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Polynomial automorphisms of lattices

E. TAMAs SCHMIDT*

Abstract. A polynomial automorphism of a lattice is a unary lattice polynomial f(z)
for which the mapping =z — f{z) is an automorphism. It is proved that every bounded
lattice with a finite automorphism group can be embedded as an ideal in a lattice K
such that each automorphism of K is polynomial and there is a bijection between the
automorphism groups of L and K.
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1. Introduction. Ervin Fried and Harry Lakser [1] defined the concept of a poly-
nomial automorphism of a lattice as a unary lattice polynomial f(z) for which the
mapping £ — f{z) is an automorphism. They proved two theorems:

THEOREM A. Each finite lattice L can be embedded in some finite lattice K such
that the following three properties hold:

(1) Each automorphism of K is polynomial;

(2) Each automorphism of L extends to a unique automorphism of K;

(3) Each automorphism of K is the extension of an automorphism of L.

For infinite lattices they could prove a weaker result:

THEOREM B. Each lattice L can be embedded as a convex sublattice in some lattice
K such that every automorphism of L is the restriction of a unary polynomial function
on K. If L has a 0 then this embedding is an ideal.

In this paper first we prove a little stronger version of Theorem A; the proof is
slightly shorter then the original proof,

THEOREM 1. Each finite lattice L can be embedded as a maximal filter (or maximal
ideal) in some finite simple and atomistic lattice K such that the properties (1), (2)
and (3) of Theorem A hold.

The main result of this paper is the generalization of Theorem A for arbitrary lattice
having finite automorphism group:

THEOREM 2. Let L be a bounded lattice with a finite automorphism group. L can
be embedded as an ideal in some lattice K such that the properties (1), (2) and (3)
of Theorem A hold.

If & € Aut L then a congruence relation 8 of L is called a—admissible if z = y(6)
implies z* = y*(#) (= denotes the image of z under ). Similary if G is a subgroup
of Aut L, then 6 is called G- admissible if 8 is a—admissible for every o € G. The
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G-admissible congruence relations of L from a {0, 1} - sublattice Cong(L) of Con(L).
Assume that L is a convex sublattice of some lattice K such that a given automorphism
a of L is the restriction of a unary polynomial function f(z). A polynomial function is
compatible, consequently if § € Con(L) can be extended to K then 8 is an a—admissible
congruence relation of L. We prove the following:

THEOREM 3. Let L be a lattice. L can be embedded as a convex sublattice in some
lattice K such that the following properties hold:

(¥’) Each automorphism of L is the restriction of a unary polynomial function of
K;

(2’) Each automorphism of L extends to a unique automorphism of K;

(3’) Each automorphism of K is the extension of an automorphism of L;

(4’) Each Aut L-admissible congruence relation of L extends to a unique congruence
relation of K;

(5”) Each proper congruence relation of K is the extension of a congruence relation

of L.

2. Proof of Theorem 1. Let L be a finite lattice, with the zero element 0. We add
a new zero element 0 to L (i.e. 0 < z for all z € L), the resulting lattice is denoted
by L. Each automorphism of L extends uniquely to an automorphism of L and each
automorphism of L is the extension of an automorphism of L. For every n > 1 we
consider the following lattice S(r) (Fig. 1.)

L

Sn)

Fig. 1.

It is easy to see that S(n) is an atomistic simple lattice and has no nontrivial
automorphism. We fix n such that the length of S(n) is greater than the length of
L and we denote this S(n) shortly by S. For every u € L, u # 0, let S, be a lattice
isomorphic to S, with the isomorphism ¢, : § — Sy. Assume that S,NS, =@ ifu #v
and S, N L = §. We construct the extension K of L by gluing the lattices S,(u € L)
and L: we idenify the zero element of S, with 0 € I and the unit element of S, with
u € L. Let K be LU {Sy;u € L,u # 0}. The ordering in S, C K and L C K is the
original, all these are sublattices of K. Forz€ Sy, z¢ Landy€ L,y € Suz <y
ifu <yin L; if u £ y then z and y are incomparable and sup{z,y} = u V y (the
join in L) and inf{z,y} = 0. fz € Sy, y € Sy, u # v and z,y € L then z,y are
incomparable: sup{z,y} = u V v, inf{z,y} = 0. (See Fig. 2.)
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L is the filter [0), therefore L is a maximal filter of K. Every element of Sy is the
join of atoms, and these are atoms of K, hence K is atomistic. Assume that 6 is a
congruence relation of K and a = b(4), a > —b. We prove that § = ¢« which means
that K is simple. If a,b € S, for some u then the simplicity of S, implies u = 0(f),
therefore two different elements of L are congruent. We may assume that a,b € L.1f
a = 0 let p be the element a (in this case b = 5). Otherwise let p be an atom of S,
and consider an arbitrary ¢ € S; \ Z. Then a = b(6) implies p=pAa =pAb=0(0),
and 1=pVqg=0Vq=gq(d). S; is simple, consequently 1 = 0(6), i.e. 8 =¢.

By a theorem of Rudolf Wille [2] K is order — polynomialy complete, i.e. every
automorphism is polynomial which proves (1).

Let a be an automorphism of L (i.e. of f), andlet z€ Sy, z¢ L. Then u =0V z,
0 = 0 A z. Assume that o has an extension to K, we denote one of this by the same
letter. We conclude that u* = 0%V z* =0Vz*and 0 =0 = 0 Az® = 0Az* which
imply * € Sya. Since S has no nontrivial automorphism z is uniquely determined
(i.e. (#n(z))* = pue(z)). Conversely if we define (©n(2))* = @na(z) for z € S then
we have an extension of a to K, which proves (2).

Finally let 8 be an automorphism of K. 0 is an atom of K. hence 07 must be an
atom. By construction of K length(S) > length(Z), which implies 0 € L, i.e. 0° = 0.
If a € L then a > 0, thus af > 07 = 0, i.e. a® € L. Consequently, the restriction of g
to L is an automorphism L which proves (3).

3 Proof of Theorem 2. Let L be the given bounded lattice with the zero element u
and unit element v. Let « be a fixed automorphism of L. First we construct a lattice
To(L) such that L is an ideal of this lattice and L has a polynomial automorphism,
which is an extension of a. We start with the following lattice 7', where the principal
ideals (a;] and (a5) are isomorphic to S(2) resp. S(4) where S(n) denotes the lattice
defined in the proof of Theorem 1. This lattice is a simple atomistic lattice.

It is easy to see that T has no nontrivial automorphism. We glue one—one copies of
L into the prime intervals [0, a;], [ai41,bi] ¢ = 0,2,4, i.e. we identify O with u and a:
with v (and similarly a;41 with u,b; with v) We fix some isomorphisms @; : L — [0, 4],
U, : L — [a;41,b;] and we identify L with [0,a0], i.e. o is the identify map. Let

To(L) be theset TU  |J ([0, @] U [@iz1,b:]). We define a partial ordering on T, (L)
i=0,2,4
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Fig. 3.

which will be an extension of the ordering of T.
po(z) < W4(z) if z<y* in L,
and in the other cases:
} if <y in L.
i(v)

Then the subsets [0, a;]U[a; 41,5, [0, ai42]U[aiys, b;] are all isomorphic to L x 2. It
is easy to see that T, (L) is a lattice and has the following schematic diagram (Fig. 4.).

- ST

Fig. 4.

Let the unary polynomials f,g, h be defined by setting
fle) =

((...(ano)Val)/\ag)Vag)Vas)Aao,



-
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g(z) = ((-..(z AN a2) Vasz) Aag) Vas) Va) Aag,
h(z) = ((...(z Aaq) Vas)Aag) Va1)Vas) Aay.

By the definition of T, (L) for an arbitrary z € L (i.e. z < ao) f(z) = =%, consequently
a € Aut L is the restriction of the unary polynomial function f(z). We extend f(z)
to a polynomial automorphism of T, (L). Define the unary polynomial fo(z) in Ta(L)
by setting:

fo(z) = f(z) V(z Aaz) Vg(z) V(T Aas) V h(z) V (z A as),

then fo(z) = f(z) if z < ao and similarly f,(z) = g(z) if z < a2 and fa(z) = h(z)
for z < a4. The elements of T C T, (L) are all fixelements by fu(z).

Let 8 be an arbitrary automorphism of L. We would like to extend 8 to To(L),
such that the elements of T C To(L) remain fixed under the extension of 8. Then
(f(z))? = f(zP), consequently z*# = 2P*(z € L).That means: B can be extended to
T.(L) if & and B commute. In the other case z° must be a “new” element, therefore
we define an extension K, of T,(L), such that every polynomial automorphism of
To(L) can be extend to a polynomial automorphism of K.

Let C be the centralizer of « in G = Aut L. C = C,,C},...,Cp denote the right
cosets of C. For every C; we consider an isomorphic copy M; of T, (L) and we fix
for every ¢ an isomorphism 7; : T,(L) — M;. We identify M, with To(L). L is an
ideal of To(L) = Mo. Let L; be the image of L by 7;, then L; is an ideal of M;.
We glue together the lattices M;(¢ = 0,1,...,n) by identifying the ideals L;. Then
M;nM; =Lifi#j. Let 1; be the unit element of M; and let 1 be the unit of L,
then 1; A 1; = 1. Finally, we adjoin a new unit element I to the poset UM;. Let K,
be the poset {I} U|JM;. This K, is olviously a lattice, every M; is an ideal of K,
and if z € M, y € Mj, z,y ¢ L then zV y = I. (see Fig. 5).

Fig. 5.

We prove that K, satisfies the following three properties:

(i) o is the restriction of a polynomial automorphism of Ka;
(ii) Each (polynomial) automorphism of L extends to a unique (polynomial) auto-
morphism of K,;
(iii) Each automorphism of K, is the extension of an automorphism of L.
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Using these properties the proof of the theorem is very easy. By our assumtion
G = AutL is finite. Consider an « € G, then we have extension K, of L. f € G can
be extended to K,,, i.e. #is an automorphism of K,. We apply the same construction
starting with K, and we get the extension (K,)g. By induction we have finally an
extension K of L which satisfies (1)-(3). L is an ideal of K4, hence L is an ideal of
K.

To prove (i) let f; be the polynomial automorphism of M; which corresponds to
fa = f3 by the isomorphism 7; : To(L) — M;. Define Fa(z) = V™, fo'(z A 1;) then
the restriction of F,(z) to M; C K, is fo! consequently its restriction to L C M is
a which proves (i).

We prove (ii). Every element y & {1,r,s,t} of To(L) = Mo has a unique represen-
tation in the following form:

y=((...(zAao)Va)...)Vay  where z€ L,k<5.
If B has an extension to K, — we use same notation — then
¥ =((...(z° A ao®) vVa,P)...) varP,

which means that y® € C; where 8 € C;, hence y? = 7:(y). Let 4 be an arbitrary
automorphism of L, and let fy € C;. Then let (y?)7 = r;(y), which is an automor-
phism of K, This proves that 8 has a unique extension to K. (I is by the extension
obviously a fixelement.)

Assume that f is a polynomial automorphism of L. We prove that the extension
of § — which will be denoted again by 8 — is a polynomial automorphism of K,.
T is a sublattice of T (L) = My, i,e, we have the embedding € : T — My. Applying
the isomorphism 7; : My — M; we get the sublattices T; = r;¢(T) of M;. Obviously
T;NT; = {0,a0} if ¢ # j. Let Tp* be the sublattice |JT; U {I} of K,. Thisis a
simple atomistic lattice, consequently by [2] every automorphism of Ty, * is polynomial.
Consider the elements a;(¢ = 0,1,...,5) of T (see Fig. 3.). Let  be an arbitrary
automorphism of K, then a;7 € T}, C M}, for some k. If we apply the automorphism
B then a;"% € T; C M for some [. We discuss two different cases. First assume, that
t = 0,2 or 4, The intervals [0,a0] and [0, a;] are projective in T, (L), consequently
[0,a;7] and [0,a;7#] are projective in K. That means, we have a unary polynomial
which transposes [0, a;7] onto [0, a;#]. Now, let i = 1,3 or 5. Then the principal ideals
(ai] belong to T i.e. [0,a;”], [0,a;7”] are contained in T,*. But every automorphism
of T,* is polynomial, i.e. we have again a unary polynomial which transposes [0, a;”]
onto [0, a,-’Vﬁ]. This proves that g is a polynomial automorphism of K,.

Finally we prove (iii). Let -y be an arbitrary automorphism of K,. The unit element,
1 € L must be a fixelement of 4 (1 is the intersection of dual atoms). Consequently
the restriction of « to (1] = L is an automorphism.

4. Proof of Theorem 3. The proof is similar to the proof of Theorem 2, but we
start with an other lattice T":

The principal ideals (a;] and (a4] are isomorphic to S(2) resp S(4) where S(n) is
the lattice defined in the proof of Theorem 1. T has only the trivial automorphism and
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Fig. 6.

has exactly one non trivial congruence relation with the congruence classes {a,5;},
1 =0,...,5. Let L be the given bounded lattice, with zero element u and unit element
v. We glue one—one copies of L into the prime intervals [a;, 4;] ( = 0,....5) identifying
u with a; and v with b;. We fix the isomorphisms p; : L — [as, bi], o is the identify
map i.e. L = [ag,bo]. Let a be an automorphism of L,. The ordering relation is
defined as follows

(pt'(x) < S0£+1(y) 1= 0,2,4 if z< Yy in L
pi(z) > pisaly) 1=1,3 iff y<z in L
ve(z) < ps5(y) iff z<y* in L

We denote this poset by T,(L). It is easy to see that T, (L) is a lattice. If
f(z) = ((...(:E/\bo)Val)/\bg)vas"'\/a5/\bo

then its restriction to L is a. This f is obviously not a polynomial automorphism of
To(L).

As in the constuction given in the proof of Theorem 2 we extend T, (L) to a lattice
K,. Let C be the centralizer of « in G = AutL, and let denote C = Cy,...,C, the
right cosets. For every ¢ we consider an isomorphic copy M; of To(L) with a fixed
isomorphism 7; : To(L) — M;. Finally we identify Mo with T, (L) i.e. 7o is the identify
map. L is a convex subset of Mp. The image of L by 7; is a convex sublattice L; of
M;. We glue together the lattices M;(¢ = 0.1....,n) by identifying the sublattices L;,
then M; N M; = L if ¢ # j. Finally we adjoin a new unit I. and a new zero 0 to the
poset | J M;. Let K, be the poset {I,0} U|JM;. It is easy to see that K, is a lattice
and every M; is a convex sublattice of K. Similar to the proof of Theorem 2 we can
show:

(") o is the restriction of a unary polynomial function;

(i’) Each automorphism of L extends to an automorphism of K.

(iii’) Each automorphism of K, is the extension of an automorphism of L.

In K, every non unit congruence relation is determined by its restriction to L =

lao, bo] which proves (4’) and (5°) in the theorem.
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