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ON LOCALLY ORDER-POLYNOMIALLY COMPLETE
MODULAR LATTICES
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1. Introduction

Let L be a lattice. F(L)=L™" is the set of all k-place functions on L. If we
define pointwise meet and join operation on F,(L), then F,(L) becomes a lattice.
The elements of the sublattice P, (L) of F,(L) generated by the projections and the
constant functions will be called k-place polynomial functions on L. If feF. (L)
has the property that for every finite subset MCSL* there exists a pE€P,(L) such
that f and p coincide on M, then p is called a local polynomial function. f€ Fi(L)
is called order-preserving if a@;=b;, i=1, ...,k implies f(ay, ..., a%)=f(by, ..., by).
L is called (locally) order-polynomially complete iff every order-preserving function
on L is a (local) polynomial function.

The first characterization of finite order-polynomially complete lattices was
given in Wille [6]. For finite modular lattices he proved the following

THEOREM A. A finite modular lattice L is (locally) order-polynomially complete
if and only if L is simple and relatively complemented (i.e. an irreducible projective
geometry).

This theorem suggests the following question: is every locally order-polynomially
complete modular lattice relatively complemented? In [2], Fried proved that the
answer is ves if L has locally finite length. Our main result is a construction of a
locally order-polynomially complete modular lattice wich is not relatively comple-
mented. To prove that our example is locally order-polynomially complete we need
the following useful result of Dorninger [1]:

THEOREM B. A lattice L is locally order-polynomially complete if and only if
(1) L is simple and (2) for all a,beL, a=b and all 1-place polynomial functions
p, q with p(b)=q(a) there exists a 1-place polynomial function r such that r(a)=p(a)
and r(b)y=q(b).

It is an easy consequence of this theorem that every simple, relatively comple-
mented lattice is locally order-polynomially complete (for finite lattices see Wille [7]).

2. Preliminaries

By a 1-translation of a lattice L we mean a unary polynomial-function on L
that is either the identity function id (x) or a constant function or is obtained from
one of the two lattice operations by fixing one of the arguments. By a translation of
L we mean a unary polynomial that is the composition of 1-translations. Therefore
if #(x) is a translation but not a constant function then 7(x) may be written in the
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form 1(x)=(...((xVa,)Aa;)Va,...)Aa, where each g,6L or is the empty symbol.
We say that a translation is a unary polynomial function of degree 1. If f(x) and
g(x) are unary polynomial functions of degree n resp. m, then the degree of the
functions f(x)Vg(x) and f(x)Ag(x) is n+m.

I two intervals [a, b] and [c, 4] in a lattice are such that a=bAc¢ and d=bVc,
then each is said to be transpose (perspective) of the other. [a, b] and [c, d] are said
to be projective if there exists intervals [a, b1=[xy, yol, [X1s Yi)s---s [Xus Vul=lc, d]
such that any two successive intervals are transposes of each other. In a modular
lattice, any two projective intervals are isomorphic. A well-known property of
modular lattices (see [3], p. 133) is expressed in the following

LemMA 1. Let t(x) be a translation of a modular lattice L and let a, bEL,
a<b such that t{a)=t(b). Then there exists a proper subinterval [a’', b'] of [a, b]
such that [a@', b’) and [t (a), 1(b)] are projective.

Let D be an arbitrary distributive lattice with 0 and 1. Take the subposet of D3
consisting of all ordered triples (a, b, ¢) such that aAb=aAc=>bAc. This poset is
a modular lattice M;[D] (see Schmidt [4]). The elements i=(1,1,1), u=(1,0,0,)
»=(0,1,0), w=(0,0, 1) and 0=(0,0,0) form a diamond, M,. The interval [0, ],
i.e. the ideal {u] is isomorphic to D. Similarly, (v]=(w]=D.

Let us take two bounded lattices L, and L,. Suppose that L, has a principal
dual ideal J;, L, has a principal ideal J, and Jy=J,. Let ¢: x—x" denote this
isomorphism. We can construct a lattice L as follows: L is the set of all x¢L, and
x€L,; we identify x with x” for all x€J,; x=y has unchanged meaning if x, y€L,
or x,y€L, and x<y, x,yd¢Ji=J, iff x€L,, y€L, and there exists a z¢J such
that x<z in L;, and z=<y in L,. It is easy to see that L is a modular lattice if so
are L, and L,. This is the so-called Hall—Dilworth construction.

3. Modular lattices of finite length

By Theorem B, a locally order-polynomially complete lattice is simple. A direct
proof is the following (see Wille [7]): let ©® be a non trivial congruence relation of
L and a,b,c¢,dcL such that a$b, ¢=>d, (a,b)¢® and (c,d)§®. We define a
mapping f: L—-L by

¢, if a=x

f(x)::{d, if afx

then f is an order-preserving function and it cannot be a local polynomial function,
namely (g, b)€O but (¢, d)=(f(a), f(1))40O.

PrROPOSITION. Let p(x) be a polynomial function on a modular lattice L of
locally finite length. If the interval [u, v] is a complemented sublattice then [p(u), p(@)]
is complemented, too.

Proor. We prove this statement by induction on the degree of p(x). (The degree
of p(x) is the number of occurrences of the variable x; the constant function has
degree 0.) If p(x) has degree 1 (i.e. it is a translation) then by Lemma 1 [p(u), p(»)]
is isomorphic to a subinterval of a complemented modular lattice [y, »}, hence
[p(u), p(¥)] is complemented. Assume that the assertion is proved for polynomials
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of degree <n (n>1), and let p(x) be a polynomial function of degree n. Then p(x)
has one of the following two decompositions, p(x)=g(x)Vr(x) or p(x)=g(x)Ar(x)
where the degree of ¢ and r is less than n. Denote p(u) by s then ¢'(x)=¢(x)Vs
is a polynomial function and has the same degree as ¢. Then by our assumption
(9’ (v), ¢’ (¥)] is complemented. On the other hand ¢’ (u)=qW)Vs=q@)Vpu)=p(u)
and ¢’ (v)=q(v)Vs=g(®)Vp), hence [p(u), p(1)V q(v)] is a complemented interval
of finite length. Then the unit element (i.e. p(u)Vq(v)) is the join of atoms of this
interval. Similarly, p(1)Vr(») is the join of atoms in [p(w), p(w)Vr(v)]. We claim
that p(@=(p)Vq@)V(p@)Vr@)) is the join of atoms in [p(u), p(v)], hence
this interval is complemented.

TueorReM C (Fried [2]). Let L be a modular lattice of locally finite length.
L is locally order-polynomially complete iff each interval of L is an irreducible pro-
Jective geometry.

Proor. If each interval is an irreducible projective geometry then L is a relati-
vely complemented, simple lattice; hence L is locally order-polynomially complete.

Conversely, let us assume that L is locally order-polynomially complete. If
L is not relatively complemented then L contains a triple g, b, ¢ such that a<b<c
and b has no relative complement in [a, ¢]. Let u~< 2 be any two elements of L and
define

_fa i x=u
fx) = {c, if x%Eu

Then f(x) is an order-preserving function and by the Proposition, f cannot be a
local polynomial function. Let [a, b] be an interval of L and let ¢;, ¢, (c;%¢,) be
two atoms of [a, b]. To prove that [a, 8] is an irreducible projective geometry, it.is
enough to show that there exists an atom d of [4, b] such that ds#¢,, c;and d=c¢;Ve,.

Since L is a simple modular lattice, the intervals [g, ¢;] and [a, ¢,] are projective in
L, hence they are projective in some interval [@, b], where a=a<b=b. The interval
[@, b] is again a compiemented modular lattice of finite length, therefore [a, b] is the
direct product of irreducible projective geometries ([3], p. 212). The projectivity of
[a, ¢;] and [, ¢,] in [a, b] yields that these intervals belong to the same irreducible
component, i.e. [a, ¢;V¢,] is a subinterval of an irreducible projective geometry,
therefore there exists a 4 with a<d<c;Ve,.

4. The construction

We prove the following:

TuEOREM D. There exists a locally order-polynomially complete modular lattice
which s not relatively complemented.

Let @ be the interval [0, 1] of rational numbers. First, we define two unary
operations on Q:

2x, if Oéxé% ‘ 2x—1, if %§x§1
£ = L s=
1, of 3»«-:)(, o 0, if X <5,
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and we consider the unary algebra Q={(Q; f, g). Let id be the identity map on Q
and define f°=g°=id. Then apart from the constant maps the polynomial func-
tions on Q are of the form p(x)=gkflgk... gt f*, where k;=0, /;=0.

LEMMA 2. To each a,bcQ, a<b there exists a 1-place polynomial function
p(x) on Q such that p(a)=0 and p(b)=1.
Proor. If O=ag<b=1 then for suitable k¥ and n (n=1, k=0,...,2"° 1

a= ; k;,:l =b. Therefore if we have a p(x) such that p[%) =0 and
p(k; 1) =1 then by the order-preserving property of polynomials we get p(a)=0,
p(b)=1, i.e. we can assume that A=z and bzfzinl. We prove the lemma by
induction on n. If #=1 then we have:

o] [z1]
f: [O, > [0,1] and g: 5 1| - [0, 1].
Assume that the statement is proved for n—1. The following two cases arise:

k11 k okl
D b”Tif’ then f(a)_in———l—’ f(b)—z—n:r=1-

. . . . k
By our assumption there exists a polynomial function p(x) such that p[zn_l) =0,

p (—]2(—"1_-%] =1, thus p=pf satisfies p(a)=0, p(b)=1.

k 1 k k+1
7)) a:FE?, then g(a)=—2,,—_7—1, g(b)='2nT1'1

and we have a polynomial function p(x) such that p (—2;5—1 — 1) =0, p (k—i_—l« — 1] =1

Then p=pg satisfies p(a)=0 and p(b)=1.

Now we consider the modular lattice 44,;[Q]. The zero resp. unit of this lattice
is denoted by o resp. i. M,;[Q] has three elements u, », w such that o, u, v, w, i form
a diamond, M.

We take M,[Q] in three pairwise disjoint copies L,, L, and L;. Then oy, u, vy,
wy, i, denote the elements corresponding to o, u, v, w, { by the isomorphism M;[Q]=
=1,

Ji=[uy, #;] is a principal dual ideal of L, and J;=Q. Similarly, Jy=[0,, w:]
is a principal ideal of L, isomorphic to Q. Therefore J;=J,, we can apply the
Hall—Dilworth construction and we get the following modular lattice L; ,:
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Let S be the sublattice of L, consisting of all elements xVy where x=u,
and y=w,. The interval [o,, u,] is isomorphic to Q hence S=QXQ. Similarly,
L, contains a sublattice T:={xVy; x=u;, y=ws} isomorphic to QXQ. Con-
sequently we have an isomorphism ¢: S—T with @(u,)=u;, @(w,)=ws. Now,
we apply a gluing construction (similar to the Hall—Dilworth construction) by
identifying the corresponding elements by ¢. This construction was first defined in
[4], see Fig. 2.

Fig. 3

To prove that L is modular, we have to show that L does not contain a pentagon
generated by a, b, c. But L contains four sublattices generated by {u,, v, x; 0=x=uv5},
{u,, wy, x; 0=x=0,), {05, 0y, x;0=x=v,} and {v,, w,, x; 0=x=wv;} which are
all isomorphic to M,[Q], hence they are all modular sublattices. If L contains a
pentagon generated by 4, b, ¢ then it is easy to see that g, b, ¢ are contained in one
of these sublattices, a contradiction.

The lattice L contains the diamonds (o, 4, v, Wi, &), k=1, 2, 3. We identify
[o4, up] with Q, and define two polynomial functions on L:

F) = (Vo) Aw) Vo) Auy, - g(x) = ((xVva) Awy) Vvg) A

It is easy to show that the restrictions of these functions to Q are exactly the
functions f and g defined above.

We prove that L is locally order-polynomially complete. Let a, b€ L, a<b.
By the gluing construction there exists a ¢€L such that a=c=b and a, c€L, ,,
¢, b€L,y or conversely a,c€L,, ¢,b€L,,. On the other hand a<b implies that
either a<c or c¢<b. If a,c€L, ,, a<c then either aAuy<cAu, or aAwy<cAw,.
Similarly if ¢, b€ Ly, c¢<b then either cAuy<bAu, or cAw;<bAw,. The intervals
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[o1, u,] and [o,, w,] are projective and therefore we have a 1-place polynomial func-
tion ¢ on L such that t(a)<t(b)=u,. (The second case, a, c€L, is similar.) By
Lemma 2 there exists a polynomial function s(x) satisfying wu,=st(b), o0,=st(a).
In L we have the polynomial function d(x)=(xVwv;)Aw,; which satisfies d(u;)=ws,
d(0,)=0,. Finally let r(x)=st(x)Vdst(x), then we have

r(a) = st(@)Vdst(a) = o,Vo, = o4,
r(b) = st(b)Vdst(b) = usVd(uy) = upVwy = i,

We have to show that the conditions of Theorem B are satisfied. Indeed, let
© be a congruence relation of L such that a=b(@). Then we obtain o,=r(@)=
=r(b)=i,(@), i.e. L is a simple lattice. If p, g are arbitary 1-place polynomial func-
tions then with the given polynomial function r(x) we get condition (2). The theorem
is proved.
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