CONGRUENCE RELATIONS RELATED TO A GIVEN AUTOMORPHISM GROUP OF A BOOLEAN LATTICE

By

E. T. SCHMIDT

Mathematical Institute of the Hungarian Academy of Sciences, Budapest (Received March 7, 1984)

1. Introduction

Let A be an algebra. Aut (A) denotes the group of all automorphisms of A. The subgroups of Aut (A) are called the automorphism groups of A. If $\alpha \in \operatorname{Aut}(A)$ then a congruence relation Θ of A is called α -admissible if $x \equiv y(\Theta)$ implies $\alpha x \equiv \alpha y(\Theta)$. Similarly if G is an automorphism group of A then Θ is called G-admissible if Θ is α - admissible for every $\alpha \in G$. It is easy to see that G-admissible congruence relations of A form a $\{0, 1\}$ -sublattice $\operatorname{Con}_G(A)$ of the congruence lattice $\operatorname{Con}(A)$. We have therefore a mapping from the lattice of all subgroups of Aut (A) into the lattice of all $\{0, 1\}$ -sublattices of $\operatorname{Con}(A)$. This mapping naturally arises a sequence of representation problems. The purpose of this note is to prove a special representation if A is a Boolean lattice. Then $\operatorname{Con}_G(A)$ is a distributive lattice. We prove the following:

Theorem. Let D be a finite distributive lattice. Then there exist a Boolean lattice B and an automorphism group G of B such that $Con_G(B)$ is isomorphic to D.

2. Preliminaries

Let D be a finite distributive lattice. $\mathcal{G}(D)$ denotes the poset of all non-zero join-irreducible elements of D. For an arbitrary poset P, call $A \subset P$ hereditary iff $x \in A$, $y \le x$ imply that $y \in A$. The set $\mathcal{B}(P)$ of all hereditary subsets of P is a distributive lattice. It is well-known that D is isomorphic to $\mathcal{B}(\mathcal{G}(D))$, i.e. D is determined by $\mathcal{G}(D)$. Therefore we have to prove that for every finite poset P there exists a Boolean lattice B(P) such that for suitable automorphism group G_P of B(P), $\operatorname{Con}_{G_P}(B(P)) \cong \mathcal{B}(P)$. To construct B(P) we induct on the size of P. B will denote the Boolean lattice containing all subsets of a countable infinite set X. All finite subsets of X form an ideal Y of Y of Y of Y. Similarly the cofinite subsets form a liter Y of Y is a Boolean sublattice of Y of Y of Y or Y of Y

It is well known that every congruence relation Θ of a Boolean lattice is

determined by the Θ -class containing 0, which is an ideal. The ideal I of the Boolean lattice B is called G-admissible (where G is an automorphism group of B) if $x \in I$ implies $\alpha x \in I$ for every $\alpha \in G$. Obviously I is G-admissible iff $\Theta[I]$ is G-admissible. ($\Theta[I]$ denotes the congruence relation Θ with the Θ -class I.)

If G is an arbitrary automorphism group of a finite Boolean lattice B then $Con_G(B)$ is clearly a Boolean lattice. Therefore to represent a non Boolean lattice we must construct an infinite Boolean lattice. The simplest case is the representation of the three-element chain 3: if $G_3 = Aut(\mathbf{B}_f)$ then $Con_{G_3}(\mathbf{B}_f) \cong 3$, i.e. \mathbf{B}_f has exactly one non trivial G_3 -admissible ideal.

3. The construction of B(P)

Let P be an arbitary finite poset. For B(1) (i.e. P=1) we choose the twoelement Boolean lattice 2, and let $G_2=\operatorname{Aut}(2)$. Obviously $\operatorname{Con}_{G_2}(2)\cong 2\cong$ $\cong \mathcal{U}(1)$. B(1) is a $\{0,1\}$ -sublattice of **B**.

Now, suppose $|P| \ge 2$ and let m be a maximal element of P. Let m_1, \ldots, m_k be the set of all elements in P which are covered by m. (Of course $\{m_1, \ldots, m_k\}$ may be empty.) We denote by Q the poset $P\setminus\{m\}$. The assumption $|P| \ge 2$ implies that Q is not empty. By induction, there exist a Boolean lattice B(Q) and an automorphism group G_Q such that $\mathcal{B}(Q)$ is isomorphic to $Con_{G_Q}(B(Q))$.

Let $\varphi: \mathcal{B}(Q) \to \operatorname{Con}_{G_Q}(B(Q))$ be a fixed isomorphism. Let $(m_1, \ldots, m_k]$ denote the hereditary subset of Q generated by m_1, \ldots, m_k . Then $\varphi((m_1, \ldots, m_k]) = \Phi$ is a G-admissible congruence relation of B(Q). Let I be the ideal-kernel of Φ in B(Q). Then I is G_Q -admissible.

Consider a countably infinite set H. The power-set algebra B = P(H) is, clearly, isomorphic to **B**. Let A_1, A_2, \ldots be a countably infinite sequence of subsets of H such that

(i)
$$A_i \cap A_j = \emptyset$$
 $(i \neq j)$;

(ii)
$$\bigcap_{i=1}^{\infty} A_i = H;$$

(iii)
$$|A_i| = \aleph_0 (i = 1, 2, ...).$$

The principal ideal $(A_i]$ generated by A_i in B = P(H) is, again, isomorphic to **B**. For each i (i = 1, 2, ...) we fix an isomorphism

$$\varphi_i:(A_1]\rightarrow (A_i]$$

such that φ_1 is the identity on $(A_1]$. Let A'_1 be the complement of A_i in B, i.e. $A'_i = \bigcup (A_j; j \neq i)$. All these elements of B generate a Boolean sublattice of B which is obviously isomorphic to B_f . The ideal of B generated by A_1 , A_2 , ... will be denoted by \overline{J} and \overline{D} is the filter generated by A'_1 , A'_2 , Then $\overline{J} \cap \overline{D} = \emptyset$.

We consider $B(Q) = B_1(Q)$ as a $\{0, 1\}$ -sublattice of $(A_1]$. If $B_i(Q)$ denotes $\varphi_i(B(Q))$ then $B_i(Q)$ is a $\{0, 1\}$ -sublattice of $(A_i]$. The ideal I of B(Q) defines

an ideal $I_k = \varphi_k(I)$ of $B_k(Q)$. Let S be the direct sum of the lattices B(Q) $(=B_1(Q))$, I_2 , I_3 ,... All these lattices are relatively complemented, consequently the same holds for S. Finally let S' be the "complement" of S in B, i.e. $S' = \{x'; x \in S\}$. Obviously $S \subset \overline{J}$, $S' \subset \overline{D}$, hence $S \cap S' = \emptyset$. We define B(P) to be the complemented $\{0, 1\}$ -sublattice $S \cup S'$.

The next step is the definition of an automorphism group G_P of B(P). By our assumption B(Q) has an automorphism group G_Q such that $\operatorname{Con}_{G_Q}(B(Q)) \cong \mathcal{H}(Q)$. It is enough to define an automorphism group of S — this can be extended uniquely to $B(P) = S \cup S'$.

The ideal I_1 is G_Q -admissible, i.e. the restriction of any $\alpha \in G_Q$ to I_1 is an automorphism of I_1 . Then α induces an automorphism of I_i (which will be denoted by the same letter α) by the rule $\alpha(\varphi_i(x)) = \varphi_i(\alpha x)$. This proves that each $\alpha \in G_Q$ can be extended to S. All these automorphisms of S form an automorphism group $\overline{G}(\cong G_Q)$ of B(P). We define some other automorphisms. First we prove the following:

LEMMA. Let L_1 and L_2 be Boolean lattices and let I_1 be an ideal of L_1 such that $\varphi: I_1 \to L_2$ is an isomorphism. There exists an automorphism α of $L = L_1 \times L_2$ such that $\alpha x = \varphi(x)$ for each $x \in I_1$.

PROOF. I_1 and L_2 are isomorphic, hence I_1 has a unit element i. Let i' be the complement of i in L_1 . Then $L_1=(i]\times(i']$, i.e. $L=(i]\times(i']\times L_2$. Interchanging (i) and L_2 gives the desired automorphism.

Let $i, j \ge 1$ and let x be an arbitary element of $I_i \subset S$. $\varphi_{ij} = \varphi_j \varphi_i^{-1}$ is an isomorphism between I_i and I_j , consequently $\varphi_{ij}((x)]$ is isomorphic to (x]. Applying the lemma we have an automorphism β_{ij}^x on $I_i \times I_j$ (if i = 1 then we consider B(Q) instead of I_1) such that $\beta_{ij}^x(x) = \varphi_{ij}(x)$. We can extend this automorphism to S. Let G_P be the subgroup of Aut(S) (i.e. Aut(B(P))) generated by \overline{G} and all $\overline{\beta}_{ij}$ ($\overline{\beta}_{ij}$ is the extension of β_{ij} to B(P)).

We are going to prove that $Con_{G_P}(B(P)) \cong \mathcal{H}(P)$.

If $a, b \in B(P)$ $(a \ge b)$, $\Theta(a, b)$ denotes the smallest G_P -admissible congruence relation under which a = b. This congruence relation is called principal. We determine all join-irreducible, G_P -admissible principal congruence relations of B(P). By the definition of B(P), this lattice contains the prime ideal S and the ultrafilter S' such that $S \cup S' = B(P)$, $S \cap S' = \emptyset$. We distinguish two cases.

(1) $a, b \in S$ (or similarly $a, b \in S'$).

S is the direct sum of the lattices B(Q), I_2 , I_3 , ..., therefore $\Theta(a,b)$ is determined by its projections into these lattices. Let Π_k be the projection onto I_k , and let $a_k = \Pi_k(a)$, $b_k = \Pi_k(b)$. Applying the automorphism $\beta = \beta_{1k}^{a_k}$ we get $a_k \equiv b_k(\Theta)$ iff $\beta(a_k) \equiv \beta(b_k)$ (Θ) for an arbitary congruence relation Θ of B(P). But $\beta(a_k)$, $\beta(b_k) \in I_1 \subseteq B(Q)$, hence $\Theta(a,b)$ is determined by a congruence relation Θ of B(Q). This Θ must be a G_Q -admissible congruence relation of

B(Q). Conversely, if Θ is an arbitary G_Q -admissible congruence relation of B(Q), then the relation $\overline{\Theta}$ defined by:

$$u \equiv v(\overline{\Theta}) \text{ iff } \beta(\Pi_k(u)) \equiv \beta(\Pi_k(v)) (\Theta)$$

is obviously G_P -admissible, and this $\overline{\Theta}$ can be extended to the whole B(P). Thus we have: $\Theta(a, b)$ $(a, b \in S)$ is a join-irreducible G_Q -admissible congruence relation of B(P) if and only if its restriction to B(Q) is a join-irreducible G_Q -admissible congruence relation.

(2) Let $a \in S'$, $b \in S$ (or $a \in S$, $b \in S'$).

We have denoted the congruence relation $\varphi((m_1,m_2\dots m_k))$ by φ . Let $\bar{\varphi}$ be the extension of φ to B(P). φ is G_Q -admissible, which implies $\bar{\varphi}$ is G_T -admissible (namely $\bar{\varphi}$ is β_{ij} -admissible). The kernel of $\bar{\varphi}$ contains every ideal I_i $(i=1,2,\ldots)$, i.e. $\Theta(a,b) \geq \bar{\varphi}$. In the construction of B(P), A_1 is the unit element of B(Q). Let A_1' be the complement of A_1 in B(P) (i.e. $A_1' = \bigcup_{i=2}^\infty A_i$) and 0 be the zero element of B(P). Then $O(0,A_1')$ is a join-irreducible congruence relation, and $O(0,A_1') \geq \bar{O}$ ($O \in Con_G(B(Q))$) if and only if $O \leq \varphi((m_i))$ for some i. On the other hand it is easy to see that every O(a,b) has the representation $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a G_Q -admissible congruence relation of $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ where \bar{O} is the extension of a $O(0,A_1') \vee \bar{O}$ is a $O(0,A_1') \vee \bar{O}$ where