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E. TAMAS SCHMIDT

Dedicated to the memory of Andrds Huhn

1. Introduction. Let /7 be an ideal of a lattice L. Then the map ¢: @— @y,
restricting a congruence relation @ to Jis a 0 and 1 preserving lattice-chomomorphism
of the congruence lattice Con L into Con I. G. GRATZER and H. LAKsER [1] have
proved the converse for finite lattices:

Theorem A. Let D and E be finite distributive lattices, and let ¢: D—E
be a 0 and 1 preserving homomorphism of D into E. Then there exist a finite lattice
L, and anideal I of L, such that there are isomorphisms «. D—~Con L, f: E~Con I,
satisfying PBo=ga, where ¢: @0, is the restriction of @¢ConL to I (See
Figure 1.)
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Figure 1

The purpose of this paper is twofold. Firstly, we generalize Theorem A for
distributive algebraic lattices satisfying the following condition

(%) for all compact x, xV A(x;| iD= A(xVx,| i€]),
which is a weaker form of the infinite meet distributivity. Secondly, we win a
short proof of Theorem A, which uses a construction given in SCHMIDT [3] and [4]

2. Dual Heyting algebras. Let L be a lattice. The dual pseudocomplement of a
relative to b is an element axb of L satisfying aVx=b iff x=axb. A dual Heyting
algebra is a distributive lattice with 1 in which a x b exists for all a, b€ L. The subset
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of all compact elements of an algebraic lattice 4 is denoted by K(4). This K(A) is
a join-subsemilattice with smallest element 0. A lattice A is called arithmetic iff it is
algebraic and K(4) is a sublattice of L.

Lemma 1. Let L be a distributive arithmetic lattice, whose unit element is
compact. L satisfies the condition (x) if and only if K(L) is a dual Heyting algebra.

Proof. First, let K(L) be a dual Heyting algebra. Then L is isomorphic to
the lattice of all ideais of K(L), and the compact elements of the ideal lattice are
precisely the principal ideals. Therefore we have to show that

(XIV AULED) = A((xIV J;li€ )
where the J;-s are ideals of K(L). It is enough to verify that the right side is contained
in the left side. Let a€ A((x]V/, i), then a€(x]vJ; for all icZ, ie., a=xVy
for suitable y,6J,. K(L) is a dual Heyting algebra, therefore x#%a exists and
x*xa=y; implies x*acJ;, i€l Thus xxa€ \(J;i€l). By the definition of x*a
we have a=xV(xxa), i.e. ac(x]V AW} icl).

By assumption L is a distributive arithmetic lattice with compact unit element,
thus K(L) is a bounded distributive lattice. Consider all u,-s such that aVu,=b.
Then be A((a]V(x]). Applying (%) we obtain be(a]V A(w], ie. there exists a
z€ A(u;] such that aVz=b. Obviously z=axb.

By Lemma 1, we can work with dual Heyting algebras, namely L is determined
by K(L).

Let L be a {0, 1}-sublattice of thc Boolean lattice B. Then L is said to R-gen-
erate B if L generates Basa ring. The following lemmais due to H. M. MacNeille
(see G. GRATZER [2]). :

Lemma 2. Let B be R-generated by L. Then every acB can be cxpressed
in the form

Ao+ +...+a, 1, Gy=a,=...=d,_y, dgy...,dy1L.

A sublattice L’ of a dual Heyting algebra L is called a subalgebra if for every
x€L there exists a smallest ¥¢L’ that x=x.

Lemma 3. A subalgebra of a dual Heyting algebra is a dual Heyting algebra.

Proof. Let L’ be a subalgebra of L and let a, b€L’, a=b. Then axb exists
in L, and it is easy to verify that axb is the dual psendocomplement of a relative
to b in L. Tt is clear that if the dual pseudocomplement exists for comparable pairs
then there exists for arbitrary pairs.

For a bounded distributive lattice L we shall denote by B(L) the Boolean lat-
tice R-generated by L.
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Lemma 4. Let .L be a dual Heyting algebra. Then L is a subalgebra of B(L).

Proof. Let L be a dual Heyting algebra. Then by Lemma 2 every x can be
expressed in the‘f/o'ir'm x=ay+... +a,_;. We prove the existence of X by induction
onn If n=1, i.e. x=a, then xcL hence ¥=x. For n=2, ie. x=ay+a;, xis
the relative compl_ement of g, in the interval [0, 4;]. Then a,Vy=a; and y€L
imply v=ao+a,, thus @,+a, exists and dot-by=agxa;,. Let us assume that
n=2. a,_,+a, , is the relative complement of a,_, in the interval [0, a,_,], hence
a,,_g/\(a,,_z+a,,_.1)§an;2/\(an_2+a,,_,):O. Obviously ay+...+a,_;=a,_,, thus
(@ +... +a,-3)\@,-5+a,-,)=0. This implies that a,+... +a,_y=(@+... +a,-5)+
(g2, )= (o+ ...+ 3)V (@, -2+, 1)

Let x, y be arbitrary elements of B(L) such that X and j exist. We prove that
xVy existsand xVy=XxVj. Let xVy=z=XxV§j, z€L. Then we get from x, y=xVy
that x=XAz€L, y=jAzE€L, and we conclude that X=z, j=z, ie. z=XVJ,
which proves xVy=XxVjy. Applying this equality for x=a,+...+a,_; and y=
=q,_,-+a,_, we obtain that XVy=Xx+y exists.

Lemma 5. Let @ be a compact congruence relation of a dual Heyting algebra
L. Then L[O is a dual Heyting algebra.

Proof. The compact congruence relations are exactly the finite joins of prin-
cipal congruence relations. To prove the lemma, by the Second Isomorphism Theorem
we may assume that @ is a principal congruence relation, i.e. @=6(u,v), u=v.

Let L be a dual Heyting algebra. We prove that each congruence class of @ (, v)
contains a smallest element. In distributive lattices @ (u, ») has the following de-
scription (see [2], p. 74): a=b (O(u,v)) iff vVa=vVb and uAa=uAb. Let b
be a fixed element of L. Then »Va=vVb implies that a=vx(wVb). Therefore
2% (vVb) is the least element of the @ (u, v)-class containing b. Now, let a<b and
let ¢ denote the least element of the @ (u, v)-class containing b. Let [x] denote the
@ (u, v)-class containing x. Then obviously [a] *[b]=[axc].

Corollary. Every @-class of a compact congruence relation © of a dual Heyting
algebra contains a smallest element.

3. The main theorem. In this section we formulate our main theorem and then
we give two special representations of dual Heyting algebras.

Theorem B. Let D and E be dual Heyting algebras, and let ¢: D—~E be
a 0 and 1 preserving homomorphism of D into E such that the congruence kernel
Ker ¢ is a compact congruence relation and F=Im ¢ is a subalgebra of E. Then
there exist a lattice L, and a principal ideal I of L, such that there are isomorphisms
2: D-K(Con L), ' B: E~J(Con I) satisfying Bo=ox, where g9: @0, is the
restriction of @cConL.to I -~ =~

14*
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If L, and L, are lattices with zero elements 0, resp. 0, then in the direct product
L, XL, the elements {x, 0,) (x¢L;) form an ideal L] isomorphic to L,. Therefore
we can identify L, with L] and similarly L, with the ideal L;={{0,, x)}.

Let @ be the congruence kernel of the homomorphism ¢: D~E. By our
assumption @ is a compact congruence relation of D. On the other hand Dis a
bounded distributive lattice, therefore the unit of Con D is compact. The compact
elements of Con D form a Boolean lattice (see [2], p. 86, Exercise 41), consequently
© has a complement @ in Con D. Then D is a subdirect product of D/® and D/@’,
therefore DED/@XD/O’.

F=Im ¢ is a {0, 1}-sublattice of E and F is isomorphic to D/@; we identify
D/® and F. Hence we may consider D as a {0, 1}-sublattice of EXD/@’. Let ¢ be
the unit of £ and m;(x)==xAe denotes the projection map of EXD/@’ onto E.
Observe, that the restriction of 7, to D (£ EXD/@’) gives the homomorphism ¢
(see Figure 2).

Figure 2

Lemma 6. EXD/@ is a dual Heyting algebra and D is a subalgebra of
EXD]e@'.

Proof. By our assumptions D and E are dual Heyting algebras and @ is a
compact congruence relation, Hence by Lemma 5 D/@’ and thus EXD/®’ are dual
Heyting algebras. F=Im ¢ is a subalgebra of E, hence by Lemma 3 Fand FXD/O’
are dual Heyting algebras.

We have seen that D is a subdirect product of F and D/@’. First we show that
D is a subalgebra of the dual Heyting algebra FXD/®’. An arbitrary element of
FXD|®’ can be written in the form x=([d] @, [b]®’) where a,b¢D. By Corol-
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lary of Lemma 5 the congruence classes of € and @’ have smallest elements. Let
now a, and b, be the smallest elements of [¢]© resp. [b]©’. Then {ayAb,}O,
[asAb 1 @Y€ D. Obviously this element is in D, the smallest one which is
greater or equal than x, i.e. X exist. This proves that D is a subalgebra of FXD/€@'.
On the other hand F is a subalgebra of E, consequently FXD/@ is a subalgebra
of EXD/®’, which proves finally that D is a subalgebra of EXD/@" (namely a
subalgebra of a subalgebra is again a subalgebra).

In [3] (or see [4]) there was given a special lattice construction to prove that
the lattice of all ideals of a dual Heyting algebra is isomorphic to the congruence
lattice of some lattice. The most important properties of this construction are sum-
marized in the following lemma.

Lemma 7. Let K be a {0, 1}-subalgebra of a Boolean lattice A, andlete: K—~A
be the identy map. There exists a bounded lattice M with the following properties:

(i) M contains three elements u, v, w such that {0, u, v, w, 1} form a sublattice
isomorphic to the diamond M,. There are isomorphisms p: (u]—~K and 1:(0]-A4.
If for x€XK n(x) means (xNw)\v then tn=gp,

(i) The map x—~xyu (x=v) is an isomorphism of (v] onto the filter [u).

(iil) A congruence relation (0, x) of (v] can be extended to M iff t(x)€&(K),
and every compact congruence relation of M is the extension of a congruence relation
@0, x)Con (v].

Remark. 4 is a Boolean lattice, therefore every compact congruence relation
of A4 (=(]) can be written in the form @(0, x). Condition (jii) implies that Con M=
={(K)}, ie. K(Con MY=K.

4. The proof of Theorem B. We apply Lemma 7 twice to get two lattices M, and
M,. Then we use the so called Hall—Dilworth gluing construction which yields
a lattice L having the properties required in the theorem.

By Lemma 6 D is a subalgebra of the dual Heyting algebra EXD/@’ and by
Lemma 4 EXDJ® is a subalgebra. of B(EXD/©"). Consequently D is a subal-
gebra of B(EX D/@’). Then we can choosein Lemma7 K=D and A=B(EXD/@").
We obtain the lattice M, with a diamond {0;, 1, ;, Wy, 1,} given in condition (i)
of Lemma 7. In the second case we consider K=EXB(D/®") and A=B(EXD/&).
By Lemma 4 E is a'subalgebra of B(E) hence EX B(D/®) is a subalgebra of B(E) X
XB(D/®")y=B(EXD]@"). The resulting lattice is M, with the diamond {0,, u, ¥,

Wa, 2}

By condition (i) of Lemma 7 the xdeal (v;] of M, is isomorphic to B(EXD/€").
On the other hand by condition (ii) the filter [u,) of M, is isomorphic to B(EXD/@’).
Consequently we have an isomorphism d: [u,)—(»;]. We apply the Hall—Dilworth
ghiing construction ‘which gives a lattice L having M, as a filter and M, as an ideal.
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(L is the set of all x¢ M, UM,, we identify x with 8(x) for all :x€[u,); x=y has
unchanged meaning if x, ye M; or x,yeM, and x<y, x, y§[u.)=(z] iff x€M,,
yEM; and there exists a z€[u,) such that x=<z in M,-and z<y in M,.) The
lattice L is given by Figure 3 where B=B(EXD/@"): - .

Figure 3

The function #{x)=(xVw,)\z, yields the element ¢ =n(e)=(eVw)Av,=0,.
Let I be the principal ideal generated by eVe’. We have to prove that the pair L, I
satisfies the properties given in Theorem B.

(1) First we prove that Con L=I(D) i.e. D is isomorphic to the semilattice
of all compact congruences of L. Every congruencé relation @ of'L is determined
by its restrictions @, and @, to M, resp. M,. By condition (iii) of Lemma 7
©),, is determined by its restriction to (v;] and similarly @, is determined by its
restriction to (v,]. But the interval [0;, v,] is 2 transpose of [0,,'2,], hence we get
that @ is determined by its restriction to the ideal (v,]. This ideal is a Boolean lattice,
thus every compact congruence relation of (»,] has the form &0, x), x€(z,]
Let now, ©(0,, x) be a congruence relation of (v,]. Under what conditions for x
has this congruence relation an extension to L? Candxtlon (iiiy of Lemma 7 gives
the following isomorphisms: : :

in My, m:(@]->D, (o]~ B(EXD[®"),
Cin My, pat (w]~ EXB(D]O), (vs] = BEXDIO).
If &: D~B{(EXD/®") and &: EXB(D/O’) denote the identity, maps, then Ty Ty =
=g u; and Tame=ep, where m(x)=(xVw)Ay; (i=1,2). ;By condition (iii) of
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Lemma 7, the congruence relation ©(0,, x) can be extended to M, iff 7,(x)€
€& (EXB(D[@)). Similarly, in M, we get that the congruence relation €(0;, 0,V x)
of (v,] can be extended to M, iff ,(0,Vx)€g, (D). Obviously the minimal extensions
of ©0,,x) and O, 0,Vx) to L are the same and ¢(D) is a sublattice of
&,(EXB(D]©’)), so we obtain that @ (0,, x) has an extension to Liff 1,(0,V x)€e, (D).
This proves Con L= I(D).

(2) Secondly we show ConI=I(E). E is a direct factor of (u,] and (¢'] is
isomorphic to B(E). Obviously B(EXB(D/©’))=B(E)XB(D/@") hence the prin-
cipal ideal I=(eVe’] is a direct factor of M,. This means that I is again a lattice
given by Lemma 7, namely if X=F and A=B(E). Thus by condition (iii) we have
K(Con N=E, ie. ConlI=I(E).

(3) Finally, let © be a compact congruence relation of L. We have seen that ©
is the extension of some @(0,, x)¢Con (4;] where t,(x)€g,(D), i.e. the restriction
© -0, is determined by the projection D~EXD/@". As we have seen this is
exactly the given homomorphism ¢.
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