Polynomial automorphisms of lattices

E. TAMÁS SCHMIDT*

Abstract. A polynomial automorphism of a lattice is a unary lattice polynomial f(x) for which the mapping $x \to f(x)$ is an automorphism. It is proved that every bounded lattice with a finite automorphism group can be embedded as an ideal in a lattice K such that each automorphism of K is polynomial and there is a bijection between the automorphism groups of L and K.

Keywords and phrases: Polynomial automorphisms, automorphism group, lattice extension. AMS-MOS subject classification: 06B15

1. Introduction. Ervin Fried and Harry Lakser [1] defined the concept of a polynomial automorphism of a lattice as a unary lattice polynomial f(x) for which the mapping $x \to f(x)$ is an automorphism. They proved two theorems:

THEOREM A. Each finite lattice L can be embedded in some finite lattice K such that the following three properties hold:

- (1) Each automorphism of K is polynomial;
- (2) Each automorphism of L extends to a unique automorphism of K;
- (3) Each automorphism of K is the extension of an automorphism of L.

For infinite lattices they could prove a weaker result:

THEOREM B. Each lattice L can be embedded as a convex sublattice in some lattice K such that every automorphism of L is the restriction of a unary polynomial function on K. If L has a 0 then this embedding is an ideal.

In this paper first we prove a little stronger version of Theorem A; the proof is slightly shorter then the original proof.

THEOREM 1. Each finite lattice L can be embedded as a maximal filter (or maximal ideal) in some finite simple and atomistic lattice K such that the properties (1), (2) and (3) of Theorem A hold.

The main result of this paper is the generalization of Theorem A for arbitrary lattice having finite automorphism group:

THEOREM 2. Let L be a bounded lattice with a finite automorphism group. L can be embedded as an ideal in some lattice K such that the properties (1), (2) and (3) of Theorem A hold.

If $\alpha \in \text{Aut } L$ then a congruence relation θ of L is called α -admissible if $x \equiv y(\theta)$ implies $x^{\alpha} \equiv y^{\alpha}(\theta)$ (x^{α} denotes the image of x under α). Similarly if G is a subgroup of Aut L, then θ is called G- admissible if θ is α -admissible for every $\alpha \in G$. The

^{*} Research supported by Hungarian National Foundation for Scientific Research grant. no. 1813.

G-admissible congruence relations of L from a $\{0,1\}$ - sublattice $Con_G(L)$ of Con(L). Assume that L is a convex sublattice of some lattice K such that a given automorphism α of L is the restriction of a unary polynomial function f(x). A polynomial function is compatible, consequently if $\theta \in Con(L)$ can be extended to K then θ is an α -admissible congruence relation of L. We prove the following:

THEOREM 3. Let L be a lattice. L can be embedded as a convex sublattice in some lattice K such that the following properties hold:

- (1') Each automorphism of L is the restriction of a unary polynomial function of K;
- (2') Each automorphism of L extends to a unique automorphism of K;
- (3') Each automorphism of K is the extension of an automorphism of L;
- (4') Each Aut L-admissible congruence relation of L extends to a unique congruence relation of K;
- (5') Each proper congruence relation of K is the extension of a congruence relation of L.
- 2. Proof of Theorem 1. Let L be a finite lattice, with the zero element 0. We add a new zero element $\overline{0}$ to L (i.e. $\overline{0} < x$ for all $x \in L$), the resulting lattice is denoted by \overline{L} . Each automorphism of L extends uniquely to an automorphism of \overline{L} and each automorphism of \overline{L} is the extension of an automorphism of L. For every $n \geq 1$ we consider the following lattice S(n) (Fig. 1.)

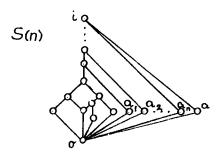


Fig. 1.

It is easy to see that S(n) is an atomistic simple lattice and has no nontrivial automorphism. We fix n such that the length of S(n) is greater than the length of \overline{L} and we denote this S(n) shortly by S. For every $u \in L$, $u \neq 0$, let S_u be a lattice isomorphic to S, with the isomorphism $\varphi_n : S \to S_u$. Assume that $S_u \cap S_v = \emptyset$ if $u \neq v$ and $S_u \cap L = \emptyset$. We construct the extension K of L by gluing the lattices $S_u(u \in L)$ and \overline{L} : we idenify the zero element of S_u with $\overline{0} \in \overline{L}$ and the unit element of S_u with $u \in \overline{L}$. Let K be $\overline{L} \cup \{S_u; u \in L, u \neq 0\}$. The ordering in $S_u \subseteq K$ and $\overline{L} \subseteq K$ is the original, all these are sublattices of K. For $x \in S_u$, $x \notin \overline{L}$ and $y \in \overline{L}$, $y \notin S_u$ $x \leq y$ iff $u \leq y$ in L; if $u \not\leq y$ then x and y are incomparable and $\sup\{x,y\} = u \vee y$ (the join in L) and $\inf\{x,y\} = \overline{0}$. If $x \in S_u$, $y \in S_v$, $u \neq v$ and $x,y \in \overline{L}$ then x,y are incomparable: $\sup\{x,y\} = u \vee v$, $\inf\{x,y\} = \overline{0}$. (See Fig. 2.)

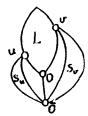


Fig. 2.

L is the filter [0], therefore L is a maximal filter of K. Every element of S_u is the join of atoms, and these are atoms of K, hence K is atomistic. Assume that θ is a congruence relation of K and $a \equiv b(\theta)$, a > -b. We prove that $\theta = \iota$ which means that K is simple. If $a, b \in S_u$ for some u then the simplicity of S_u implies $u \equiv \overline{0}(\theta)$, therefore two different elements of \overline{L} are congruent. We may assume that $a, b \in \overline{L}$. If a = 0 let p be the element a (in this case $b = \overline{0}$). Otherwise let p be an atom of S_a and consider an arbitrary $q \in S_1 \setminus \overline{L}$. Then $a \equiv b(\theta)$ implies $p = p \land a \equiv p \land b = \overline{0}(\overline{\theta})$, and $1 = p \lor q \equiv \overline{0} \lor q = q(\theta)$. S_1 is simple, consequently $1 \equiv \overline{0}(\theta)$, i.e. $\theta = \iota$.

By a theorem of Rudolf Wille [2] K is order – polynomialy complete, i.e. every automorphism is polynomial which proves (1).

Let α be an automorphism of L (i.e. of \overline{L}), and let $x \in S_u$, $x \notin \overline{L}$. Then $u = 0 \lor x$, $\overline{0} = 0 \land x$. Assume that α has an extension to K, we denote one of this by the same letter. We conclude that $u^{\alpha} = 0^{\alpha} \lor x^{\alpha} = 0 \lor x^{\alpha}$ and $\overline{0} = \overline{0}^{\alpha} = 0^{\alpha} \land x^{\alpha} = 0 \land x^{\alpha}$ which imply $x^{\alpha} \in S_{u^{\alpha}}$. Since S has no nontrivial automorphism x^{α} is uniquely determined (i.e. $(\varphi_n(x))^{\alpha} = \varphi_{u^{\alpha}}(x)$). Conversely if we define $(\varphi_n(x))^{\alpha} = \varphi_{n^{\alpha}}(x)$ for $x \in S$ then we have an extension of α to K, which proves (2).

Finally let β be an automorphism of K. 0 is an atom of K. hence 0^{β} must be an atom. By construction of K length $(S) > \text{length}(\overline{L})$, which implies $0^{\beta} \in \overline{L}$, i.e. $0^{\beta} = 0$. If $a \in L$ then $a \geq 0$, thus $a^{\beta} \geq 0^{\beta} = 0$, i.e. $a^{\beta} \in L$. Consequently, the restriction of β to L is an automorphism L which proves (3).

3 Proof of Theorem 2. Let L be the given bounded lattice with the zero element u and unit element v. Let α be a fixed automorphism of L. First we construct a lattice $T_{\alpha}(L)$ such that L is an ideal of this lattice and L has a polynomial automorphism, which is an extension of α . We start with the following lattice T, where the principal ideals $(a_1]$ and $(a_5]$ are isomorphic to S(2) resp. S(4) where S(n) denotes the lattice defined in the proof of Theorem 1. This lattice is a simple atomistic lattice.

It is easy to see that T has no nontrivial automorphism. We glue one—one copies of L into the prime intervals $[0, a_i]$, $[a_{i+1}, b_i]$ i = 0, 2, 4, i.e. we identify 0 with u and a_i with v (and similarly a_{i+1} with u, b_i with v) We fix some isomorphisms $\varphi_i : L \to [0, a_i]$, $\Psi_i : L \to [a_{i+1}, b_i]$ and we identify L with $[0, a_0]$, i.e. φ_0 is the identify map. Let $T_{\alpha}(L)$ be the set $T \cup \bigcup_{i=0,2,4} ([0, a_i] \cup [a_{i+1}, b_i])$. We define a partial ordering on $T_{\alpha}(L)$

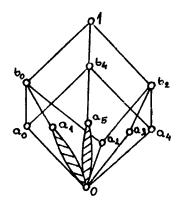


Fig. 3.

which will be an extension of the ordering of T.

$$\varphi_0(x) \leq \Psi_4(x) \quad \text{iff} \quad x \leq y^{\alpha} \quad \text{in} \quad L,$$

and in the other cases:

$$egin{array}{ll} arphi_i(x) & \leq \Psi_i(y) \ arphi_{i+2}(x) & \leq \Psi_i(y) \end{array}
ight. \quad ext{iff} \quad x \leq y \quad ext{in} \quad L \, .$$

Then the subsets $[0,a_i] \cup [a_{i+1},b_i], [0,a_{i+2}] \cup [a_{i+1},b_i]$ are all isomorphic to $L \times 2$. It is easy to see that $T_{\alpha}(L)$ is a lattice and has the following schematic diagram (Fig. 4.).

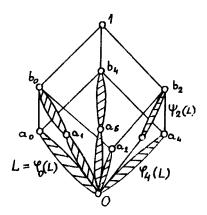


Fig. 4.

Let the unary polynomials f, g, h be defined by setting

$$f(x) = ((\dots(x \wedge a_0) \vee a_1) \wedge a_2) \vee a_3) \vee a_5) \wedge a_0$$
,

$$g(x) = ((...(x \land a_2) \lor a_3) \land a_4) \lor a_5) \lor a_1) \land a_2,$$

$$h(x) = ((...(x \land a_4) \lor a_5) \land a_0) \lor a_1) \lor a_3) \land a_4.$$

By the definition of $T_{\alpha}(L)$ for an arbitrary $x \in L$ (i.e. $x \leq a_0$) $f(x) = x^{\alpha}$, consequently $\alpha \in \text{Aut } L$ is the restriction of the unary polynomial function f(x). We extend f(x) to a polynomial automorphism of $T_{\alpha}(L)$. Define the unary polynomial $f_{\alpha}(x)$ in $T_{\alpha}(L)$ by setting:

$$f_{\alpha}(x) = f(x) \vee (x \wedge a_2) \vee g(x) \vee (x \wedge a_3) \vee h(x) \vee (x \wedge a_5),$$

then $f_{\alpha}(x) = f(x)$ if $x \leq a_0$ and similarly $f_{\alpha}(x) = g(x)$ if $x \leq a_2$ and $f_{\alpha}(x) = h(x)$ for $x \leq a_4$. The elements of $T \subseteq T_{\alpha}(L)$ are all fixelements by $f_{\alpha}(x)$.

Let β be an arbitrary automorphism of L. We would like to extend β to $T_{\alpha}(L)$, such that the elements of $T \subseteq T_{\alpha}(L)$ remain fixed under the extension of β . Then $(f(x))^{\beta} = f(x^{\beta})$, consequently $x^{\alpha\beta} = x^{\beta\alpha}(x \in L)$. That means: β can be extended to $T_{\alpha}(L)$ if α and β commute. In the other case x^{β} must be a "new" element, therefore we define an extension K_{α} of $T_{\alpha}(L)$, such that every polynomial automorphism of $T_{\alpha}(L)$ can be extend to a polynomial automorphism of K_{α} .

Let C be the centralizer of α in $G=\operatorname{Aut} L$. $C=C_0,C_1,\ldots,C_n$ denote the right cosets of C. For every C_i we consider an isomorphic copy M_i of $T_{\alpha}(L)$ and we fix for every i an isomorphism $\tau_i:T_{\alpha}(L)\to M_i$. We identify M_0 with $T_{\alpha}(L)$. L is an ideal of $T_{\alpha}(L)=M_0$. Let L_i be the image of L by τ_i , then L_i is an ideal of M_i . We glue together the lattices $M_i(i=0,1,\ldots,n)$ by identifying the ideals L_i . Then $M_i\cap M_j=L$ if $i\neq j$. Let 1_i be the unit element of M_i and let 1 be the unit of L, then $1_i\wedge 1_j=1$. Finally, we adjoin a new unit element I to the poset $\bigcup M_i$. Let K_{α} be the poset $\{I\}\cup\bigcup M_i$. This K_{α} is olviously a lattice, every M_i is an ideal of K_{α} and if $x\in M_i$, $y\in M_j$, $x,y\notin L$ then $x\vee y=I$. (see Fig. 5).

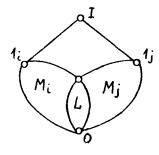


Fig. 5.

We prove that K_{α} satisfies the following three properties:

- (i) α is the restriction of a polynomial automorphism of K_{α} ;
- (ii) Each (polynomial) automorphism of L extends to a unique (polynomial) automorphism of K_{α} ;
- (iii) Each automorphism of K_{α} is the extension of an automorphism of L.

Using these properties the proof of the theorem is very easy. By our assumtion G = AutL is finite. Consider an $\alpha \in G$, then we have extension K_{α} of L. $\beta \in G$ can be extended to K_{α} , i.e. β is an automorphism of K_{α} . We apply the same construction starting with K_{α} and we get the extension $(K_{\alpha})_{\beta}$. By induction we have finally an extension K of L which satisfies (1)-(3). L is an ideal of K_{α} , hence L is an ideal of K.

To prove (i) let f_{α}^{i} be the polynomial automorphism of M_{i} which corresponds to $f_{\alpha} = f_{\alpha}^{0}$ by the isomorphism $\tau_{i}: T_{\alpha}(L) \to M_{i}$. Define $F_{\alpha}(x) = \bigvee_{i=0}^{n} f_{\alpha}^{i}(x \wedge 1_{i})$ then the restriction of $F_{\alpha}(x)$ to $M_{i} \subseteq K_{\alpha}$ is f_{α}^{i} consequently its restriction to $L \subseteq M_{0}$ is α which proves (i).

We prove (ii). Every element $y \notin \{1, r, s, t\}$ of $T_{\alpha}(L) = M_0$ has a unique representation in the following form:

$$y = ((\dots(x \land a_0) \lor a_1) \dots) \lor a_k$$
 where $x \in L, k \le 5$.

If β has an extension to K_{α} — we use same notation — then

$$y^{\beta} = ((\dots(x^{\beta} \wedge a_0^{\beta}) \vee a_1^{\beta}) \dots) \vee a_k^{\beta},$$

which means that $y^{\beta} \in C_i$ where $\beta \in C_i$, hence $y^{\beta} = \tau_i(y)$. Let γ be an arbitrary automorphism of L, and let $\beta \gamma \in C_j$. Then let $(y^{\beta})^{\gamma} = \tau_i(y)$, which is an automorphism of K_{α} This proves that β has a unique extension to K_{α} . (I is by the extension obviously a fixelement.)

Assume that β is a polynomial automorphism of L. We prove that the extension of β — which will be denoted again by β — is a polynomial automorphism of K_{α} . T is a sublattice of $T_{\alpha}(L) = M_0$, i.e., we have the embedding $\epsilon : T \to M_0$. Applying the isomorphism $\tau_i : M_0 \to M_i$ we get the sublattices $T_i = \tau_i \epsilon(T)$ of M_i . Obviously $T_i \cap T_j = \{0, a_0\}$ if $i \neq j$. Let T_{α}^* be the sublattice $\bigcup T_i \cup \{I\}$ of K_{α} . This is a simple atomistic lattice, consequently by [2] every automorphism of T_{α}^* is polynomial. Consider the elements $a_i (i = 0, 1, \ldots, 5)$ of T (see Fig. 3.). Let γ be an arbitrary automorphism of K_{α} , then $a_i^{\gamma} \in T_k \subseteq M_k$ for some k. If we apply the automorphism β then $a_i^{\gamma\beta} \in T_l \subseteq M_l$ for some l. We discuss two different cases. First assume, that i = 0, 2 or i = 0, 2 or i = 0, 3 and i = 0, 3 are projective in i = 0, 3 and i = 0, 3 and

Finally we prove (iii). Let γ be an arbitrary automorphism of K_{α} . The unit element, $1 \in L$ must be a fixelement of γ (1 is the intersection of dual atoms). Consequently the restriction of γ to (1] = L is an automorphism.

4. Proof of Theorem 3. The proof is similar to the proof of Theorem 2, but we start with an other lattice T:

The principal ideals $(a_2]$ and $(a_4]$ are isomorphic to S(2) resp S(4) where S(n) is the lattice defined in the proof of Theorem 1. T has only the trivial automorphism and

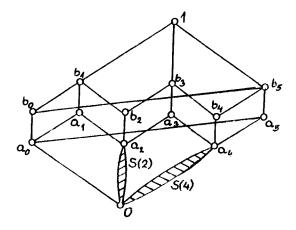


Fig. 6.

has exactly one non trivial congruence relation with the congruence classes $\{a_i, b_i\}$, i = 0, ..., 5. Let L be the given bounded lattice, with zero element u and unit element v. We glue one—one copies of L into the prime intervals $[a_i, b_i]$ (i = 0, 5) identifying u with a_i and v with b_i . We fix the isomorphisms $\varphi_i : L \to [a_i, b_i]$, φ_0 is the identify map i.e. $L = [a_0, b_0]$. Let α be an automorphism of L_{γ} . The ordering relation is defined as follows

$$\begin{array}{llll} \varphi_i(x) \leq \varphi_{i+1}(y) & i = 0, 2, 4 & \text{iff} & x \leq y & \text{in} & L \\ \varphi_i(x) \geq \varphi_{i+1}(y) & i = 1, 3 & \text{iff} & y \leq x & \text{in} & L \\ \varphi_6(x) \leq \varphi_5(y) & \text{iff} & x \leq y^{\alpha} & \text{in} & L \end{array}$$

We denote this poset by $T_{\alpha}(L)$. It is easy to see that $T_{\alpha}(L)$ is a lattice. If

$$f(x) = ((\ldots (x \wedge b_0) \vee a_1) \wedge b_2) \vee a_3 \cdots \vee a_5 \wedge b_0$$

then its restriction to L is α . This f is obviously not a polynomial automorphism of $T_{\alpha}(L)$.

As in the constuction given in the proof of Theorem 2 we extend $T_{\alpha}(L)$ to a lattice K_{α} . Let C be the centralizer of α in G = AutL, and let denote $C = C_0, \ldots, C_n$ the right cosets. For every i we consider an isomorphic copy M_i of $T_{\alpha}(L)$ with a fixed isomorphism $\tau_i: T_{\alpha}(L) \to M_i$. Finally we identify M_0 with $T_{\alpha}(L)$ i.e. τ_0 is the identify map. L is a convex subset of M_0 . The image of L by τ_i is a convex sublattice L_i of M_i . We glue together the lattices $M_i(i=0.1,\ldots,n)$ by identifying the sublattices L_i , then $M_i \cap M_j = L$ if $i \neq j$. Finally we adjoin a new unit I, and a new zero 0 to the poset $\bigcup M_i$. Let K_{α} be the poset $\{I,0\} \cup \bigcup M_i$. It is easy to see that K_{α} is a lattice and every M_i is a convex sublattice of K_{α} . Similar to the proof of Theorem 2 we can show:

(i') α is the restriction of a unary polynomial function;

£

- (ii') Each automorphism of L extends to an automorphism of K_{α} .
- (iii') Each automorphism of K_{α} is the extension of an automorphism of L.

In K_{α} every non unit congruence relation is determined by its restriction to $L = [a_0, b_0]$ which proves (4') and (5') in the theorem.

REFERENCES

- E. Fried and H. Lakser, Polynomial automorphisms of lattices, Preprint.
 R. Wille, Eine Charecterisieruny endlicher, ordnungspolynomwollständiger Verbände, Arch. Math. 28 (1977), 557-560.