ON LOCALLY ORDER-POLYNOMIALLY COMPLETE MODULAR LATTICES

E. T. SCHMIDT (Budapest)

1. Introduction

Let L be a lattice. $F_k(L) = L^{(L^k)}$ is the set of all k-place functions on L. If we define pointwise meet and join operation on $F_k(L)$, then $F_k(L)$ becomes a lattice. The elements of the sublattice $P_k(L)$ of $F_k(L)$ generated by the projections and the constant functions will be called k-place polynomial functions on L. If $f \in F_k(L)$ has the property that for every finite subset $M \subseteq L^k$ there exists a $p \in P_k(L)$ such that f and p coincide on M, then p is called a local polynomial function $f \in F_k(L)$ is called order-preserving if $a_i \leq b_i$, $i=1,\ldots,k$ implies $f(a_1,\ldots,a_k) \leq f(b_1,\ldots,b_k)$. L is called (locally) order-polynomially complete iff every order-preserving function on L is a (local) polynomial function.

The first characterization of finite order-polynomially complete lattices was given in Wille [6]. For finite modular lattices he proved the following

THEOREM A. A finite modular lattice L is (locally) order-polynomially complete if and only if L is simple and relatively complemented (i.e. an irreducible projective geometry).

This theorem suggests the following question: is every locally order-polynomially complete modular lattice relatively complemented? In [2], Fried proved that the answer is yes if L has locally finite length. Our main result is a construction of a locally order-polynomially complete modular lattice wich is not relatively complemented. To prove that our example is locally order-polynomially complete we need the following useful result of Dorninger [1]:

THEOREM B. A lattice L is locally order-polynomially complete if and only if (1) L is simple and (2) for all $a, b \in L$, $a \le b$ and all 1-place polynomial functions p, q with p(b)=q(a) there exists a 1-place polynomial function r such that $r(a) \le p(a)$ and $r(b) \ge q(b)$.

It is an easy consequence of this theorem that every simple, relatively complemented lattice is locally order-polynomially complete (for finite lattices see Wille [7]).

2. Preliminaries

By a 1-translation of a lattice L we mean a unary polynomial-function on L that is either the identity function id (x) or a constant function or is obtained from one of the two lattice operations by fixing one of the arguments. By a translation of L we mean a unary polynomial that is the composition of 1-translations. Therefore if t(x) is a translation but not a constant function then t(x) may be written in the

Akadémiai Kiadó, Budapest Acta Mathematica Hungarica 49, 1987 form $t(x) = (...((x \lor a_1) \land a_2) \lor a_3...) \land a_n$ where each $a_i \in L$ or is the empty symbol. We say that a translation is a unary polynomial function of degree 1. If f(x) and g(x) are unary polynomial functions of degree n resp. m, then the degree of the functions $f(x) \lor g(x)$ and $f(x) \land g(x)$ is n+m.

If two intervals [a, b] and [c, d] in a lattice are such that $a=b \wedge c$ and $d=b \vee c$, then each is said to be transpose (perspective) of the other. [a, b] and [c, d] are said to be projective if there exists intervals $[a, b] = [x_0, y_0], [x_1, y_1], ..., [x_n, y_n] = [c, d]$ such that any two successive intervals are transposes of each other. In a modular lattice, any two projective intervals are isomorphic. A well-known property of modular lattices (see [3], p. 133) is expressed in the following

LEMMA 1. Let t(x) be a translation of a modular lattice L and let $a, b \in L$, a < b such that $t(a) \neq t(b)$. Then there exists a proper subinterval [a', b'] of [a, b] such that [a', b'] and [t(a), t(b)] are projective.

Let D be an arbitrary distributive lattice with 0 and 1. Take the subposet of D^3 consisting of all ordered triples (a, b, c) such that $a \land b = a \land c = b \land c$. This poset is a modular lattice $M_3[D]$ (see Schmidt [4]). The elements i = (1, 1, 1), u = (1, 0, 0, 0) v = (0, 1, 0), w = (0, 0, 1) and o = (0, 0, 0) form a diamond, M_3 . The interval [0, u], i.e. the ideal (u] is isomorphic to D. Similarly, $(v] \cong (w) \cong D$.

Let us take two bounded lattices L_1 and L_2 . Suppose that L_1 has a principal dual ideal J_1 , L_2 has a principal ideal J_2 and $J_1 \cong J_2$. Let $\varphi: x \to x'$ denote this isomorphism. We can construct a lattice L as follows: L is the set of all $x \in L_1$ and $x \in L_2$; we identify x with x' for all $x \in J_1$; $x \le y$ has unchanged meaning if $x, y \in L_1$ or $x, y \in L_2$ and x < y, $x, y \notin J_1 = J_2$ iff $x \in L_1$, $y \in L_2$ and there exists a $z \in J$ such that x < z in L_1 , and z < y in L_2 . It is easy to see that L is a modular lattice if so are L_1 and L_2 . This is the so-called Hall—Dilworth construction.

3. Modular lattices of finite length

By Theorem B, a locally order-polynomially complete lattice is simple. A direct proof is the following (see Wille [7]): let Θ be a non trivial congruence relation of L and $a, b, c, d \in L$ such that $a \not\equiv b, c > d$, $(a, b) \in \Theta$ and $(c, d) \notin \Theta$. We define a mapping $f: L \rightarrow L$ by

$$f(x) := \begin{cases} c, & \text{if} \quad a \le x \\ d, & \text{if} \quad a \not \le x \end{cases}$$

then f is an order-preserving function and it cannot be a local polynomial function, namely $(a, b) \in \Theta$ but $(c, d) = (f(a), f(b)) \notin \Theta$.

PROPOSITION. Let p(x) be a polynomial function on a modular lattice L of locally finite length. If the interval [u, v] is a complemented sublattice then [p(u), p(v)] is complemented, too.

PROOF. We prove this statement by induction on the degree of p(x). (The degree of p(x) is the number of occurrences of the variable x; the constant function has degree 0.) If p(x) has degree 1 (i.e. it is a translation) then by Lemma 1 [p(u), p(v)] is isomorphic to a subinterval of a complemented modular lattice [u, v], hence [p(u), p(v)] is complemented. Assume that the assertion is proved for polynomials

of degree $< n \ (n>1)$, and let p(x) be a polynomial function of degree n. Then p(x) has one of the following two decompositions, $p(x)=q(x) \lor r(x)$ or $p(x)=q(x) \land r(x)$ where the degree of q and r is less than n. Denote p(u) by s then $q'(x)=q(x) \lor s$ is a polynomial function and has the same degree as q. Then by our assumption [q'(u), q'(v)] is complemented. On the other hand $q'(u)=q(u) \lor s=q(u) \lor p(u)=p(u)$ and $q'(v)=q(v) \lor s=q(v) \lor p(u)$, hence $[p(u), p(u) \lor q(v)]$ is a complemented interval of finite length. Then the unit element (i.e. $p(u) \lor q(v)$) is the join of atoms of this interval. Similarly, $p(u) \lor r(v)$ is the join of atoms in $[p(u), p(u) \lor r(v)]$. We claim that $p(v)=(p(u) \lor q(v)) \lor (p(u) \lor r(v))$ is the join of atoms in [p(u), p(v)], hence this interval is complemented.

THEOREM C (Fried [2]). Let L be a modular lattice of locally finite length. L is locally order-polynomially complete iff each interval of L is an irreducible projective geometry.

PROOF. If each interval is an irreducible projective geometry then L is a relatively complemented, simple lattice; hence L is locally order-polynomially complete.

Conversely, let us assume that L is locally order-polynomially complete. If L is not relatively complemented then L contains a triple a, b, c such that a < b < c and b has no relative complement in [a, c]. Let u < v be any two elements of L and define

$$f(x) := \begin{cases} a, & \text{if } x \le u \\ c, & \text{if } x \not \le u. \end{cases}$$

Then f(x) is an order-preserving function and by the Proposition, f cannot be a local polynomial function. Let [a,b] be an interval of L and let c_1,c_2 ($c_1 \neq c_2$) be two atoms of [a,b]. To prove that [a,b] is an irreducible projective geometry, it is enough to show that there exists an atom d of [a,b] such that $d\neq c_1,c_2$ and $d\leq c_1 \lor c_2$. Since L is a simple modular lattice, the intervals $[a,c_1]$ and $[a,c_2]$ are projective in L, hence they are projective in some interval $[\bar{a},\bar{b}]$, where $\bar{a}\leq a< b\leq \bar{b}$. The interval $[\bar{a},\bar{b}]$ is again a complemented modular lattice of finite length, therefore $[\bar{a},\bar{b}]$ is the direct product of irreducible projective geometries ([3], p. 212). The projectivity of $[a,c_1]$ and $[a,c_2]$ in $[\bar{a},\bar{b}]$ yields that these intervals belong to the same irreducible component, i.e. $[a,c_1\lor c_2]$ is a subinterval of an irreducible projective geometry, therefore there exists a d with $a< d< c_1\lor c_2$.

4. The construction

We prove the following:

THEOREM D. There exists a locally order-polynomially complete modular lattice which is not relatively complemented.

Let Q be the interval [0, 1] of rational numbers. First, we define two unary operations on Q:

$$f(x) := \begin{cases} 2x, & \text{if } 0 \le x \le \frac{1}{2} \\ 1, & \text{if } \frac{1}{2} < x, \end{cases} \quad g(x) := \begin{cases} 2x - 1, & \text{if } \frac{1}{2} \le x \le 1 \\ 0, & \text{if } x < \frac{1}{2}, \end{cases}$$

Acta Mathematica Hungarica 49, 1987

and we consider the unary algebra $\mathbf{Q} = \langle Q; f, g \rangle$. Let id be the identity map on Q and define $f^{\circ} = g^{\circ} = \mathrm{id}$. Then apart from the constant maps the polynomial functions on \mathbf{Q} are of the form $p(x) = g^{k_1} f^{l_1} g^{k_2} \dots g^{k_r} f^{k_r}$, where $k_i \ge 0$, $l_i \ge 0$.

LEMMA 2. To each $a, b \in Q$, a < b there exists a 1-place polynomial function p(x) on Q such that p(a)=0 and p(b)=1.

PROOF. If $0 \le a < b \le 1$ then for suitable k and n $(n \ge 1, k = 0, ..., 2^{n-1})$ $a \le \frac{k}{2^n} < \frac{k+1}{2^n} \le b$. Therefore if we have a p(x) such that $p\left(\frac{k}{2^n}\right) = 0$ and $p\left(\frac{k+1}{2^n}\right) = 1$ then by the order-preserving property of polynomials we get p(a) = 0, p(b) = 1, i.e. we can assume that $a = \frac{k}{2^n}$ and $b = \frac{k+1}{2^n}$. We prove the lemma by induction on n. If n = 1 then we have:

$$f: \left[0, \frac{1}{2}\right] \to [0, 1]$$
 and $g: \left[\frac{1}{2}, 1\right] \to [0, 1]$.

Assume that the statement is proved for n-1. The following two cases arise:

(1)
$$b = \frac{k+1}{2^n} \le \frac{1}{2}$$
, then $f(a) = \frac{k}{2^{n-1}}$, $f(b) = \frac{k+1}{2^{n-1}} \le 1$.

By our assumption there exists a polynomial function p(x) such that $p\left(\frac{k}{2^{n-1}}\right)=0$, $p\left(\frac{k+1}{2^{n-1}}\right)=1$, thus $\bar{p}=pf$ satisfies $\bar{p}(a)=0$, $\bar{p}(b)=1$.

(2)
$$a = \frac{k}{2^n} \ge \frac{1}{2}$$
, then $g(a) = \frac{k}{2^{n-1}} - 1$, $g(b) = \frac{k+1}{2^{n-1}} - 1$

and we have a polynomial function p(x) such that $p\left(\frac{k}{2^{n-1}}-1\right)=0$, $p\left(\frac{k+1}{2^{n-1}}-1\right)=1$. Then $\bar{p}=pg$ satisfies $\bar{p}(a)=0$ and $\bar{p}(b)=1$.

Now we consider the modular lattice $M_3[Q]$. The zero resp. unit of this lattice is denoted by o resp. i. $M_3[Q]$ has three elements u, v, w such that o, u, v, w, i form a diamond, M_3 .

We take $M_3[Q]$ in three pairwise disjoint copies L_1 , L_2 and L_3 . Then o_k , u_k , v_k , w_k , i_k denote the elements corresponding to o, u, v, w, i by the isomorphism $M_3[Q] \cong \cong L_k$.

 $J_1=[u_1,i_1]$ is a principal dual ideal of L_1 and $J_1\cong Q$. Similarly, $J_2=[o_2,w_2]$ is a principal ideal of L_2 isomorphic to Q. Therefore $J_1\cong J_2$, we can apply the Hall—Dilworth construction and we get the following modular lattice $L_{1,2}$:

Acta Mathematica Hungarica 49, 1987

Let S be the sublattice of L_{12} consisting of all elements $x \lor y$ where $x \le u_2$ and $y \le w_1$. The interval $[o_1, u_2]$ is isomorphic to Q hence $S \cong Q \times Q$. Similarly, L_3 contains a sublattice $T := \{x \lor y; x \le u_3, y \le w_3\}$ isomorphic to $Q \times Q$. Consequently we have an isomorphism $\varphi : S \to T$ with $\varphi(u_2) = u_3, \varphi(w_1) = w_3$. Now, we apply a gluing construction (similar to the Hall—Dilworth construction) by identifying the corresponding elements by φ . This construction was first defined in [4], see Fig. 2.

In this way we get a modular lattice L.

 $I_2 = I_3$ u_1 u_1 u_1 u_1 $u_2 = I_1$ u_1 u_1 $u_2 = I_1$ u_1 u_1 $u_2 = I_3$ u_3 u_4 u_1 u_4 u_5 u_7 u_8 u_8 u_1 u_8 u_1 u_1 u_1 u_2 u_3 u_4 u_7 u_8 u_8

 $oldsymbol{L}$:

To prove that L is modular, we have to show that L does not contain a pentagon generated by a, b, c. But L contains four sublattices generated by $\{u_2, v_1, x; 0 \le x \le v_3\}$, $\{u_2, w_1, x; 0 \le x \le v_3\}$, and $\{v_2, w_1, x; 0 \le x \le v_3\}$ which are all isomorphic to $M_3[Q]$, hence they are all modular sublattices. If L contains a pentagon generated by a, b, c then it is easy to see that a, b, c are contained in one of these sublattices, a contradiction.

The lattice L contains the diamonds $(o_k, u_k, v_k, w_k, i_k)$, k=1, 2, 3. We identify $[o_1, u_2]$ with Q, and define two polynomial functions on L:

$$\bar{f}(x) = (((x \vee v_1) \wedge w_1) \vee v_3) \wedge u_2, \quad \bar{g}(x) = (((x \vee v_2) \wedge w_1) \vee v_3) \wedge u_2.$$

It is easy to show that the restrictions of these functions to Q are exactly the functions f and g defined above.

We prove that L is locally order-polynomially complete. Let $a, b \in L$, a < b. By the gluing construction there exists a $c \in L$ such that $a \le c \le b$ and $a, c \in L_{1,2}$, $c, b \in L_3$ or conversely $a, c \in L_3$, $c, b \in L_{1,2}$. On the other hand a < b implies that either a < c or c < b. If $a, c \in L_{1,2}$, a < c then either $a \land u_2 < c \land u_2$ or $a \land w_1 < c \land w_1$. Similarly if $c, b \in L_3$, c < b then either $c \land u_2 < b \land u_2$ or $c \land w_1 < b \land w_1$. The intervals

 $[o_1, u_2]$ and $[o_1, w_1]$ are projective and therefore we have a 1-place polynomial function t on L such that $t(a) < t(b) \le u_2$. (The second case, $a, c \in L_3$ is similar.) By Lemma 2 there exists a polynomial function s(x) satisfying $u_2 = st(b)$, $o_1 = st(a)$. In L we have the polynomial function $d(x) = (x \lor v_3) \land w_3$ which satisfies $d(u_2) = w_3$, $d(o_1) = o_1$. Finally let $r(x) = st(x) \lor dst(x)$, then we have

$$r(a) = st(a) \lor dst(a) = o_1 \lor o_1 = o_1,$$

$$r(b) = st(b) \lor dst(b) = u_2 \lor d(u_2) = u_2 \lor w_3 = i_2.$$

We have to show that the conditions of Theorem B are satisfied. Indeed, let Θ be a congruence relation of L such that $a \equiv b(\Theta)$. Then we obtain $o_1 = r(a) \equiv \equiv r(b) = i_2(\Theta)$, i.e. L is a simple lattice. If p, q are arbitary 1-place polynomial functions then with the given polynomial function r(x) we get condition (2). The theorem is proved.

References

- [1] D. Dorninger, A note on local polynomial functions over lattices, *Algebra Univ.*, **11** (1980), 135—138.
- [2] E. Fried, In preparation.
- [3] G. Grätzer, General Lattice Theory, Akademie-Verlag (Berlin, 1978).
- [4] E. T. Schmidt, Zur Charakterisierung der Kongruenzverbände der Verbände, *Math. Casopis*, 18, 3—20.
- [5] E. T. Schmidt, A Survey on Congruence Lattice Representation, Teubner-Texte zur Math., Band 42 (1982).
- [6] R. Wille, Eine Charakterisierung endlicher, ordnungs-polynomvollständiger Verbände, Arch. Math., 28 (1977), 557—560.
- [7] R. Wille, Über endliche, ordnungsaffinvollständige Verbände, Math. Z., 155 (1977), 103—107.

(Received August 5, 1985)

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, REÁLTANODA U. 13—15. H—1053