, 1D] & [uy, uy ), {vy, v5»] where [{u;, u,), {vy,v,)>] is a complemented
sublattice of L; by duality, we can assume that {u;,u,)=<0,s5> and
s, 1) <oy, 050, that s, [<uy, uy), {0y, 0,0] ={£0, 5>, <z, 1>] where s <t. The
interval [<0,s), {¢,1>] contains the element <{0,:);, its complement in
{0, s), <t, 1] must be of the form {z, r), where r is a complement of ¢ in [s, 1]. But
{t,ry e L and so t < r, contradicting that r is a complement of ¢ in [s, 1}.

By Ch. Herrmann [10], every modular lattice of finite length is an S-glued sum
of its maximal complemented intervals; we conclude that L is an S-glued sum of
L, =[€0,5),{s,1>],5€ 8.

Now choose an integer n: let n be prime with m < n. Let S be a projective plane
over a finite field of n elements. The lattice L constructed above is an S-glued sum
of 2n?+ 2n + 4 > m blocks.

The projective geometry S as a geometry is generated by any n + 2 points, since
the lines have n + 1 points and S is planar. S as a lattice is generated by any n + 3
atoms. Indeed, let S’ be the sublattice generated by n + 3 atoms. Since the unit
element of S’ is, by definition, a join of atoms, therefore, S’ is a complemented
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modular lattice, that is, a projective geometry. If S’ is directly reducible, then
it is a direct product of a line and a point. Since a line contains at most n + |
atoms, therefore, S’ has at most n + 2 atoms, contrary to the assumption. We
conclude that S’ is a directly irreducibie projective plane. Moreover, S’ is argue-
sian since S is. Therefore, S’ can be coordinatized with a subfield of GF(n). By
assumption, # is prime; therefore, GF(n) has no proper subfield. Thus S’ =S, as
claimed.

Assume that L is a strong multipasting of the proper sublattices L,, ..., L,
k <m(<wn). Let p be an atom of S. Then {0, p)> <<{p,p> in L. By Condition
(Ord), there is an L, such that {0, p>, {p, p> € L;. Since there are at most m <n
sublattices L,, and there are n®+n -+ 1 atoms, there must be a sublattice, say L,,
such that {0,p> <{p,p>eL, for n+3 atoms p; otherwise, we obtain that
mn+2)zn+n+1 and (n—Dn+2)=mn +2), that is, (n—1D(n+2)
2 n*+n+1, a contradiction.

As we proved in the last but one paragraph, the lattice S is generated by any
set of n+3 atoms, hence <0,p>, {(p,p>e L, for all atoms p of S. Thus
0, x>, <{x,x>e L, for all x in S. But if {x,y>€e L, then x <y; therefore,
{x,y>=<0,y>v<{x,x>e L,, and so L = L,, a contradiction.

B. Ganter suggested that we look at this proof with § the projective plane
over the rational field. The resulting modular lattice L of finite length is a
strong multipasting (in fact, S-glued sum) of the infinitely many convex sub-
lattices L,, se€S, but L is not the strong multipasting of finitely many
proper sublattices. Indeed, let us assume that L is the strong multipasting of
the lattices L,,..., L,. Choose an infinite set C of points in S such that no
three elements of C are collinear. Then there must be a lattice L; containing
infinitely many of the elements <0,p>, p e C. Since any four of these atoms
generate all of S, we must have L, =L, a contradiction. Thus we proved the
following result:

THEOREM 25", There exists a modular lattice of finite length that is a strong
multipasting of infinitely many of its convex proper sublattices, but which is not a
strong multipasting of finitely many of its proper sublattices.

8. Interpolation property
For pasting, Condition (P) (of §2) expresses the fact that 4 n B is properly

placed between 4 and B. We are looking for a similar property of strong
multipasting that would make it possible to prove that modularity is preserved.
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DEFINITION 26. Let L be a lattice of finite length which is a multipasting of
L;, A € A. We call this a multipasting with the Upper Interpolation Property iff it is
a strong multipasting and the following condition holds:

(UIP) Let a,b,c € L and u, v € A satisfy
as<b<cinlL, aelL,, beL, ceL,nL, p#v;

then there exists a de L, L, witha <d <b.

A multipasting has the Interpolation Property iff it is strong and both (UIP) and the
dual of (UIP) hold.

Observe that if all L,, A € A, are convex sublattices of L, then (UIP) trivially
holds (with d = b). Therefore, the results of this section hold for convex multipast-
ings.

The following theorem generalizes the main result of E. Fried and G. Gritzer
[4]. Our proof is patterned after E. T. Schmidt [15].

THEOREM 27. The class of all finite semimodular lattices is closed under multipast-
ing with the Upper Interpolation Property.

Proof. Let L be a finite lattice that is a multipasting with the Upper Interpola-
tion Property of the semimodular lattices L;, A € A. Let a, b € L satisfy a # b and
a A b<a,b. We wish to show that a, b <a v b. Since a and b both cover a A b and
L is a strong multipasting of L;, A € A, by Condition (Cov,), there is a u € A such
that a,b € L,; obviously, a vbeL,.

By way of contradiction, assume that the semimodularity fails in L; without loss
of generality we can assume that b <a v b fails in L, that is, that there exists a
ce L such that b<c<avb; since L is finite, we can choose ¢ so that
b <c<a v b. From the semimodularity of L,, it follows that ¢ ¢ L,. Choose d e L
so that a < d <a v b. By Condition (Cov,), there exists a v € A such that ¢, d e L,.
Obviously, a vbe L, since c vd=a v b.

Since a<d<avbin L,aecl,,deL, and avbel,nL,, by (UIP), we
conclude that there exists an s € L, n L, such that @ <5 <d. Observe that a <s
yields a contradiction with the semimodularity of L, since a,b,a Ab,s,avbeL,,
anb<abelL, and a<s<avbin L, Therefore, a=s, and so aelL,.

Similarly, b <c<avbinL,belL,,celL, andavbelL,nL,, by (UP), we
conclude that there exists an s € L, n L, such that b <s <¢. Again, b <s contra-
dicts the semimodularity of L,, so we conclude that b =s, and so b e L,.

But then a,b,a A b,c,a v beL,, a contradiction with the semimodularity of
L,, completing the proof of the theorem.
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COROLLARY 28. The class of all finite modular lattices is closed under
multipasting with the Interpolation Property.

Let us remark that the above result does not hold for distributive lattices.
Indeed, the three four-elements sublattices of M; form a multipasting with the
Interpolation Property.

9. Concluding remarks

We have elaborated a number of variants on the theme of multipasting. Our
discussions are far from complete. To illustrate this, we state the following variant
on Theorem 23:

THEOREM 29. An S-glued sum L is a multipasting satisfying the following
condition:

(Cov,,) For any element a € L, all upper covers of a belong to some components;
and dually for lower covers;

but not conversely.

Proof. Let the lattice L be an S-glued sum. Forae L, Let L, =[x,, ], s € &',
be all the blocks containing a. Define u, =\/ (x, | s € §") and v, = A\ (x, |s € §).
By note (f) following Definition 4 and by (3.4), the block L, is of the form [u,, y],
and its contains a. Now let a < b in L. Then by (3.3), there is a block L, containing
both a and b. Since ¢ <u,, by (3.1}, L,n L, is a dual ideal of L,; since this dual
ideal contains g, it also contains b. Thus all such b are contained in L, .

A similar argument shows that the block L, also contains a. This is the block
containing all the e¢lements covered by a.

To show that the converse does not hold, take the three-element chain &, with
elements 0, 1,2, and define L as €} with the element (0, 1> omitted. Then the
sublattices

{<Oi 2)9 <3’ 0)3 <Ia 1):- <1’ 2>};
{<1,03, <1, 15,<2,05, <2, 1B}, {<1,1), <1, 25,42, 1),42, 2)}

form a multipasting (of convex sublattices); but this is not an S-glued sum (for
instance, (3.1) fails).

Thus one could define a sharper form of strong multipasting, requiring (Cov,,)
rather than (Cov,). Even with the additional hypothesis that the components be
convex sublattices, this construction is much weaker than S-glued sum.
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It is an interesting question what happens if we do not assume in Definition 6
that the cover L;, A € 4, of L be compatible? How would the new definition relate
to the old one and to the other variants of multipasting we have studied?

Multipasting with the Interpolation Property does solve the problem of preserv-
ing modularity in the finite case. It would be of interest to generalize the Interpola-
tion Property to infinite lattices so that it preserve modularity.

Finally, we raise the question, what is the best form of Theorem 25?7 For every
integer m 2 2, find the smallest integer u(m) such that there exists a finite modular
lattice that can be represented as an S-glued sum of u(m) proper blocks, but which
is not a strong multipasting of m of its proper sublattices. For instance, what is
u(2)? Our proof yields u(m) < 16m? + 36m + 24.
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