COVER-PRESERVING EMBEDDING

E. T. SCHMIDT* Budapest

1. Introduction

A finite lattice K has the cover-preserving embedding property, abbreviated as CPEP with respect a variety V of lattices, if whenver K can be embedded into a finite lattice L in V, then K has a cover-preserving embedding into L, that is an embedding φ with the property that if a covers b in K then $\varphi(a)$ covers $\varphi(b)$ in L. This concept was introduced by E. Fried, G. Grätzer and H. Lakser in [2], and it was proved that a finite projective geometry P (i.e. a simple complemented modular lattice) has the cover-preserving embedding property with respect to the variety M of all modular lattices if and only if one of the following three conditions hold:

(i) the length of P is 1;

٤

- (ii) the length of P is 2 and P is isomorphic to M_3 ;
- (iii) the length of P is greater than 2 and either P is non-arguesian or P is arguesian and for some prime p, each interval of P of length 2 contains p+1 atoms. In this note we prove the following:

THEOREM 1.. If a finite modular lattice L has the CPEP with respect to M then L is the subdirect product of projective geometries of type (i)-(iii).

2. Preliminaries

All lattices considered in this paper are finite modular lattices. First we need some definitions (see G. Grätzer [3]). We shall say that a/b is perspective to c/d, and write $a/b \sim c/d$ if either $b = a \wedge d$, $c = a \vee d$ or $a = b \vee c$, $d = b \wedge c$. In the first case we write $a/b \nearrow c/d$ and we write $a/b \searrow c/d$ in the second case. If for some natural number n there exist $a/b = e_0/f_0 \sim e_1/f_1 \sim \cdots \sim e_n/f_n = c/d$, we shall say that a/b is projective to c/d. This will be denoted by $a/b \approx c/d$. We write $c/d \searrow_w a/b$ iff $b \le d$ and $c = a \vee d$; similarly, $c/d \nearrow_w a/b$ iff $c \le a$ and $d = b \wedge c$. If $c/d \nearrow_w a/b$ or $c/d \searrow_w a/b$, then c/d is weakly perspective into a/b, in symbols $c/d \sim_w a/b$. If for some natural number n and $c/d = e_0/f_0$, e_1/f_1 , ..., $e_n/f_n = a/b$ we have $e_i/f_i \sim_w e_{i+1}/f_{i+1}$, $i = 0, \ldots, n-1$ then c/d is weakly projective into a/b, in symbol, $c/d \approx_w a/b$.

The well-known Hall-Dilworth gluing of a filter and ideal was extended in [4] by Ch. Herrmann. This construction is called the S-glued sum, where S is a lattice of finite length. The definition is based on the following concept. Let S be a lattice.

*Research supported by Hungarian National Foundation for Scientific Research grant no. 1813.

Mathematics subject classification numbers, 1980/85. Primary 06. Key words and phrases. Modular lattice, embedding, cover-preserving.

Akadémiai Kiadó, Budapest Kluwer Academic Publishers. Dordrecht

An S-connected system is an S-indexed system of bounded lattices $(L_x; x \in S)$ together with lattice isomorphisms γ_{xy} for each $x \leq y$ in S satisfying

- (1) γ_{xy} has as domain, a (possibly empty) filter $G_{yx} \subseteq L_x$ and as codomain, a (possibly empty) ideal $J_{xy} \subseteq L_y$;
- (2) $\gamma_{xx} = 1_{L_x}$, and for $x \le y \le z$ $\gamma_{yz}\gamma_{xy} = \gamma_{xz}$;
- (3) $G_{x,x\wedge y} \cap G_{y,x\wedge y} \subseteq G_{x\vee y,x\wedge y}$ and $J_{x,x\vee y} \cap J_{y,x\vee y} \subseteq J_{x\wedge y,x\vee y}$ for all $x,y\in S$; (4) for all $x\leq y$ in S there exists a sequence $x=z_0\leq \cdots \leq z_n=y$ with

Let L be a lattice, and let $(L_x; x \in S)$ be a system of sublattices of L such that $(L_x; x \in S)$ is an S-connected system, where for $x \leq y$, $L_x \cap L_y = G_{yx} \subseteq$ $L_x, L_x \cap L_y = J_{xy} \subseteq L_y$ and γ_{xy} is the identy map on $L_x \cap L_y$. We say that L is the S-glued sum of L_s , $s \in S$. If $(L_x; x \in S)$ is an S-connected system then $L = \cup L_s$ is a lattice, the S-glued sum of L_s . A maximal complemented interval of a finite modular lattice is called a block. The minimal elements of the blocks form a lattice S, we may assume that the blocks B_x are indexed by its minimal elements, i.e. $x \in S$. The main result of [4] asserts that a finite (or of finite length) modular lattice is the S-glued sum of the blocks B_x .

Let L be a lattice. $L^{(2)}$ is the set of all pairs (t_1, t_2) such that $t_1, t_2 \in L$ and $t_1 \leq t_2$. $L^{(2)}$ is a sublattice of L^2 , it is a subdirect power of L. If $t \in L$ then $t \to \tilde{t} = (t, t)$ is the canonical embedding of L into $L^{(2)}$. If [b, a] is a prime interval of L then the corresponding interval $[\tilde{b}, \tilde{a}]$ of $L^{(2)}$ is the three element chain. A maximal irreducible, complemented interval is called a projective block.

The length of an interval [b, a] will be denoted by $\ell[b, a]$. A cover-preserving sublattice is a sublattice for wich the identy map is a cover-preserving embedding.

LEMMA 2.. Let P be a finite non-distributive projective geometry. An interval [v,u] of $P^{(2)}$ is a projective block if and only if

$$[v,u] = \begin{cases} [(0,s),(s,s)] & \text{where } \ell[0,s] > 1 \text{ in } P, \text{ or } \\ [(t,t),(t,1)] & \text{where } \ell[t,1] > 1 \text{ in } P. \end{cases}$$

PROOF.. The mapping $\varphi_1: x \to (0,x)$ is of course a cover-preserving embedding of P into $P^{(2)}$ and $\varphi_1(P)$ is the interval [(0,0),(0,1)], i.e. this interval is isomorphic to P. $(t,t) \wedge (0,1) = (0,t)$ and $(t,t) \vee (0,1) = (t,1)$ imply that $[(t,t),(t,1)] \sim [(0,t),(0,1)]$. Since [(0,t),(0,1)] is an interval of $\varphi_1(P)$ of length greater than 1, it is a non distributive projective geometry. Similarly, $\varphi_2 : \to (x, 1)$ is an embedding of P into $P^{(2)}$ and $\varphi_2(P) = [(0,1),(1,1)]$. Then [(0,s),(s,s)] is weakly perspective into [(0,1),(1,1)], i.e. it is a projective geometry. Let [v,u] be a non-distributive projective geometry, $P^{(2)}$ is the subdirect square of P and [v, u] is subdirect irreducible, i.e. if $v = (v_1, v_2)$, $u = (u_1, u_2)$ $(v_1 \le v_2, u_1 \le u_2)$ then either $v_1 = u_1$ or $v_2 = u_2$. Then the maximal irreducible complemented intervals which contains [v, u] are just the intervals given in the lemma.

LEMMA 3.. Let L be the S-glued sum of the sublattices L_s , $s \in S$. If the interval [v, u] of L is a projective geometry then there exists an L, such that $[v, u] \subset$ L_s .

PROOF.. By the definition of the S-glued sum $v \leq u$ iff there exist a sequence $v = x_0, x_1, \ldots, x_n = u$ of elements of L and a sequence s_0, \ldots, s_n of elements of S such that $s_i \leq s_{i+1}$ in S and $x_{i-1} \leq x_i$ in L_{s_i} , $i = 1, 2, \ldots, n$. Then $L_{s_i} \cup L_{s_{i+1}}$ is a sublattice of L, the Hall-Dilworth gluing of L_{s_i} and $L_{s_{i+1}}$. Obviously, $[v, u] \cap (L_{s_i} \cup L_{s_{i+1}})$ is a projective geometry. Therefore it is enough to prove that projective geometries are indecomposable with respect the Hall-Dilworth gluing. Let I be a proper ideal of the projective geometry P. Then P has an atom p which is not contained in I. Let r be an arbitrary atom from I. Then exists a third atom q such that $p \vee q = p \vee r = q \vee r$, $q \in I$ would imply that $p \leq q \vee r \in I$ in contradiction to $p \notin I$. Consequently $p, q \in I$. Now, if F is a filter such that $P = I \cup F$ then $p, q \in F$ and therefore $0 = p \wedge q \in F$, i.e. F = P. This proves that P is indecomposable.

Finally, we need a lemma from G. Grätzer [3] (see p. 166).

LEMMA 4.. Let $x_0/y_0 \nearrow x_1/y_1 \searrow x_2/y_2$. Then the sublattice generated by $x_0, x_1, x_2, y_0, y_1, y_2$ is isomorphic to one of the lattices of Figure 1, Figure 2, or Figure 3.

A necessary condition

In this section we prove the following

THEOREM 5.. If the intervals [b,a] and [d,c] are projective blocks of L and $b < b \lor c < a, d < b \land c < c$ then the CPEP fails for L.

PROOF.. Assume that $P_1 = [b, a]$ and $P_2 = [d, c]$ are projective blocks and $b < b \lor c < a, d < b \land c < c$. Under these circumstances we use the symbol $P_1 \succ P_2$ and define the distance of P_1 and P_2 as follows:

Figure 2

$$\partial(P_1, P_2) = \ell[c, b \vee c] (= \ell[b \wedge c, b]).$$

We may assume that the distance $\partial(P_1, P_2)$ is minimal, i.e. for arbitrary pair $P_1' > P_2', \delta(P_1, P_2) \le \delta(P_1', P_2')$.

We are going to define a lattice L^* and we prove that L is isomorphic to a sublattice of L^* but L has no cover-preserving embedding into L^* .

L is the S-glued sum of their blocks $B_x, x \in S$, where S is the lattice of the minimal elements of the blocks. If x is covered by y in S then the identy mapping γ_{xy} of $B_x \cap B_y$ has the domain $B_x \cap B_y \subseteq B_x$ and codomain $B_x \cap B_y \subseteq B_y$. Consider the lattice $L^{(2)}$, then $B_x^{(2)}$ is an interval of $L^{(2)}$. The intersection of $B_x^{(2)}$ and $B_y^{(2)}$ for $x - \langle y$ is just $(B_x \cap B_y)^{(2)}$, consequently we can extend γ_{xy} to an isomorphism $\bar{\gamma}_{xy}: B_x^{(2)} \to B_y^{(2)}$ with the domain $(B_x \cap B_y)^{(2)} \subseteq B_x^{(2)}$. An easy computation shows that the system $(B_x^{(2)}, x \in S)$ with the isomorphisms $\bar{\gamma}_{xy}$ from again an S-connected system. Then $L^* = \bigcup B_x^{(2)}$ is a lattice, the S-glued sum of $B_x^{(2)}$. Every $B_x^{(2)}$ is an interval of $L^{(2)}$ and L^* is a sublattice of $L^{(2)}$. By the canonical embedding $L \to L^{(2)}$ the image of L is a sublattice of L^* . We prove that L has no cover-preserving embedding into L^* . Assume that we have a cover-preserving embedding $\tau: L \to L^*$. $P_1 = [b, a]$ and $P_2 = [d, c]$ are projective geometries, i.e. simple lattices. Then the conditions $b < b \lor c < a, d < b \land c < c$ yield that $\Theta(a,b) = \Theta(c,d)$ in L. Then, the same holds for $\tau(a), \tau(b), \tau(c)$ and $\tau(d)$ in L^* . L^* is a subdirect square of L, we denote by π_1 and π_2 the corresponding projections into the components. By Lemma 3 there exist $x,y \in S$ such that $\tau(P_1) \subseteq B_x^{(2)}$ and $\tau(P_2) \subseteq B_y^{(2)}$. Then we have two projective blocks $[v,u] \subseteq B_x, [z,w] \subseteq B_y$ such that $\tau(P_1) \subseteq [v,u]^{(2)}$ and $\tau(P_2) \subseteq [v,w]^{(2)}$.

Figure 3

Then either

$$\pi_1(\tau(a)) = \pi_1(\tau(b)), \ \pi_1(\tau(c)) = \pi_1(\tau(d)), \ \pi_2(\tau(a))$$

$$\neq \pi_2(\tau(b)), \ \pi_2(\tau(c)) \neq \pi_2(\tau(d))$$

or conversely. By Lemma 2 we may assume that $\tau(P_1)$ and $\tau(P_2)$ are the following intervals:

$$Q_1 = \tau(P_1) = [(t, t), (t, u)] \subseteq B_x^{(2)}$$
 for some $t, v \le t \le u$,

$$Q_2 = \tau(P_2) = [(s, s), (s, w)] \subseteq B_y^{(2)}$$
 for some $s, z \le s \le w$.

The condition $Q_1 \succ Q_2$ means:

$$(t,t) < (t,t) \lor (s,w) < (t,u) \text{ and } (s,s) < (t,t) \land (s,w) < (s,w)$$

where s < t and w < v. Then $(t,t) \lor (s,w) = (t,t \lor w) < (t,u)$ gives $t \lor w < u$ and $(t,t) \land (s,w) = (s,t \land w) > (s,s)$ implies $t \land w > s$. From $(t,t) < (t,t \lor w)$ we get $t < t \lor w$. The conditions $t < t \lor w < u, s < t \land w$ imply that the intervals $P_1' = [v,u]$ and $P_2' = [z,w]$ satisfy $P_1' \succ P_2'$ in L.

Now, determine $\partial(Q_1,Q_2)$. By the definition of δ , $\partial(Q_1,Q_2)=\ell[(s,w),(t,t\vee w)]$. Since $(s,w)\leq (s,t\vee w)\leq (t,t\vee w)$ we have $\ell[(s,w),(t,t\vee w)]=\ell[(s,w),(s,t\vee w)]+\ell[(s,t\vee w),(t,t\vee w)]=\ell(w,t\vee w)+\ell(s,t)$ (the last expression is in L). But $\ell[s,t]=\ell[s,t\wedge w]+\ell[s,t\wedge w]$. From $s< t\wedge w$ we obtain $\ell[s,t\wedge w]>0$, i.e. $\partial(Q_1,Q_2)=2\ell[w,t\vee w]+\ell[s,t\wedge w]>\ell[w,t\vee w]=\partial([v,u],[z,w])=\partial(P_1',P_2')$.

By the minimality of $\delta(P_1, P_2)$, $\partial(P_1, P_2) \leq \partial(P_1', P_2') < \partial(Q_1, Q_2)$, i.e. τ is not a cover-preserving embedding. This contradiction proves the theorem.

COROLLARY 6.. If L has the CPEP and $b \prec a$ then there exists exactly one projective block which contains a and b.

PROOF.. Let us call the elements a and b perspective, in symbol $a \sim b$, iff they have a common complement in the interval $[a \wedge b, a \vee b]$. It is well-known that

a finite complemented modular lattice is a projective geometry iff any two atoms are perspective. Define

$$b^* = \left\{ \begin{array}{ll} \sup\{p,p > -b, p \sim a\} & \text{ if } b < 1 \\ 1 & \text{ if } b = 1 \end{array} \right.$$

and

$$b^{*+} = \begin{cases} \inf\{q, q \ \ -\!\!\!< b^*, q \sim r \text{ where } b \leq r \ \ -\!\!\!< b^*\} & \text{if } b^* > 0 \\ 0 & \text{if } b^* = 0 \end{cases}$$

Similarly, we define a^+ and a^{+*} (see Ch. Herrmann [4]). Then $[a^+, a^{+*}]$ and $[b^{*+}, b^*]$ are two projective blocks, which contain a and b. It is easy to see that $[a^+, b^*]$ is the Hall-Dilworth gluing of these two projective blocks. By Theorem 5 these blocks coincide, which proves that the projective block containing a and b is uniquely determined.

COROLLARY 7.. Assume that L has the CPEP. Let [b,a] and [d,c] be projective blocks. Let us assume that $b \leq b_1 - < a_1 \leq a, d \leq d_1 - < c_1 \leq c$ and $a_1/b_1 \sim c_1/d_1$. Then either $[b,a] \sim_w [d,c]$ or $[d,c] \sim_w [b,a]$.

PROOF.. If $c_1/d_1 \nearrow a_1/b_1$ then $b \lor c = b$, i.e. $b \ge c$ would imply that $b_1 \ge b \ge c \ge c_1$, i.e. $b_1 \lor c_1 = b_1$ in contradiction to $b_1 \ne a_1 = b_1 \lor c_1$. Similarly $b \land c < c$. Then by Theorem 5 either $b \lor c = a$ or $b \land c = c$. This is equivalent either to $[b, a] \sim_w [d, c]$ or to $[d, c] \sim_w [b, a]$.

4. Proof of Theorem 1

Assume that L has the CPEP with respect to M. By congruence distributivity it is enough to prove that all L/Θ' are projective geometries, where each Θ' is the complement of some atom Θ of the congruence lattice Con (L). For any given atom Θ consider a projective block of maximal length contained in some Θ -class. With other words we consider an interval [b,a] of L which satisfies the following properties: (1) $a \equiv b(\Theta)$; (2) [b,a] is a projective block; (3) if [d,c] is a projective block and $c \equiv d(\Theta)$ then $\ell[d,c] \leq \ell[b,a]$.

We are going to prove that $L/\Theta' \simeq [b,a]$. It is enough to show that the complement of Θ is just $\Theta' = \Theta(0,b) \vee \Theta(a,1)$. Θ is an atom and [b,a] as a projective geometry is a simple lattice, which imply $\Theta = \Theta(a,b)$. We have to prove that $\Theta(a,b) \wedge \Theta(0,b) = \Theta(a,b) \wedge \Theta(a,1) = \omega$.

Consider a prime quotient u/v such that $u/v \approx a'/b'$, $u, v \notin [b, a]$ for a subquotient a'/b' of a/b. Let $[b_2, a_2]$ be the projective block which contains u and v. We prove that either $[b_2, a_2] \sim_w [b, a]$ or there exists a projective block $[b_1, a_1]$ such that the sublattice \bar{A} generated by the elements a, a_1 , a_2 , b, b_1 , b_2 is the lattice of Figure 4. $a'/b' \approx u/v$ means that there exists a normal sequence of perspectivites: $a'/b' = x_0/y_0 \sim x_1/y_1 \sim \cdots \sim x_n/y_n = u/v$ such that for each i with 0 < i < n either $x_{i-1}/y_{i-1} \nearrow x_i/y_i \searrow x_{i+1}/y_{i+1}$ or $x_{i-1}/y_{i-1} \searrow x_i/y_i \nearrow x_{i+1}/y_{i+1}$ and $x_i = x_{i-1} \lor x_{i+1}$ in the first case and $y_i = y_{i-1} \land y_{i+1}$ in the second (see G. Grätzer [3], p.164). We prove the previous statement by induction on n. If n = 1, then either $u/v \nearrow a'/b'$ or $u/v \searrow a'/b'$ and u/v is a subquotient of a_2/b_2 .

By Corollary 7 we have $[b,a] \sim_w [b_2,a_2]$ or $[b_2,a_2] \sim_w [b,a]$. But by the choice of a,b $\ell[b,a] \geq \ell[b_2,a_2]$, i.e. in the first case we have $[b,a] \sim [b_2,a_2]$. We obtain in both cases $[b_2,a_2] \sim_w [b,a]$.

Figure 4

Let us consider the n=2 case. We may assume that $[b_2,a_2]$ is not weakly perspective into [b,a]. Let $[b_1,a_1]$ be the projective block which contains x_1,y_1 . Then by Corollary 7 and by the n=1 case we have $[b_1,a_1]\searrow_w [b,a]$ (or $[b_1,a_1]\nearrow_w [b,a]$) and either (i) $[b_1,a_1]\searrow_w [b_2,a_2]$ or (ii) $[b_2,a_2]\nearrow_w [b_1,a_1]$. We discuss these two cases.

(i) By our assumption $x_0/y_0 \sim x_1/y_1 \sim x_2/y_2$ is a normal sequence, hence we have $x_1 = x_0 \vee x_2$. This gives $a \vee a_2 = (a \vee x_0) \vee (x_2 \vee a_2) = a \vee (x_0 \vee x_2) \vee a_2 = a \vee x_1 \vee a_2 = (a \vee x_1) \vee (x_1 \vee a_2) = a_1 \vee a_1 = a_1$; which proves that $a/a \wedge b_1 \sim a_1/b_1 \sim a_2/a_2 \wedge b_1$ is again a normal sequence of perspectivites. Now, we apply Theorem 5. If $a, a_1, a_2, a \wedge b_1, b_1, a_2 \wedge b_1$ would generate a non distributive sublattice (Figure 2 or Figure 3) then $[b_1, a_1]$ and the diamond would generate a projective geometry P such that $[b_1, a_1] \neq P$, in contradiction to our assumption $[b_1, a_1]$ is a projective block. This proves that a, b_1, a_2 generate the eight element boolean algebra (see Figure 1), consequently $a/a \wedge b_1 \searrow a \wedge a_2/a \wedge a_2 \wedge b_1 \nearrow a_2/a_2 \wedge b_1$.

We prove that $b_2 = a_2 \wedge b_1$, i.e. $[b_2, a_2] \nearrow_w [b_1, a_1]$ as in case (ii). Indeed, if $b_2 < a_2 \wedge b_1$ then $a \wedge b_2 < a \wedge a_2 \wedge b_1$. $[a \wedge b_2, a \wedge a_2]$ and $[b \wedge a_2, a \wedge a_2]$ are projective geometries and their intersection contains the projective geometry $[a \wedge a_2 \wedge b_1, a \wedge a_2]$. This implies that $[b \wedge b_2, a \wedge a_2]$ is again a projective geometry. The definition of [b, c] and Corollary 7 imply $[b \wedge b_2, a \wedge a_2] \nearrow_w [b, a]$. We claim that, for $x, y \in [b \wedge b_2, a \wedge a_2] \ b \lor x \neq b \lor y$. Since $b \lor (a \wedge b_2) = a \wedge (b \lor b_2) = a \wedge b_1 = b \lor (a \wedge a_2 \wedge b_1)$ and $a \wedge a_2 \wedge b_1 \neq a \wedge b_2$, we have a contradiction.

(ii) We have $[b_2, a_2] \nearrow_w [b_1, a_1]$. Then obviously $a \wedge (b_1 \vee a_2)/a \wedge a_1 \sim b_1 \vee a_2/b_1 \sim a_2/b_2$ is a normal sequence. The same argument as in case (i) yields that $a \wedge (b_1 \vee a_2)$, b_1 and b_2 generate the eight element boolean algebra, and $a_2/b_2 \searrow a \wedge a_2/a \wedge b_2 \nearrow a \wedge (b_1 \vee a_2)/a \wedge b_1$. This proves that the lattice generated by a, a_1, a_2, b, b_1, b_2 is just A (see Figure 4).

If n=3, then either $[b_3,a_3] \searrow_w [b_2,a_2]$ or $[b_2,a_2] \nearrow_w [b_3,a_3]$. Observe that $a_2/b_2 \sim a \wedge a_2/a \wedge a_2 \wedge a_1$, i.e. we have $[b_3,a_3] \searrow_w [a \wedge a_2 \wedge a_1,a \wedge a_2]$ or $[a \wedge a_2 \wedge a_1,a \wedge a_2] \nearrow [b_3,a_3]$ which is the n=2 case.

The given characterization of $\Theta = \Theta(a, b)$ yields that if $a \le v \le u$ (or similarly if $v \le u \le b$) then $u \equiv v(\Theta(a, b))$ implies u = v, i.e. $L/\Theta' \cong [a, b]$.

REFERENCES

- [1] A. DAY, and Ch. HERMANN, Gluings of Modular Lattices, Order 5 (1988), 85-101.
- [2] E. FRIED, and G. GRÄTZER, and H. LAKSER, Projective geometries as coverpreserving sublattices, Algebra Universalis (to appear).
- [3] G. GRÄTZER, General Lattice Theory Academic Press New York N. Y.; Birkhäuse Verlag, Basel; Akademie Verlag, Berlin, 1987.
- [4] Ch. HERRMANN, S-verklebte Summen von Verbändern, Math. Z. 130 (1973), 255–274. MR 49:7195

(Received November 23, 1988)

MATHEMATICAL INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES, H-1364 BUDAPEST, Pr. 127.