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COVER-PRESERVING EMBEDDING

E. T. SCHMIDT”* Budapest

1. Introduction

A finite lattice K has the cover-preserving embedding property, abbreviated
as CPEP with respect a variety V of lattices, if whenver K can be embedded into
a finite lattice L in V, then K has a cover-preserving embedding into L, that is
an embedding ¢ with the property that if a covers b in K then ¢(a) covers o(b)
in L. This concept was introduced by E. Fried, G. Gratzer and H. Lakser in [2],
and it was proved that a finite projective geometry P (i.e. a simple complemented
modular lattice) has the cover-preserving embedding property with respect to the
variety M of all modular lattices if and only if one of the following three conditions
hold:

(i) the length of P is 1;
(ii) the length of P is 2 and P is isomorphic to M3;
(iii) the length of P is greater than 2 and either P is non-arguesian or P is arguesian
and for some prime p, each interval of P of length 2 contains p + 1 atoms.
In this note we prove the following:

THEOREM 1.. If a finite modular lattice L has the CPEP with respect to M
then L is the subdirect product of projective geometries of type (i)-(iii).

2. Preliminaries

All lattices considered in this paper are finite modular lattices. First we need
some definitions (see G. Gratzer [3]). We shall say that a/b is perspective to ¢/d,
and write a/b ~ ¢/d if either b = aAd,c=aVdora=bVe,d=>bAc. Inthe
first case we write a/b /" ¢/d and we write a/b \, ¢/d in the second case. If for
some natural number n there exist a/b =eq/fo ~ e1/fi ~ -+ ~ en/fn = ¢/d, we
shall say that a/b is projective to c¢/d. This will be denoted by a/b ~ ¢/d. We write
¢/d \w a/biff b < d and ¢ = a V d; similarly, ¢/d /ya/biffc<aandd=bAc.
If ¢/d /'wafbor ¢/d \w a/b, then ¢/d is weakly perspective into a/b, in symbols
¢/d ~y a/b. If for some natural number n and ¢/d = eo/fo,e1/f1,...,en/fn = a/b
we have e;/f; ~u €i41/fi+1,1=0,...,n ~ 1 then c/d is weakly projective into a/b,
in symbol, ¢/d ~,, a/b.

The well-known Hall-Dilworth gluing of a filter and ideal was extended in [4]
by Ch. Herrmann. This construction is called the S-glued sum, where S is a lattice
of finite length. The definition is based on the following concept. Let S be a lattice.
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An S-connected system is an S-indexed system of bounded lattices (L.;z € S)
together with lattice isomorphisms ., for each £ <y in & satisfying
(1) ¥zy has as domain, a (possibly empty) filter Gy, C L. and as codomain, a
(possibly empty) ideal Jy C Ly;
(2) Yoo =1z,,and for 2 <y < 2z Yyo¥oy = Yoz;
(3) Gx,xl\y N Gy,x;\y g Gx\iy,zj\y and Jx’zvy N Jg,xVy g Jx}\y’gvy for all r,yE S,
(4) for all z < y in S there exists a sequence z = 25 < --- < z, = y with
Gz.‘,zi-q.; '-Ié 9
Let L be a lattice, and let (L;;z € S) be a system of sublattices of L such
that (Ly;z € S) is an S-connected system, where for z < y, L N Ly = Gy C
Ly, L. N Ly, = Jzy C L, and 7y is the identy map on L, N L,. We say that L
is the S-glued sum of L,, s € §. If (L;;z € §) is an S-connected system then
L = UL, is a lattice, the S-glued sum of L,. A maximal complemented interval of a
finite modular lattice is called a block. The minimal elements of the blocks form a
lattice S, we may assume that the blocks B, are indexed by its minimal elements,
i.e. € §. The main result of [4] asserts that a finite (or of finite length) modular
lattice is the S-glued sum of the blocks B;.
Let L be a lattice. L is the set of all pairs (t;,¢) such that £;,¢ € L and
t; < t3. L is a sublattice of L2, it is a subdirect power of L. If t € L then
t — ¢ = (t,t) is the canonical embedding of L into L(?). If [b, a] is a prime interval
of L then the corresponding interval [5,d] of L(?) is the three element chain. A
maximal irreducible, complemented interval is called a projective block.
The length of an interval [b, a] will be denoted by £[b,a]. A cover-preserving
sublattice is a sublattice for wich the identy map is a cover-preserving embedding.

LEMMA 2.. Let P be a finite non-distributive projective geometry. An interval
[v,u] of P(® is a projective block if and only if

[v,u] = { [(0,5),(s,5)] where £[0,s] > 1 in P, or
TG, (1)) where £]t,1] > 1 in P.

PRrRoOF.. The mapping ¢1 : ¢ — (0,z) is of course a cover-preserving em-
bedding of P into P(?) and ;(P) is the interval [(0,0),(0,1)], i.e. this interval
is isomorphic to P. (t,t) A (0,1) = (0,¢) and (t,t) vV (0,1) = (¢,1) imply that
[(¢, ), (¢, 1)] ~ [(0,%),(0,1)]. Since [(0,),(0,1)] is an interval of ¢;(P) of length
greater than 1, it is a non distributive projective geometry. Similarly, ¢, :— (z,1)
is an embedding of P intc P(® and ¢2(P) = [(0,1),(1,1)]. Then [(0,s),(s,s)] is
weakly perspective into [(0,1),(1,1)], i.e. it is a projective geometry. Let [v, u] be a
non-distributive projective geometry, P(?) is the subdirect square of P and [v, u] is
subdirect irreducible, i.e. if v = (v, v2), v = (u1, uz) (v1 < vz, u1 < uy) then either
v; = u; or vy = ug. Then the maximal irreducible complemented intervals which
contains [v, u] are just the intervals given in the lemma. ]

LEMMA 3.. Let L be the S-glued sum of the sublattices L,, s € S. If the
interval [v, u] of L is a projective geometry then there exists an L, such that [v,u] C

8-
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ProoF.. By the definition of the S-glued sum v < u iff there exist a sequence
v =Zg,%1,...,%n = v of elements of L and a sequence s, ..., s, of elements of §
such that s; < s;41 in S and 2;_; < z;in L,;,i=1,2,...,n. Then.L,, U Ly, isa
sublattice of L, the Hall-Dilworth gluing of L,, and L,,,,. Obviously, [v,u]N(L,, U
L,.,,) is a projective geometry. Therefore it is enough to prove that projective
geometries are indecomposable with respect the Hall-Dilworth gluing. Let I be a
proper ideal of the projective geometry P. Then P has an atom p which is not
contained in I. Let r be an arbitrary atom from I. Then exists a third atom ¢ such
that pVg¢=pVr=¢qVr. ¢ € I would imply that p < ¢ Vr € I in contradiction to
p € I. Consequently p,q € I. Now, if F is a filter such that P = TUF then p,q€ F
and therefore 0 = pAg € F,i.e. F = P. This proves that P is indecomposable. W

Finally, we need a lemma from G. Gratzer [3] (see p. 166).

LEMMA 4.. Let zo/yo / z1/y1 \\ z2/y2. Then the sublatiice generated by
Zo, T1, T2, Yo, Y1, Y2 15 isomorphic to one of the lattices of Figure 1, Figure 2, or
Figure 8. :

I
Y

Zo T2

Yo Y2

Figure 1

A necessary condition

In this section we prove the following

THEOREM 5.. If the intervals [b,a] and [d,c] are projective blocks of L and
b<bVe<a,d<bAc<cthen the CPEP fails for L.

PROOF.. Assume that P, = [b,a] and P, = [d, c] are projective blocks and
b<bVe<a,d<bAc<c. Under these circumstances we use the symbol PP
and define the distance of P, and P, as follows:
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1

n

To 2

Yo Y2

Figure 2

(P, Py) = £[c,bV c)(= £[b A c,b]).
We may assume that the distance 8(P;, P,) is minimal, i.e. for arbitrary pair
P > P}, 6(P1, Py) < 6(Py, Py).

We are going to define a lattice L* and we prove that L is isomorphic to a
sublattice of L* but L has no cover-preserving embedding into L*.

L is the S-glued sum of their blocks B,,z € S, where S is the lattice of the
minimal elements of the blocks. If x is covered by y in S then the identy mapping
Yzy of Bz N By has the domain B; N B, C B, and codomain B, n B, C B,.
Consider the lattice L(?), then B is an interval of L(?). The intersection of BY?
and B!(,z) for z —< y is just (B, N By)(z), consequently we can extend 7:, to an
isomorphism gy : 5,.2) — B!(,Z) with the domain (B, ﬂBy)(z) C B,(,z). An easy
computation shows that the system (B,(,z), z € S) with the isomorphisms ¥,y from
again an S-connected system. Then L* = UB®? is a lattice, the S-glued sum of

B, Every B® is an interval of L(®) and L* is a sublattice of L(?). By the canonical
embedding L — L(?) the image of L is a sublattice of L*. We prove that L has
no cover-preserving embedding into L*. Assume that we have a cover-preserving
embedding 7 : L — L*. P, = [b,a] and P, = [d,c] are projective geometries,
i.e. simple lattices. Then the conditions b < bV ¢ < a,d < bAc < c yield that
O(a,b) = ©(c,d) in L. Then, the same holds for r(a), 7(b), 7(c) and 7(d) in L*. L*
is a subdirect square of L, we denote by m, and =, the corresponding projections
into the components. By Lemma 3 there exist z,y € S such that 7(P;) C Bg) and
(P) C B!(,z). Then we have two projective blocks [v,u] C Bs,[z,w] C By such
that 7(P;) C [v,u](z) and 7(P;) C [, w](z).
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Zo 2
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Figure 8

Then either
m1(7(a)) = mi(7 (b)), m1(r(c)) = m(7(d)), m2(r(a))
# ma(7(b)), m2(7(c)) # ma(r(d))

or conversely. By Lemma 2 we may assume that 7(P;) and 7(P;) are the following
intervals:

Q1 =7(P) =[(t,1),(t,u)] C B® forsome t, v<t<u,

Q2 =1(P) =[(s,9),(s,w)] C B;z) for some s, z < s < w.
The condition @; > @2 means:
(t,t) < (t,t) V(s,w) < (t,u) and (s,s) < (¢,t) A (s,w) < (5,w)

where s < t and w < v. Then (t,t) V (s,w) = (t,t Vw) < (t,u) givest Vw < u
and (t,t) A (s,w) = (s,t Aw) > (s,s) implies t Aw > s. From (t,t) < (t,tV w)
we get t <tV w. The conditions t <tV w < u,s < t A w imply that the intervals
P| =[v,u] and P, = [z, w] satisfy P{ > P} in L.

Now, determine 8(Q1,Q2). By the definition of §, 3(Q1, @2) = £[(s, w), (¢,tV
w)]. Since (s,w) < (s,tVw) < (t,tV w) we have £[(s, w), (¢,t Vw)] = £[(s, w), (5,tV
w)] +£(s,t Vw),(t,tVw)] = £€(w,tVw)+ {(s,t) (the last expression is in L). But
{s,t] = {[s,t Aw]+ £[s,t Aw]. From s < t A w we obtain {[s,t A w] > 0, ie.
0(Q1,Q2) = 24[w,t V w] + {[s,t Aw] > £w,t V w] = d([v, u], [z, w]) = (P, P}).

By the minimality of 6( Py, Py),0(P1, P;) < O(P{, P;) < 8(Q1,Q2), i.e. Tis
not a cover-preserving embedding. This contradiction proves the theorem. n

COROLLARY 6.. If L has the CPEP and b —< a then there ezists exactly one
projective block which contains a and b.

PrOOF.. Let us call the elements a and b perspective, in symbol a ~ b, iff
they have a common complement in the interval [a A b,a V b]. It is well-known that
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a finite complemented modular lattice is a projective geometry iff any two atoms
are perspective. Define

B — sup{p,p> bp~a} ifb<1
11 ifb=1

and
et — { inf{g,q < b*,g~rwhereb<r < b*} ifd*>0

0 ifo* =0

Similarly, we define at and a** (see Ch. Herrmann [4]). Then [a*,a**] and
[6*t,b*] are two projective blocks, which contain a and b. It is easy to see that
[a*,?*] is the Hall-Dilworth gluing of these two projective blocks. By Theorem 5
these blocks coincide, which proves that the projective block containing a and b is
uniquely determined. [ |

COROLLARY 7.. Assume that L has the CPEP. Let [b,a] and [d,c] be pro-
jective blocks. Let us assume that b < by —< a1 < a,d < dy —< ¢; < ¢ and
a1/by ~ ¢1/dy. Then either [b,a] ~y [d,c] or [d,c] ~y [b, a].

ProoF.. If ¢;/dy / a1/b; then bV e = b, i.e. b > ¢ would imply that
by > b>c>ec1,ie by Ve = by in contradiction to b; # a3 = by V cy. Similarly
bAc < c¢. Then by Theorem 5 either bV ¢ = a or b A ¢ = ¢. This is equivalent either
to [b,a] ~y [d,c] or to [d,c] ~y [b,a] . X |

4. Proof of Theorem 1

Assume that L has the CPEP with respect to M. By congruence distributivity
it is enough to prove that all L/©’ are projective geometries, where each ©’ is the
complement of some atom © of the congruence lattice Con (L). For any given
atom O consider a projective block of maximal length contained in some O-class.
With other words we consider an interval [b,a] of L which satisfies the following
properties: (1) a = 5(0); (2) [b, a] is a projective block; (3) if [d, c] is a projective
block and ¢ = d(6) then £[d, ¢] < £[b, a}.

We are going to prove that L/©' ~ [b,a]. It is enough to show that the
complement of O is just ©' = ©(0,b) vV O(a,1). O is an atom and [b,a] as a
projective geometry is a simple lattice, which imply © = ©(a, ). We have to prove
that ©(a,b) A 6(0,b) = O(a,b) AO(a,1) = w.

Consider a prime quotient u/v such that u/v ~ a//V',u,v ¢ [b, a] for a sub-
quotient a’/b’ of a/b. Let [by,as] be the projective block which contains u and v.
We prove that either [by, as] ~, [}, a] or there exists a projective block [b;, a1] such
that the sublattice A generated by the elements a, ay, a3, b, by, b, is the lattice of
Figure 4. a’/b’ =~ u/v means that there exists a normal sequence of perspectivites:
a' /b = zo/yo ~ z1/y1 ~ -+ ~ zn/yn = u/v such that for each i with 0 < i < n
either z;_1/¥i—1 / 2i/¥i \, Tis1/¥i41 OF i1 /yic1 \ Zi/¥%i /" Ziy1/¥i41 and
z; = z;_1V zi41 in the first case and y; = yi_1 A yi41 in the second (see G. Gratzer
[3], p.164). We prove the previous statement by induction on n. If n = 1, then
either u/v / a’/¥ or u/v \, a’/b’ and u/v is a subquotient of a3 /b,.
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By Corollary 7 we have [b, a] ~, [b2, a2] or [b2,a3] ~,, [b, a]. But by the choice
of a,b £[b,a] > £[by, ay], i.e. in the first case we have [b, a] ~ [by, a3]. We obtain in
both cases [by, ag] ~y [b,a]. ,

a3

b1 Vas

aA (b Vag) as

aAb by

alag

aAbsy

AN

by A by

Figure 4

Let us consider the n = 2 case. We may assume that [y, az] is not weakly
perspective into [b,a]. Let [by,a;] be the projective block which contains z,y;.
Then by Corollary 7 and by the n = 1 case we have [b;,a1] \\w [b, @] (or [b1,01] /&
[b,a]) and either (i) [b1,a1] \w [b2, a2] or (ii) [b3, az] A [b1,@1]. We discuss these
two cases.

(1) By our assumption zg/yo ~ 21/y1 ~ Z2/y> is a normal sequence, hence we
have z1 = 2oV z2. ThisgivesaVaz = (aV o) V(z2Vaz) =aV(zgVza)Vay =
aVriVaz = (aVzy)V(z1Vaz) = a1 Vay = a;; which proves that a/aAby ~ a;/b; ~
ap/az Ay is again a normal sequence of perspectivites. Now, we apply Theorem 5.
If a, a1, a2, a Aby, by, az A by would generate a non distributive sublattice (Figure 2
or Figure 3) then [b;,a;] and the diamond would generate a projective geometry
P such that [b1,a;] # P, in contradiction to our assumption [by, a;] is a projective
block. This proves that a, by, a, generate the eight element boolean algebra (see
Figure 1), consequently a/a Ab; \JaAas/ahasAby S az/ay Aby.
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We prove that b; = a3 A by, i.e. [bs,a2] /4 [b1,a1] as in case (ii). Indeed,
if b < a3 Aby then a Aby < aAaz Aby. [aAby,aAaz] and [b A az,a A ay]
are projective geometries and their intersection contains the projective geometry
[aAazAby, aAaz]. This implies that [bAb2, aAay) is again a projective geometry. The
definition of [b, c] and Corollary 7 imply [bA b2, a A a3] /4, [b,a]. We claim that, for
z,y € [bAbz, aAas] bVz # bVy. Since bV(anby) = aA(bVbdz) = aAb; = bV(aAazAby)
and a A az Ab; # a A by, we have a contradiction.

(ii) We have [bz,a3] A, [b1,a1]. Then obviously a A (b V az)/a A a; ~
b1 V az/b; ~ az/b; is a normal sequence. The same argument as in case (i) yields
that aA (b Va3), by and by generate the eight element boolean algebra, and az/b; \,
aAaz/aAby / aA(biVaz)/aAb;. This proves that the lattice generated by a, a;,
az, b, by, bs is just A (see Figure 4).

If n = 3, then either [bs,as] \w [b2,a2] or [b2,a2] A [bs3,a3). Observe
that az/bs ~ a A az/a A az A ay, i.e. we have [b3,as] \\u [@ A az Aaj,aAay] or
[a Aaz Aay,aAay) / [bs,as] which is the n = 2 case.

The given characterization of © = O(a, b) yields that if a < v < u (or similarly
if v < 4 <b) then u = v(O(a, b)) implies u = v, i.e. L/O' = [a,)].
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