CONTRIBUTIONS TO GENERAL ALGEBRA 3
Proceedings of the Vienna Conference, June 21-24, 1984
Verlag Holder—Pichler-Tempsky, Wien 1985 — Verlag B. G. Teubner, Stuttgart

E. Fried, G. E. Hansoul, E. T. Schmidt and J. C. Varlet

PERFECT DISTRIBUTIVE LATTICES

Introduction

The motivation of this work is threefold. Firstly, it was proved in [14]
by the last author that a finite distributive lattice L is a direct product of
chains if and only if every S5-element (closed) interval of L is totally ordered.

It is quite natural to ask for a similar characterization in the infinite case.

Secondly, the 5-element distributive lattices which are not chains are the
smallest lattices which are not perfect in the sense of Fortunatov [6], i.e.
it is possible to define on them a congruence © such that for some elements
a,b either [a]®V [b]® # [a V b]® or [al®@ A [b]®#[a A BIO. In [13] it was shown
that Boolean lattices and chains are perfect. Are the relatively complemented
distributive lattices and the chains the only perfect distributive lattices?

We prove that the answer is no.

Thirdly, there is a nice theorem of G. Gritzer and E.T. Schmidt [ 9] which
says : a distributive lattice is relatively complemented if and only if it has
no homomorphic image isomorphic to 3, the 3-element chain, What about those
distributive lattices which have no homomorphic image isomorphic to a S-element
distributive lattice which is not totally ordered? We shall see that in the
finite case things behave quite nicely and that gll reasonable conjectures are

verified. The general case is somewhat more difficult.

Section 1 is devoted to the definitions of the main notions and symbols
that will be used throughout this work. In Section 2 we characterize in two
different ways the perfect distributive lattices: on the one hand via their
posets of prime ideals or their homomorphic images; on the other hand in an
axiomatic manner, so showing that the class of perfect distributive lattices
is closed under the formation of direct products., In Section 3 we determine

which partially ordered sets are isomorphic to the set of prime ideals of some
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perfect bounded distributive lattice. The relationships between perfect lattices,
pseudocomplemented lattices and relatively pseudocomplemented lattices are ana-
lysed in Section 4. In particular we prove that the perfect double Heyting lat-
tices are exactly the double relative Stonme lattices. Section 5 is concerned
with the notion of Boclean product. We show that every Boolean product of per-
fect lattices is perfect and that a lattice is a Boolean product of chains if

and only if it is a perfect relative double Heyting lattice. We close this work
with an example of a non-locally finite perfect lattice. We also mention some

open questions.

1. Preliminaries

A congruence © on a lattice L is joim-perfect if for all a,b € L holds
[al® V [b]®=[a V b]® , where [a]® denotes the ®-class containing a and where
the symbol V in the left-hand side has to be taken in the complex algebra of L.
In other words, © is join-perfect if for every ¢ such that ¢ @ a V b there
exist a', b’ € L satisfying a' ©® a, b' @ b and a' V b' = ¢. Dually one can
define a meet-perfect congruence. Finally a congruence is perfect if it is
join and meet-perfect. A 1aftice is join-perfect (resp. meet-perfect, perfect)
if all its comgruences are join-perfect (resp. meet—perfect, perfect). Clearly

a lattice and its dual are simultaneously perfect or not.

The classes of all join-perfect, meet-perfect and perfect distributive
lattices will be denoted by EV » £ and P respectively, while D will stand for
the class of all distributive lattices. The subscripts o,! on the right of the

letters P and D will mean that the lattices under consideration are bounded.

The cardinal sum X + Y ot two posets X and Y is the set of all elements
in X or Y, considered to be disjoint, the order relation on each of the sets
X and Y is preserved, while an element of X is never comparable with an element
of Y. The ecardinal sum of arbitrarily many posets Xi(i € I) is defined in the

same manner and denoted by ZXi.

The ordinal sum X ® Y of two posets X and Y is the set of all elements in
X or Y, considered to be disjoint, the order relation on each of the sets X and
Y is preserved but each element of X is less than each element of Y. The 5«

element lattices gz ©] and 1 @ gz will be denoted by 8 and Sg respectively.

We shall make a constant use of Priestley's duality, which is remarkably
summarized in [12] . We emphasize the fact that im [12] D represents the cate-
gory of bounded distributive lattices. For all L € D (bounded or not) X,
ordered by set inclusion, is the poset of prime ideals of L. The empty set and

the whole lattice are not considered to be prime ideals. In case L is finite,



127

XL is nothing else than the poset M(L) of all non-unit meet-irreducible elements
of L.

In this paper we consider only distributive lattices and very often we

shall omit the adjective "distributive".

2. Characterizations of perfect lattices

We begin with two elementary lemmas.

2.1. LEMMA. 4 finite direct product of lattices is perfect if and only if
every factor is perfect.

2.2. LEMMA. Any homomorphic <{mage of a perfect lattice 18 a perfect latiice.

We leave the easy proofs of these lemmas to the reader and we point out
that the finiteness hypothésis in 2.1 is superfluous, as we shall see later.

We are now ready to prove

2.3. THEOREM. Let L be a finite distributive lattice. Then the follawing
are equivalent:

() Lep;

(2) L has mo homomorphic image isomorphic to 85 or Sg;

3) XL 18 the cardinal sum of chains;

(4) L ¢8 a dirvect product of chains;

d
5 or SS'

Proof. The equivalence of (3), (4) and (5) was established in [14] .

5 mor Sg are perfect and

(5) L has no interval isomorphic to S

(1} = (2) since, as has already been noticed, neither §
it suffices to apply 2.2,

(2) = (5). If L has an interval [a,b] isomorphic to 55 or Sg , then the endo~
morphism x = (x A B) V a yields a homomorphic image of L which contradicts (2).

(4) = (1). Clear by 2.1 since a chain is of course a perfect lattice.

Let us observe that if L € P and L is finite, then L is self-dual. We
shall see that this property is no longer true if the finiteness hypothesis is
omitted. Moreover, although a nonatomic Boolean lattice B is perfect ({131,
Corollary | of Theorem 2), B is not a direct product of chains; nevertheless
B has no homomorphic image isomorphic to 3 ([9]) , hence no homomorphic image
isomorphic to SS or Sg. Moreover, the lattice (w x 2) @ 1 shows that (5) does
not imply (1). On the contrary we shall see in 2.8 that (4) always implies (1}.

The equivalence of conditions (1), (2) and (3) of 2.3 holds in the general

case, as shown by
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2.4, THEOREM. Let L € D. Then the following are equivalent:
1) Leg;
(2) L has no homomorphic image isomorphic to §; or Sg;

(&) X 18 the eardinal sum of chains.
Proof. (1) = (2) has been already justified in 2.3.
(2) = (1). Let us assume that the lattice L is not perfect; then there is a
congruence ©® which has two classes A and B such that, for instance, AA B =
{x Aylx€ A, y€ B} CC, where C is the infimum of A and B in L/@ and C means
strict inclusion. Clearly A A B is a proper filter of C. Let ¢ € C - (4 A B),
There is a prime ideal P containing c and disjoint from [A A B). Note that the

latter filter contains A and B.

Let us consider the ideal I = PV (B] . We claim that I does not meet [A).
Indeed, if not there are p€ P, 2 € A and b € B such that p V b > a, hence
{(p Na) V (b A a) = a. Of course we may assume p > c. Since (¢ A a,b A a) € 8,
we also have

(cAayV (pAha), ®BAa)V (pAa)) €e,

that is (p A a, a) €6, hence pA a € A and p € [ A), which contradicts
P N{A) = @§. Consequently I N{A) = ¢ and there is a prime ideal Q which sepa-
rates I and [A). Similarly, one can prove the existence of a prime ideal R which
separates P V (A] and [ B). The prime ideals P,Q,R are such that P C Q N R and
QIR. They induce a 5-class congruence & with L/® = Sg , which contradicts (2).
(2) # (3). The condition "L has no homomorphic image isomorphic to 55" is
equivalent to " the join of any two uncomparable prime ideals of L is L" (see,
for instance, [ 8}]), while "L has no homomorphic image isomorxphic to Sg "is

equivalent to "any two uncomparable prime ideals of L are disjoint",

The condition "the join of any two uncomparable prime ideals of L ig L"
is equivalent to "the prime ideals contained in any given prime ideal of L
form a chain' and also to " {a,b) YV {b,a) = L for any a,b € L" where (a,b) ,
the annihilator of a relative to b, is the ideal {x € L{x A a < b}. Each of
the preceding conditions characterizes the relatively normal lattices, a notion
which was first considered by M. Mandelker and then developped by W. Cornish
([11], Theorem 4, and [4] , Theorem 3.5). Hence the perfect lattices are the
lattices which are relatively normal and dually relatively normal. But we
emphasize the fact that we were led to the notion of perfect lattice by reasons

quite different from those of M. Mandelker and W. Cornish.

To illustrate 2.4 we provide easy and well~known examples of perfect

lattices.
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a) XL is totally unordered if and only if L is a distributive relatively comple-
mented lattice (a Boolean lattice if L is bounded);

b) XL is totally ordered if and only if L is a chain;

c) P-algebras, defined as in [ 5] , are perfect; particular examples are genera-

lized Post algebras.

Other examples of perfect lattices will be given later. But let us first

characterize perfect lattices axiomatically.

2.5. LEMMA. Let LED . Then L € EV if and only if L satisfies
(By) for all a,b,cE€Lthere exist a',b' € L such that
a'A@Vbo)=a, b'AN@aVb)=banda'Vb'=aVbVe.
Proof. Let L € P and consider for a, b, ¢ € L the congruence relation
©=0aVb,aVbVe), Then fromaVbVcE€[aV b]l@it follows that for
suitable a' € [a]®and b' € [b]© we have that a' V b' = aV bV c. On the other
hand, (a',a) € © implies a' A (aV b) = aA (aVb) = a. Similarly b'A (aVb)=b.

Conversely, if L satisfies (PV) then for every congruence © and for arbi-
trary elements a,b,c satisfying aVb<c¢ and (c,aV b) € ©, we have that
(a'Ac, a' A(aV b)) €0, that is (a',a) € © since a' A ¢ = a'. Similarly
(b',b) € ® . Since a' V b' = ¢, we have proved that [a]OV [b]®=[aV b] © and

so L is join-perfect.

We could also deduce 2.5 from Theorem 2.4 of [4] . In fact, since a relati-
vely normal lattice is a lattice every interval of which is normal, by condition
(h) of the aforementioned theorem, a lattice L is relatively normal if and only
if for all a,b,c € L, there exist a', b' € L such that aAb' =aAb=2a"Ab
and a' Vb' = aV bV ec. A routine computation shows that this condition is
equivalent to (PV).

Moreover the second part of the proof of 2.5 shows that in checking (RV)

one may restrict oneself to elements a,b,c satisfying aV b < c.

Of course the dual condition (PA) characterizes the meet-perfect lattices.
The following theorem is then straightforward.

2.6. THEOREM. Let L € D . Then L € B if and only if L satisfies (By) and
(PA) -

2.7. COROLLARY. The notion of perfect distributive lattice is elementary.

2.8. COROLLARY. Let L= I L, €D . Then L€ P if and only if L, € P
. i€ - B
for every 1i € I. €1
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2.9. COROLLARY. Any chain union of perfect distributive lattices is perfect
([7] , Corollary page 280).

3. Posets representable over P

By 2.4 any L €D is perfect if and only if XL is the cardinal sum of chains.
But this does not mean that any cardinal sum of chains is isomorphic to the poset
of prime ideals of a perfect lattice. We remind the reader that a poset S is
said to be representable over some subclass K of D if there exists L € K such
that S = XL.

Starting from a poset S we.can always form the new posets So =0®S, S1 =

S ®1 and S01 =0®535 @1, With these notations we have

3.1. LEMMA. 4 poset § is representable over D if and only <If SO (resp.

S SOI) 18 representable over D, (resp. D;» 201)'

1’
Proof. Let S be representable over D, i.e. there exists L & D such that XL > 3,

= € =
Then LO 0®L 20 and XLo SO.

Conversely, if SO o € D, , then the least prime ideal IO

= for some L
% o

of L, is {0} . In fact, if I, #{0}then I. 3 a # 0 and there is I € X, such

0
C I. It follows that L = Lj - {0} € D and

0

that a ¢ I, which contradicts I

XL = 5.

The corresponding results in 21 and 201 admit similar proofs.

Let us recall that a chain is representable over 201

algebraic, i.e. it is complete and every proper interval contains a covering

0

if and only it is

pair (that is, a pair {u,v} with u <v) ([12], Section 6). As a consequence,

a chain C is representable over D (resp. D 21) if and only if C01 (resp.

0)
Cl’ CO) is algebraic.

It is rather easy to characterize those posets which are representable over

20 or 51'
3.2. LEMMA. If S is a poset representable over P (resp. Py Bps 201) ,
then S is the cardinal sum of chains representable over D (resp.go, 2!’ 201).

Proof. If S is representable over P, then S = ié

Ci01

Section 6, are inherited from SO! by each CiOI and are sufficient for CiOl to be

I Ci by 2.4. For every i € I,

is representable over 201. Indeed, properties (i) and (ii) of [12],

representable over 201'

Suppose now that 8§ is representable over go . Then each element of § fol-

lows a minimal one, and each Ci has a least element. Every Ci is representable

1
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over 901, whence every Ci is representable over DO .

Similar arguments hold if S is representable over El or By«
3.3. THEOREM. A poset S <s representable over go (resp. gl) if and only 1f

S ts the cardinal sum of chains C. such that i) (resp. ¢, ) are algebraic.

Proof. By 3.2 it remains to prove the sufficiency of the condltlon Let

S = iéI Cl with C. i1 algebraic for each i € I. There exist chains Di € QO such

that XD = 1 (i € I). Let L be the discrete direct product of all Di (ie€1),
i

i.e., L ={x€ gl D, [ Xy = 0 for all but a finite number of i} . We will show

that XL = 8,

Let A € XL. Then there exists exactly one i € I such that 2 Aé D .
First, if x( 1 ¢ priA, y(J) ¢ pr.A and i # j, and if x (resp. y) is deflned by
x = 0 for k # 1 and x, = x(l) (iesp Vg = 0 for k # j and yj = (J ), then
0=xANy@&aA, a contradlctlon Also, suppose PT, A= D, for each i and let x ¢ A.

1) € A be such that pry x( 1) =%, . Then

For each i € I such that X, # 0, let x
V x(l) € A, another contradlctlon. Now the mapping A - pr A is clearly an

1somorphlsm from XL onto iEI XD .

3.4. REMARK. 1) In[1] , Theorem 3, sufficient conditions are given for a
poset S to be representable over D, and these conditions are shared by cardinal
sums of chains representable over D and bounded sbove. This provides another
proof of Theorem 3.3, but no really new information is obtained since the lattice
used in the proof of [1] , Theorem 3, is nothing else than the one we built in

Theorem 3.3.

2) If I is infinite, the discrete direct product L of the proof of Theorem
3.3 is definitely not bounded above, even though all Di are so. Moreover this
construction cannot be performed if some chain Di is not bounded below. However
Theorem 3.3 is of some help in determining posets representable over P, as seen

in the following result.

3.5. COROLLARY. Let S be a cardinal sum of chains representable over D.
Suppose that all but a finite number of them are bounded either above or below.
Then S <& representable over P .

4, Pseudocomplemented perfect lattices

We recall that a lattice L with O is pseudocomplemented if for every a € L
there is an element a* such that a A & =0, and aA x = 0 implies that
x € @& . It follows that L is also bounded above.

First we give an example which shows that some (necessarily infinite)
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bounded perfect lattices are not pseudocomplemented.

4.1. EXAMPLE. Let L be the subset of P(w) consisting of all subsets of w
which are either finite, or cofinite and contain O. Then L, ordered by inclusion,
is a perfect bounded distributive lattice which is not pseudocomplemented.

In fact, {0} does not exist. Moreover, X is nothing else than the one-
point Alexandroff compactification w + 1 = w U {w} of w , with the order
generated by 0 < w . Hence L is perfect.

W

XL I (¢} [¢] [+]

o
0o 1 2 3 4

This example is very instructive in many respects and we shall somewhat
analyse it. The center of L is the union of the prime ideal P whose elements are
the finite subsets of w not containing O and the prime filter Q whose elements
are the cofinite subsets containing 0. For the induced oxder P is a generalized
Boolean lattice, Q is a dual generalized Boolean lattice and P U Q is a Boolean
lattice. Moreover L - (P U Q) is a generalized Boolean lattice with least element
{0}. Note also that L-Q is a non-principal maximal ideal and P is the only prime
ideal which is not maximal.

There are finitely many non-trivial decompositions of L into two factors;
all of them have the form (q] % (p] or [q) X [p), where q € Q - {w} , p € P- {8},
q = p' . They are of course pairwise isomorphic. But the most remarkable fact is
that in every decomposition ome of the factors is always isomorphic to L itself
and the other is a finite Boolean lattice, We thus have that L = L x gn for
every n € w.

Let us recall that a lattice L is said to be (nmon-trivially directly)

indecomposable if

L= 1

€1 Li = }Lii = 1 for all i but ome ,

and (directly) pseudoindecomposable if
L= B 1 ~dierjL =L

With this terminology the lattice L of the preceding example is pseudo-
indecomposable and we suggest the following questions :
1. Is an indecomposable perfect distributive lattice necessarily a chain?
2. How to characterize the pseudoindecomposable perfect distributive lattices?
3. Is every perfect distributive lattice isomorphic to a direct product of

pseudoindecomposable lattices?

The preceding example highlights alsc the following facts :
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1) although XL has infinitely many connected components, any non-trivial decom-
position of L has finitely many factors;

2) although L is perfect, it is not self-dual: one verifies easily that L is
dually pseudocomplemented but, as already observed, not pseudocomplemented.

If we denote by Ld the (order theoretical )} dual of L, then L X Ld provides an

example of a lattice belonging to P which is neither pseudocomplemented nor

. 0,1
dually pseudocomplemented.
When dealing with perfect lattices, there is no great loss of generality

in restricting oneself to the bounded case, as shown by

4.2, LEMMA. Let L €D . Then L € P if and only <f each interval of L s
perfect.

Proof. Since each interval of L is a homomorphic image of L, the condition is
necessary by 2.2. Suppose now that each interval of L is perfect and let ¢ be
5 OF Sg . Let a € ¢~}(0) and bE[a)y N ¢°}(l). Then

¢i[a b] is a homomorphism from [a,b] onto S5 or Sg, contradicting the fact that
*

a homomorphism from L onto §

[a,b] is perfect.

Despite what has been said at the beginning of this section, there are nice

examples of pseudocomplemented lattices which belong to P . At this point we

have to remind the reader a few concepts, more especiallyoél the terminology
is far from being standard.

A relatively pseudocomplemented lattice is a lattice every interval of
which is pseudocomplemented. Note that we do not require the existence of an
element 1. A Stone lattice is a pseudocomplemented distributive lattice which
satisfies =¥ V x®% = | identically. A relative Stone lattice is a (distributive}
lattice all intervals of which are Stone lattices. A Browerian lattice L is
a (distributive) lattice in which, for all a,b € L, there exists a % b € L such
that aAx<b® x<a*b . A Heyting lattice is a Brouweriam lattice with

zero. An L-aglgebra is a Heyting lattice satisfying (x % y) V (y * x) = 1.
The following property is straightforward.

4.3. THEOREM. If L € EV is pseudocomplemented, then L is a Stone lattice.
If L € P is double pseudocomplemented, then L ts a double Stone lattice.

Proof. In fact, it is well known that for a pseudocomplemented lattice to be a
Stone lattice, it suffices that the Glivenko congruence ¢ (defined by (a,b) € &
if and only if & = b®) be join-perfect ([13] , Théorime 3).
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4.4. THEOREM. Let L € D . Then the following are equivalent:

(1) L€ gv and L s relatively pseudocomplemented;

(2) L 28 a relative Stone lattice;
moreover, tf L is bounded above, we can add:

(3) L Zs an L-algebra;

(4) L zs <somorphic to a *_sublattice of a direct product of chains bounded
above;

V R . R
(5) L€ P and L is a Browwertan lattice.

Proof. (1) ®# (2) is in fact Theorem 3 of [8] .
(2) ® (3) ® (4) is Theorem 3.11 of [2].
(1) ® (5) is well-known.

Then the following theorem is straightforward.

4.5. THEOREM. Let L € D . Then the following are equivalent:
(1) L€ P and L <s double relatively pseudocomplemented;
(2) L Zs a double relative Stone lattice;
moreover, i1f L is bounded, we can add :
(3) L Zs a double L-algebra;
(4) L Zs Zsomorphic to & -sublattice of a direct product of bounded chains;
(5) Le P and L is a double Heyting lattice.

To close this section we show by an example that even in a bounded perfect

lattice pseudocomplementation does not imply relative pseudocomplementation.

4.6. EXAMPLE. Let w' be the Alexandroff compactification of w , where  is
discretely topologized. We denote by X the space (w+ x 2) + 1 (1 is the space
which has the only point &), ordered as follows:

oo 1

o

—0

Then X is a Priestley space whose dual L is a perfect double Stone lattice, but
neither a Heyting lattice nor a dual Heyting lattice. Indeed, one easily
verifies that X is a Priestley space. By 2.4 L is perfect. If U is a clopen set
of Min X (that is, U is cofinite and contains - =, or U is finite and does not
contain -»), then [U) is a clopen set of X. It follows that L is pseudocomple~
mented ([12] , Section 8), hence a Stone lattice by 4.3. Since L is self-dual,
L is a double Stone lattice. Nevertheless U = {a} is a clopen set and neither
[U) nor (U] are open, hence L is neither a Heyting lattice nor a dual Heyting
lattice ([12], Section 8).
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The axiomatic characterizations of join-perfectness and perfectness given in
2.5 and 2.6 respectively shed some light on the connections between the latter
properties and that of relative pseudocomplementation.

Let L€ P . Then for all a,b,c € L there exist a',b' € L which satisfy
(1) a' A (aVb) = a,
(2) B' A (aVb) =b,
(3) a' Vb'=aVbVe.

Of course the ordered pair (a',b') is not unique. If a", b" satisfy the
above conditions as well, then by distributivity so does the pair (a' V a",
b' V b"). Thus in case L is a finite join-perfect lattice there always exists a
greatest pair which satisfies the above conditions. The question naturally
arises : what is the meaning for a join-perfect lattice of the existence for all
a,b,c of a greatest pair (a',b') satisfying (1),(2),(3)?

For brevity we shall denote this pair by (f(a,b,c),f(b,a,c)). Then for
every (a',b') which satisfy (1),(2),(3) we have a' < f(a,b,c) and b' < f(b,a,c).

The answer to the above question is very simple and by no means surprising.

4.7. THEOREM.Let L € EV . Then f(a,b,c) exists for all a,b,c € L <If and only
if L 28 relatively pseudocomplemented.

Proof. Let L be a join-perfect and relatively pseudocomplemented lattice. Let us
consider any three elements a,b,c, of L such that ¢ > a V b. The pseudocomple-

ment of a V b in [a,c], denoted by (a V b)?a e is the greatest element in
’

[a,c] such that its meet with a V b is a. So for any a',b' satisfying (1), (2),

7
(3) we have (a V b)[a ¢l 2 a' and similarly (a V b)?b el > b'. It follows that
E) ’

£(a,b,c) = (a V b)‘f‘a Ly and £(b,a,e) = (aV b)?b .

] I’

Now let L be a join-perfect lattice in which f(a,b,c) and f(b,a,c) exist
for all a,b,c € L. Let us consider any three elements x,u,v of L such that
u<x<v, Fromv > uV x we deduce the existence of a greatest pair (u',x')
such that

u' A x = u,

u'Vx'=v (hence u<u'<v).
Thus u' = £(u,x,v) is the greatest element of [u,v] such that its meet with x
is u, that is, the pseudocomplement of x in [u,v] . So we nave shown that L

is relatively pseudocomplemented.

The dual of 4.7 is easy to formulate. We shall denote the least pair (a',b')
satisfying the duals of conditioms (1),(2),(3) by (g(a,b,c),g(b,a,c)).
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Combining 4.7 and its dual we obtain

4.8. COROLLARY. Let L € P . Then f(a,b,c) and g(a,b,c) extst for all a,b,cEL
Zf and only <If L Zs double relatively pseudocomplemented.

5. Boolean products

As already noticed in Section 2, not every Boolean lattice is the direct
product of chains, but every Boolean lattice is the Boolean power of the two-
element chain. Generalizing the notion of Boolean power, S. Burris and H. Werner
have introduced the concept of Boolean product (which in the finite case coin-
cides with that of direct product). We refer the reader to [3] for the theory

of Boolean products.

We first show that the class P is closed under the formation of Boolean

products.
5.1. THEOREM. Every Boolean product of perfect lattices is perfect.

Proof. Let L be a Boolean product of a family (LX) X # @, of perfect lat~

>
tices. Let us first suppose that L is bounded. The§ ivﬁry Lx enjoys the same
property. By Proposition 1 of [10] the dual of L (i.e., the poset of prime
ideals of L) is order isomorphic to the cardinal sum of the duals of the Lx’
x € X, and L is perfect.

If L is not bounded and if a,b € L, a < b, then [a,b] is the Boolean pro-
duct of the [ax,bx], X € X. By the first part [a,b] € P and it suffices to apply

4.2 to conclude.

Now we use the notion of discriminator variety to extend the list of equi-
valences given in 4.5. and so we show that not all perfect lattices are Boolean

product of chains.

5.2, THEOREM. Let L €& QO 1
'y

(4) L s isomorphic to a double Heyting subalgebra (i.e., a sublattice closed

Then the following are equivalent:

under the binary operations % and + ) of a direct product of bounded chains;
(5) L€ go i and L 18 a double Heyting lattice;
(6) L g a Boolean product of bounded chains.

Proof. (4) ¢ (5) has been proved in 4.5.
(4) = (6). Any bounded chain, considered as a double Heyting algebra, has the

discriminator term

t0x,y,2) = ((GeEy) A Rt A x) V ((Gery) Vo) A 2).
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In fact,
if x =y, then x®* y=y % x=1and x +y =y + x =03
ifx <y, thenx% y=1,y%*x=x,x+y=y,y+x=0, x+ = 1 and yﬁ =0 ;
if x>y, thenx* y=y, y*x=1,x+y=0,y+x=x, xﬁ = 0 and y+ = 1.

Hence it is a simple algebra. Condition (4) implies that L is a member of the
variety generated by the class of bounded chains. Hence by Theorem 9.4 of [3],L
is isomorphic to a Boolean product of bounded chains.

(6) = (5). By 5.1 we have that L€ P

20,1
lattice since, if L is a Boolean product on X of the bounded chains Cx(x € X)

. Furthermore, L is a double Heyting

and if a,b € L, then a * b, taken in the direct product HCX, is equal to
1|N U bIX—N’ where N is the clopen set
faAb=a] =[a<b] =[a* b =1], and belongs to L by the patchwork property.

The preceding theorem shows that the subclass of double Heyting algebras

which are perfect in so far as lattices is a discriminator variety.

In case L is not bounded, one can easily extend 5.2 using "relative" notions.
Then relative double Heyting algebras are algebras L =< L; V,A;wi;+: ) of type
(2,2,4,4) where the quaternary operation (x,y,a,b) = (x * y)z (resp. (x + y)Z)

is the relative pseudocomplement (resp.the dual relative pseudocomplement) of
(xV (aAb)) AaVvhb)

with respect to
(yV(@aAb)A(@Vh)

in the interval [a A b, aV b].

Another consequence of 5.2 is that among the lattices which belong to 20,1
and cannot be decomposed into a Boolean product of bounded chains are those which
are not pseudocomplemented (see Example 4.1) but also those which are double
pseudocomplemented (hence double Stone lattices) without being double Heyting
lattices (see Example 4.6). Every Boolean decomposition of the lattice L
of Example 4.1 has a factor isomorphic to L. In other words, L is "Booleanly

indecomposable'. The two problems should be worth being considered:

1) describe all Booleanly indecomposable perfect bounded lattices;
2) is every perfect bounded lattice isomorphic to a Boolean product of Booleanly

indecomposable perfect bounded lattices?

It is clear that Boolean products are not sufficient to provide a represen-
tation of all perfect lattices as subdirect products of chains. Moreover a

subdirect product of chains is not necessarily perfect. We define the notion of
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E-subdirect product, which generalizes the concept of Boolean product, and we

prove that every E-subdirect product of chains is join-perfect.

5.3. LEMMA. Let L be a subdirect product of chains D, (i € I). Assume that

L Zg join-perfect. Let f,g,h € Lwith h 2 £ V g , and consider the following
subsets of 1 :

X=1{f=g] , Y=[f>gl, z={f<gl .
Then there exist a partition {U,V} of 1 and £',g' € L such that

YCUCXUY
and
£'10 = nlu, £'|z =z, g'|Vv=h|v, g'|x=gl|x.

AN I ,/'/.
e -~

Y X| Z
—— - ——>

It is easy to show that this condition is in fact equivalent to (PV).

5.4. DEFINITION. Let E be the family of all subsets of I which are equali-
zers, i.e. [£ = g] for some f,g € L. We say that the subdirect product L satis-
fies the E-patchwork property (shorter, that L is an E-subdirect product) if
for all f, g€ L and TE€E, £|, V g} € L.

The proof of the following theorem is then straightforward.

5.5. THEOREM. If L ©s an E-subdirect product of chains, then L is join—
perfect.

6. Perfectness is not a locally finite property

We prove the statement of the title by an example. More precisely:

THEOREM. There exist a perfect lattice L and a finite subset X of L such
that no finite sublattice of L containing X is perfect.

Proof. A) Comstruction of L. We first construct the dual of L.

For k 2 1(k €EN) let P be the set{a/Sk]a €EN, 0<ac< 4.3k} , ordered by

a/3" < b/3" if and only if |a-b| = 1 and a even, or a = b.
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For every k > | we define the mapping ¢k : P + P, by ¢k(a/3k+l) = [ai3]/3k,

k+1
where [x] denotes the largest integer not exceeding x. We first show ¢k is order
k+Kkzl%/3k+l

k+1

preserving. Indeed let us suppose that a/3
b-al =1.1f [a/3] = [/3] then ¢, (a/3""") = ¢ (6/3""1). 1 [a/3] # [6/3] and
if a<b, then b =3 ¢c and a = 3 ¢ - 1 for some ¢ € N. Since a is even, s0 1is

k+1 kk % k+1
c -1 and ¢k{a/3 3 (c-1}/3" < /3" = ¢k(b/3 )
the same.

: a is even and

L]

. If b < a the conclusion is

Of course the ¢k PP Pk give rise to an inverse family of sets

(Pk’ ¢k2jk 2 ) where ¢kk = id and ¢k£ = ¢k 0...o¢£_1 : Pg > Pk for £ > k.

Let P be the inverse limit 12@ (Pk’ ¢k2)' An element o of P is a sequence

) _ k -
o (aklk > 1) such that o € P, (hence o = ak/3 ) and ¢k(oak+1) = o for every
k. The last equality implies

kel |

K
%1 = Py /3 L1 /31 737 = dy oy )=on .

Since % € [0,4] for every k,a is an increasing bounded sequence and converges
inR to its limit .

Now let us prove that a - ak < 1/3k for every k. Indeed, from a = [ak+2/3]
we deduce a, < ak+1/3 < a 1, hence 3ak < & < Bak + 2.

k+l k+1
It follows o < O < ak + 2/3 and Opsl ~ ak < 273 .

Finally & ~ o = I (ay,, - o) < 1 2/3%1 = 1/3%
2k 2%
The characterization of P follows from the following two observations,
1) Let 0,8 € P be such that o # B . Then a and B ave uncomparable in P .

Let us suppose that o 2 B. Then oy (é) 82 for every %. Let { be large enough

for az(%)sg and 2/3% < | B-a|. From a, ® By we deduce[Bz~ | = 13 . on

[+3
L
the other hand, if we suppose B2 > oy in R, then 82 -y > 82 -0 & B - 1/32 -

a > 2/3£ - 1/3£ = 1/32 , a contradiction.



140

2) If o,B € P are such that o = B , then there exists a unique L such that
0 T B if k<h,B =8 =Barda =B-1/3%if k> 2 (or the symetric

situation). In particular o and B ave comparable in P.

Let % be the least index for which o, # B2 » say o < BQ in R,
We notice that if u, v € Pl , then Iu - vl is a multiple of 1/3£. Now let us
prove that o < 82 for every k 2 &, and more precisely that 82 - oy > 1/3k for
every k = £ . It is true for k = £ . Moreover

k+1 31<+1

g, - o =1/

L

P - - - k_
Kkl (62 ak) (ock+1 ak) = 1/3 2/3 .

From ak < BR for k > 2 follows o < Bl < é, hence Sk = 82 = é for every k 2 £.

. k - k k .
- = - = - = -
Since Bk o B2 o 1/3" and 0 =>a-1/3 B 1/37, we obtain

k

- 1/3% =g, - 173K,

x = Py 2

We are now able to prove that P is the cardinal sum of w two-element chains

w . . .
and 27 one-element chains. Indeed, if r € [ 0,4[ there exist one or two sequences

o € P such that a = r. To show this, let us write r in the form r = n + % p2/32

2=1
k
with n € {0,1,2,3} and Py € {0,1,2}. Then it suffices to take w=n + pX p2/3.
=1
k k
The numbers r of the formn + I p,/3, admit two writings (n+ I p /32 =
-1 R g1 F
k-1 k 0
n+ I p,/3,+ (p, ~1)/3° + I 2/3” for k # O and p, # O), whereas the other
9=1 FAS 2 k 2>k k

ones admit a unique writing.

It suffices to dualize the preceding construction to obtain the lattice L

that we desire. For k 2 1, we denote by L  the dual of Pk (Pk = XL ) and by
k

k
. . Rt |

wkl : Lk - L£ the mapping that is the dual of ¢k2 : P£ - Pk (wki = ¢k£)' Then

(Lk’ wkl) is direct family of lattices and L = 1i§ (Lk, wkl) . By duality

theory we have that XL = lim (Pk’ ¢k2) =P and L is perfect.

B) Conclusions. Since the ¢k£ are surjections, the wkﬁ are injections and

every Lk can be considered as a sublattice of L. We note that the Lk form a

nested family of finite sublattices of L whose union is L.

Take for X the sublattice Ll of L. Let D be a finite sublattice of L con-

taining Ll' There is k such that D S-Lk . By duality the inclusions Ll +D > Lk
give surjections P] « XD + Pk’ Since X, is the image of Pk’ X is connected.
It contains uncomparable elements since Pl does so.

Consequently D is not perfect.
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Addendum

Quite recently Hans Dobbertin communicated us an example of an indecomposa-
ble perfect lattice which is not a chain, so answering in the negative Question
1 of Section 4. Recall (see [G-J] : L. Gillman and M. Jerison, Rings of Conti-
nuous Functions, Van Nostrand, 1960) that a Tychonoff space X is called an
F-space if every finitely generated ideal of C(X), the ring of all continuous
real valued functions on X, is principal. If X is an F-space then by [G~J,
14.25(2) and 2.12(a)} , the lattice Z(X) of all zero-sets of X is perfect. If
moreover X is connected, then Z(X) contains no non-trivial clopen sets, whence
it is indecomposable. Now, by [G-J , 14.2], there exist connected F-spaces such

that Z{X) is not a chain.

The following example, due also to Hans Dobbertin, answers negatively
Question 3 of Section 4 and Question 2 of Section 5. Let XL be the one-point

Alexandroff compactification of w, endowed with the following order

T

It is easy to see that the only Boolean representations of this lattice are

o

o— o0
o—o—0—0

precisely the decompositions into a finite direct product.
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