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Abstract: This paper presents a structural characterization of affine complete and
locally affine complete semilattices.

The notion of affine completeness arises naturally when investiga-
ting geometric properties of (universal) algebras. Their general study
was initiated by H. WERNER [5]. However, from a different starting
point and without using the term “affine complete”, G. GRATZER
already asked in [2], Problem 6 about characterizing affine complete
algebras. Till now this problem has been solved only in some varieties
with good congruence structure for the algebras (see e. g. the intro-
duction of D. CLARK—H. WERNER [1] and K. KAARLI [3]). Here we
present a solution for semilattices, i.e., in a variety in which congru-
ences in general have no good behaviour but the operation can be
easily handled. We also characterize locally affine complete semilat-
tices.

1. Preliminaries

Throughout the paper meet semilattices will be considered.
A function (of finite arity) in a semilattice S is said to be compatible
if it preserves all congruences of S. Clearly, an n-ary function fin S

is compatible iff (f(x,...,x), fU1,.. V)€ \n/ 6(x;,y) for all
i=1

Xis- o Xy Vis - - o Va€ S, where 6(x, y) is the smallest congruence under
which x and y are congruent (see e.g. W.NOBAUER [4]; for unary
functions this condition is equivalent to saying that f preserves all
6(x, y); the latter congruences are called the principal congruences).

By a polynomial function in S we mean a function of the form
a A x;... A x,where ais either the empty symbol or an element of .S
and the set of variables may also be empty. A local polynomial
function in S is a function whose restriction to every finite subset of
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Sis a polynomial function. An n-ary function fis said to be essentially
n-ary if it depends on all its variables (i.e., for everyi = 1,...,n there
exist elements 4, .. ., 4,, g (depending on #) such that

f(als' sl 4, ai«l—l’ . ':an) :’éf(als e liy, a:'s Qip1yeen an))'

S'is (locally) affine complete if every compatible function in S'is a
(local) polynomial function. S is called (focally) n-affine complete if
every compatible n-ary function in S is a (local) polynomial function.
(Note that some authors use the term “locally affine complete” in a
different sense.)

We have noticed already that when investigating compatible unary
functions it suffices to consider principal congruences only. More-
over, for arbitrary eclements x,y in a semilattice S we have
6(x,y) =0(x A y,x) v 0(x A ,¥), hence we conclude that a unary
Sunction in S is compatible iff it preserves all principal congruences of
the form 0(b,a), b < a. Next we describe these congruences.

Lemma. Let b<a in a semilattice S. Then for any c,deS,
(c,d)eb(b,a)iff c=dorc,d<aandbrc=bnArd

Proof. Put 6 = 6(b, a) and
D= {cd|c=dorc,d<aandbrd=>b A c}.

Clearly, @ is an equivalence relation. Let c®@d and e€ S be arbitrary,
then it is also clear that ¢ A e®@d A e. Hence @ is a congruence and
(a,b)e D, s0 6 = . Conversely, let (¢, e P, ¢ # d. Then ¢,d < aand
bac=bAadhencec=ancbbac=>bndband=d, therefore
@ < ) and we are done.

Some notions and notations which will be important for us:
a >~ bifa > b and there are no elements between a and b; a || » means
that @ and b are incomparable.

A unary function f in a semilattice S is called a contraction
if f(s)<s for all seS. A function f is monotonous if
JCo, %) <0, p) whenever X, < 1y, ..., X, < Yy

By an ideal of S we mean a non-empty subset 7 such that for all
xeland se S, s < x implies s& 1. For an ideal I of S, 6, will denote the
Rees congruence belonging to I, i.e., ab;b iff a = b or aeland bel

Let s, 1€ S. By (s) we denote the principal ideal generated by s, i. .,
(s)={xeS|{x<s}. For t<s we denote by [t,s] the interval
{xeSlt< x<sh
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By a filter of S we mean a non-empty subet D such that for all
x,ye D and se S, we have x A ye D and x < s implies se D.

An inductive subset of S is an 4 < S such that any two elements
of 4 have a common upper bound in A.

An ¢element se S is said to be thick if thereisno t < s, t # 0, such
that () v [, s] = (s5).

For any congruence 8 and a€ S, [a], stands for the 6-class contai-
ning a.

The one-element semilattice, which is trivially affine complete, will
be disregarded in what follows.

2. Results
Our main results are the following.

Theorem 1. 4 semilattice S is affine complete if and only if it satisfies
the following conditions:

() it has not atoms,

(11) each of its elements is thick,

(iit) every proper ideal I of S such that (a) N I is a principal ideal for
all a€ S, is itself a principal ideal.

Theorem 2. A semilattice S is locally affine complete if and only if
it satisfies conditions (i), (ii), and

(i11") if I is a proper ideal of S such that (a) n I is a principal ideal
for all a€ S, then I is inductive.

We shall prove these theorems in several steps, which will be

formulated as separate propositions. Firstly we describe unary com-
patible functions.

Proposition 1. A unary function f(x) in S is compatible iff it is of one
of the following forms.

(a) f(x) is constant.

(B) f(x) is a monotonous contraction: there is an ideal I < S such
that (x) NI = (f(x)) for all xe S.

(») f(x) is monotonous but not a contraction: there are an element
0 # ae S and anideal I of the filter {xe S| x = a} such that if u > a and
uel then all z < u (ze S) are comparable with a, and we have f(x) = a
for x 2 a and (x) 0 I = (f(x)) for x > a.
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(0) f(x) is not monotonous: there are elements a,be S such that
a>— b, for all c # a we have ¢ A a< b, and

10 ={g B

a otherwise.

Proof . Put D = {x|f(x) < x}. Now xe D,y > ximplies y € D, since
otherwise (f(x),f(»))€ 6(x, y) would not hold. Hence if x, y¢ D then
x A y¢D either. By (f(x A »),f(x))€b(x A y,x) and f(x) £ x we
must have f(x) = f(x A y), similarly f(y) = f(x A ¥), s0 f(x) = f(»).
Therefore, if f(x)¢ D then f(f(x)) = f(x), i.e., f(x)e D. Thus for any
x,y¢ D we have f(x) = f(y)e D. Consequently, D is not empty (for §
has more than one element). Further, if x,yeD, x|y, then by
F,f(x Ay)eb(x,x Ay) we have f(xAy)<x Similarly,
f(x A y) < y and therefore f(x A ) < x A y, so x A yeD. All this
proves that D is a filter in S.

Let J denote the ideal in S generated by the f(x), xe D. For any
xeD, (x) nJ = (f(x)) must hold; in fact, otherwise there were ye D
and ze Ssuch thaty > f(y) =2 z £ f(x) and x > z, so, letting 6 denote
the smallest congruence which collapse the principal filter generated
by z, we would have (z, f(y))€ 6 and, by (x, y)€#, also (f(x),f(»)) €6,
although f(x)¢[z],.

Now we distinguish three cases:
1. D= S. Then we have J = I and (f) holds.

2.D#S and I=JnD #0. We prove first f(D) € D. By the
assumption there is an xe€ D such that f(x)e D. For any ye D, y # x,
we have (f(x),/(»)e€b(x,y), hence f(X) AxAy=f()AXAY.
Here the left-hand side belongs to the filter D, therefore f(y)e D. Take
an x,¢ D and put a = f(x;). Then we have, as was shown above,
a = f(z) for all z¢ D. Next we prove that D is the principal filter
generated by a. In fact, otherwise there were a ¢ < a, ce D; then
Xonc<c (for x¢D), and since a>c, (f(c),a) = (f(o),
S(x A ©))eb(x, A ¢, ¢) is possible only if f(¢) = a(> ¢), which con-
tradicts ce D.

We have seen that (x) nJ = (f(x)) if xe D and f(y) = a if y¢D.
Now, if I = {a} then f is constant and we are in case (a). Otherwise
there is a ue I, u > a. Suppose that for a ze S we have z< u, z||a.
Then f(z) = a and f(u) = u, hence (a, u) = (f(2), f (1)) € 6(z, u), which
contradicts z{{a. Hence we are in case (y).
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3. D# SandI=0. Take an x¢ D and put a = f(x),b = f(a). By
ae D we have f(a) < a but f(a) # a for I = 0, hence b < a. If there
were a ¢ such that b<c<a, then f(c)=a for c¢D, hence
(b,a) = (f(a), f(c))eb(a,c), which is impossible. This proves that
b—<a. Let c# a, then f(c) = a and (a,b) = (f(c), f(a))eb(c,a),
hence c A a< b.

Let now c>a. Then (b,f(c)) = (f(a),f(c))e b(a,c), hence
fle) Ana=bAa=>b. Furthermore, (f(c),f(f(c))eb(f(c),c) but
J(©¢D hence f(f(c)) =a, so (f(c),b) = (f(c) Af(c), anflc)e
€0(f(c), c), and by b < f(c) this implies f(¢) = b. Thus we are in
case (9).

Conversely, it is easily seen that the functions occuring in (a)—(9)
are compatible, and this completes the proof of Proposition 1.

Proposition 2. A semilattice S is (locally) 1-affine complete iff it
satisfies the conditions of Theorem I ( Theorem 2).

Proof. Let pe S be an atom. Then we define a compatible function
f(x) by putting a = p and b = 0 in Proposition 1 (6). This fis not a
local polynomial function because it is not monotonous. Next, sup-
pose s€ .5 is not thick: for some 0 % ¢ < s we have (s) = () v, 5].
Then we define D as the principal filter generated by ¢, put J = (s),
and by Proposition 1 (y) we obtain a compatible function f(x) which
is not a local polynomial function for it is not a contraction. Further,
let 7 <1 S'be a proper ideal such that (x) n I = (x') for all xe S. Putting
f(x) = x" we obtain a compatible function by Proposition 1 (8). If f(x)
is a polynomial function, say f(x) = a A x, then I = (a). Suppose now
that f(x) is a local polynomial function and take arbitrary elements
a,bel and ce S\ I Then there is a polynomial function p(x)
such that p(a) = f(a) = a,p(b) = f(b) = b,p(c) = f(c). Since c¢l,
p(c) # ¢, hence p is not the identical mapping of S. Also, p is not
constant, so p(x) = x A u for some ueS. Now p(a) =a,p(b)=0>b
imply a, b < u, hence also a, b < f'(u)€ I, which proves the inductivity
of I. Thus a (locally) 1-affine complete semilattice must satisfy the
conditions of Theorem 1 (Theorem 2).

Conversely, suppose that § satisfies (i)—(iii) and consider an
arbitrary compatible function f(x). If f'is a contraction then by (f)
there is an ideal 7<1S§ such that (x)nI=(f(x)). If I=S then
f(x)=x, if I#S then by (ili) /= (a) for some aeS, hence
f(x) = a A x. If fis monotonous but not a contraction, and | /| = 2
in (y), then (1) = (a) U[a, u], which contradicts (ii), so | /| = 1 and [

22 Monatshefte fir Mathematik, Bd. 99;4
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is constant. Finally, if fis not monotonous then we are in case (d); if
here b =0 then a is an atom, contrary to (i); if % 0 then
(a) = (b) v [b, a] follows from the condition in (8), and this contra-
dicts (ii).

If § satisfies (i), (ii), (iii’), then the only case which remains unsett-
led is when f(x) is a contraction, (f(x)) = (x) n I for a proper ideal
I <]S. Take now any elements sy,...,s,€S. The condition (iii’) im-
plies that any finite subset of 7 has an upper bound in 7, hence there
is a cel such that for i=1,...,n, f(s)<c, and therefore
S(s) < c As; on the other hand, ¢ A s€(f(s)), so f(s)=c A s,
i=1,...,n Thus we see that S is locally 1-affine complete.

Next we turn to the investigation of functions in several variables.

Observation 1. If a local polynomial function f(x,,...,x,) in S
properly depends on x; then f(a,,...,a,) < g, for all q,,...,a,€S. In
fact, we have b,, ..., b,, b; such that

f(bla"'abn) :’éf(bh"':bi—la bi,bi+ls- . -:bn),

so there is a polynomial function p(x,,...x,) which contains the
variable x; and coincides with f on

(al, .y a"), (bl’ ey bn), (bl’ LT bi_l, b:, bi+1, LU Y bn),
whence the assertion.

Observation 2. If S is locally 1-affine complete, and f/: S" — Sis a
compatible function for which there exist g,...,a,€S such that
flay,...,a,) £ a,i=1,...n, then fis constant. Indeed, this is obvious
for n=1. Suppose it is true for k<n. Then the function
f(a, x,,...,x,) is constant by the induction hypothesis, and likewise
the function f(x,,b,,...,b,) for arbitrary b,,...,b,. Putting the two
parts together we obtain the assertion.

Observation 3. If S is locally 1-affine complete, f:S"—> S
is a compatible function and f(a,...,a,)=u, then, since
fla,...a_,x,a,,,..,a) is a local polynomial function, we have
“flay,..,a_,ua,,,..,a)=u for i=1,..,n; in particular,
flu,...,u)=u.

Proposition 3. If S is (locally) 1-affine complete then it is (locally)
affine complete.

Proof. Suppose that S is locally (» — 1)-affine complete, we have
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to prove that it is n-affine complete. The heart of the matter is to show
that if f is an essentially m-ary compatible function in S then

f(a,...a)<a A..Ana,forall a,...,a,eS. This is what we start
with.

Suppose that there exist ay, ..., a,€ S such that f(a,, ..., a,) £ g for
some j. Choose q,, ..., a,€ S for which

[ifla,...a) £ a}l =m

is maximal. Note that by Observation 2, m # n.

Let now k = n —m, f(a,,...,a,) = u and assume, without loss of
generality, that u < q, ..., u < @, u & &,,,...,u % a,. By the induc-
tion hypothesis, the function f(q,, x,, ..., x,) is locally polynomial, so
by Observation 1 it does not depend on x;,, ..., x,.

Denote by A the set of all those elements ae S for which the
function f(a, x,, ..., X,) is not constantly zero and does not depend on
Xii1 - Xy Since a;€ A, A # 0. Our aim is to prove S = 4 U S; where
So = {beS|f(b, xs,...,x,) =0}, which contradicts the assumption
that f is essentially n-ary. We need several steps to obtain this result.

I. ae A= f(a,x,,...x,) < a. This is clear by the definition of 4
and m.

N acA,c,...,c,eS

"0Fw=Kv=f(a,¢...,c)

Suppose f(w, x,, ..., x,) depends, say, on x,. Take an element z < w.
Since f is compatible,

FW,cay oo, 2)f(a, 0y ooy Cuy, 2) EB(W, Q). 1)

By the Lemma we have

}a we A.

f(W, 62""9 cn—19Z) AW =f(as C27 e Cn—laz) AW=

=f(aac2a"'scn) AW=W,
which contradicts f(w,c,,...,¢,_;,2) < z<w. Consider now the
unary compatible function g(x) = f(x,¢,,...,c,). If it is constant
then f(w,c,...,c,) = v# 0; otherwise g(x) is a non-constant local
polynomial function and g(a) =v>=w, hence f(w,c,...,c) =
=gw)=w+#0. So f(w,Xx,,...,x,) is not constantly zero, and we
have we 4.

III. VseS f(s,%...,Xx,) <s.
If v=f(s,b,...,b) % s for some b,, ..., b,€ S then f(x,b,,...,b,) is a

22
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constant function. In particular, 0 # v = f(a,, b,, ..., b,) and for any
0+#w<uvalso f(w,b,,...,b,) = v. But g€ 4 and 1I imply we 4, so
fw, by, ....,b) < w< vbyl, a contradiction. Hence there is no we S
with 0 £ w < v and v must be an atom, a contradiction.

IV. ac A, a < b= beA. Since ac 4, there is 0 # we S such that

v=f(a,by,...bg,w,...,w) LW

for some b,, ..., b€ S. Suppose z = f(b, b,, ..., b, w,...,w) < w. Then
(v,z)€6(a, b). By the Lemma we have now v A a = z A @ and by III
vAa=v, hence v<z<w, a contradiction. This proves that
S, by, by, w) £ w, thus f(b,x,,...,x,) does not depend on
Xiky1s--+ X, and is not constantly zero.

V. acd,b<a=beAuUS,. We have to prove that, for any
by, ... by, the local polynomial function f(b,b,,..., 0, X oy, .o X,) 18
constant. Since a€ 4, f(a, by, ..., b, X4, 1, .-, X,) = v is constant. By
Il we have v < aand f(b, b,, ..., by, Xk, 1, -- - X,) < b < a, hence from

(f(a) sz sy bln xk+la AR Xn), f(bs b23 L] bk’ xk+l, LR xn)) € 9((1, b)
it follows that
vAb=f(b,by, .. b, Xty s X)) AD=F(b, by, . by, X1y ey X)
and the latter function is indeed constant.

Now we are ready to prove S=4uUS, Suppose
beB=S\(A4uS). Then f(b,x,,...,x,) must properly depend
on some of the wvariables x,,,...,x,, say on X, Let
f(b,by,...b)=c+#0. Take 0 s dec. Since the local polynomial
function f(b,x,,...,x,) depends on x, the unary function
f(b,b,,....b,_, x) is not constant (Observation 1). Since the latter is
a local polynomial function which takes on the value ¢ in b, and
d<c, we have f(b,b,,....,b,_,d)=d and by Observation 3
fd,...,dy=d+#0. Thus d¢S,. Since by IIl d < ¢ < b, IV yields that
de A is also impossible. Hence de B.

On the other hand, by II and Observation 3 we have for
u=fla,...,a) f(u..,u)=uecd, and then f(u, ..,u,d)=
= f(u,...,u,u) = u. Consider the unary function f(x, ..., x, d). Since
it takes different values on 4 and wu, it is not constant. Since
f(b,x,,...,x,) depends on x,, Observation 1 yields f(c,...,¢,d) <
< d < ¢, hence f(x, ..., x,d) is not the identity. So there exists a 1€ S
such that
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f,..,u,d=u=tAru, fd,. ..,d=d=tnsd

Now from u =t A uby IV we infer 1€ 4 and then from d = ¢t A d by
V it follows de A U S, a contradiction.

We have proved S = 4 U S,, which contradicts the fact that fis
essentially n-ary. This contradiction proves that

VivYa,,...,a,eS f(a,...,a) < a;.
The rest will be short. Our next step is the proof of the implication
QA ANG=b A...Ab = fla,...,a)=[f(b...b).

Let ¢y A...Aa,=d. Then for any i, d=a A...Aaq, A A
A... A b, < a; A b;. By the compatibility of f,

(f(ay,....a),f(by,...b))eb(a,b) v ... v 0(a,b,). 2)

Since
f(al5"-aarz)< d\<~ a; A bia

all equivalence classes [f(by, ..., @)]ya.5 are one-element. Hence (2)
implies f(a,,...,a,) = f(b, ..., b,), and we can represent f as a com-
position f=goh, where h:S"—> S is the polynomial function
h(x,. X)) =X A...A X, and g:§5— S Since g(x)=1(goh)
(x,...,%x) = f(x,...,x), g is a unary compatible function. Thus fis a
(local) polynomial function if S is (locally) 1-affine complete, and
Proposition 3 is proven.

Putting together Propositions 2 and 3, we obtain Theorems 1
and 2.

Remark. In Proposition 3 we have actually proven the following.
If S has no atoms and /> $” — S is a compatible function all of whose
restrictions to less than n variables are (local) polynomial functions
then fitself is a (local) polynomial function. One might be tempted to
try to eliminate from here the condition on the structure of S (i. e., the
lack of atoms) and obtain thereby a statement of a purely combin-
atorial kind on compatible functions. However, this is not possible,
as shown by the following example.

Consider the following function f(x, y) on the two element semi-
lattice:

It is easy to see that f(x, y) is not a polynomial function though all its
unary restrictions are polynomials.
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3. Examples

In what follows we shall treat affine completeness only, the similar
“local results” can be proven in the same way.

1. Finite semilattices are not affine complete for they have atoms.
2. Chains are not affine complete since only an atom can be thick
in a chain.
3. Theorem 3. A direct product S=1[]S; (111=22,|S/122) of
i€l -

semilattices is affine complete iff each S; has an identity and one of the
Sfollowing conditions is satisfied:

1) there are at least two components which have no zero;

2) there is a component which has no zero and has only thick
elements;

3) each S; has zero, no atoms, and only thick elements.

Proof. Suppose §; has no identity and fix any elements
ae S;(ieI\ {j}, a; # 1. Then X = {(5),c;] 5 < @,  # j} is an ideal but
not a principal ideal although for any f=(#),.; in § we have
(O X = (u), where ;= ,and u; = a; A 1, i # j. Hence in this case S
is not affine complete. Conversely, if all S; have identity then for any
ideal X we have X = X n (1) where 1 is the identity of S, so that the
ideal condition is trivially satisfied.

Let us consider the other two conditions. Clearly, S has an atom
if and only if all S; have zero and at least one of them has an atom.
Hence S has no atoms iff either there is an S; which has no zero or all
S; have zero but no atoms.

Next, consider any a = (q;{ie]) with at least two components
different from zero. Then a4 is thick in S Indeed, let
0# b=(blicl) < a, say, b, # 0 (then of course g, +# 0) and a, # 0,
j# k. Now, if b, = @ then for d=(d|d = a;,d, < b, d; < a; for
i # j,k) d and b are incomparable; if, on the other hand, b, < g, then
for c = (¢;l¢; < by, ¢ = @, ¢; < g for i # j, k) ¢ and b are incompar-
able. Finally, it is obvious that a = (4| a, = 0 for i # j) is thick iff g
is thick.

Putting together our conclusions, we obtain the statement of
Theorem 3.

Corollary 1. 4 direct product of chains S, is affine complete iff each
S; has an identity and at least two of the S; have no zero.
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Corollary 2. A direct product of affine complete semilattices S; is
affine complete iff each S; has an identity.

4. Theorem 4. The free product of infinitely many semilattices is
always affine complete.

Proof. Let S denote the free product of the semilattices S;
(ie I, I| = N,). Since I is infinite, S has no zero, hence it cannot have
atoms. Next, consider an arbitrary element s =5 A ... A 5 of S,
5€S,, i€l i # iy, if j # j' (clearly, every element of § admits a unique
decomposition of this form). For any € S, t < s, consider an i€ [ such
that ¢ has no component from S;, and take any x€ S;. Then s A x and
¢ are incomparable, hence (s) # (¢) U[t,s], which proves that s is
thick.

Let X be an ideal of S. We call a finite subset J < I an X-set if there
is an s€ X whose components (in the canonical decomposition above)
are exactly from the Sj,je J. We call J a minimal X-set if it is an X-set
but none of its proper subsets is so. Obviously, minimal X-sets exists
for every ideal X < S.

We show that if (@) N X is a principal ideal for all ae S then there
is a unique minimal X-set. Suppose first that J and J' are minimal
X-sets such that J # J', JnJ = K # 0. Let p, g€ X be represented by

J and J', respectively: p = Asi,q = /B’s,f, and put r = /&(si A S).

Then X N () is not a principal ideal because it contains p A r and
g A r, and the latter two elements have no common upper bounds in
XN (r). Let now J and J' be disjoint minimal X-sets, p,p'€ X be
clements represented by J and J', respectively. Take any re S\ X,
then p A re X and p’ nre X, and r ¢ X is the smallest upper bound of
p Arand p’ A r. Hence the latter two elements have no common
upper bound in X and therefore X N (r) is not a principal ideal. This
proves our assertion.

Let the ideal X be as before, and let J be the minimal X-set. We
prove that for every x€ X there is a z€ X represented by J such that
x < z. Let s€ X be an element which is represented by J, take an index
ie I\ J, which does not occur in the canonical decomposition of Xx,
and a ye S,. Now (y) n X is a principal ideal generated by u, say. For
thisuwehaveu=uAy=sAyu=zxAny Hereu=uny=sny
implies, by the choice of y, that in the canonical decomposition of u
the i-component is y; denoting by v the meet of the other components
of u, we have v > s and similarly v > x. Now (v) " X is a principal
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ideal generated by some z, for which z > x and, in view of z > s and
ze X, z is represented by J.

Fix now an index je J and denote by X; the set of those g€ S; which
occur as j-components for some elements from X. Obviously, X; < §;.
Take an index i¢ S;. Take an index /¢ J and an s;€ S;. Then X N (s)
is a principal ideal in S; let y stand for its generator. Here ye X and
y must have a j-component y;€ X;since je J and J is the minimal X-set.
Take now any ze Xj;,z is the j-component of some zeX. Then
z A ;€ XN (s) = (), hence z; < y,. This shows that X, = (y). More-
over, notice that the choice of y did not depend on j, therefore X = ()
for all je J. Finally, by the foregoing we know the existence of a y'€ X,
¥ =y, which is represented by J, and this )’ can only be /X y; as

Jj€e

X; = (y) for all je J. Now we have X = (J'), and the proof is complete.

Corollary 3. Every infinite free semilattice is affine complete.

Remark. One can also treat the free product of finitely many
semilattices, but the result misses the elegance of the infinite case
because too many conditions get involved in the formulation. There-
fore this will not be done here. As an example let it only be mentioned
that if S,..., S, are affine complete semilattices with zeros 0, S,
and S,,, is affine complete with identity 1,,, then the free product

of the §,,..., S,,, is not affine complete because for a = /n\O,- and
b=anl,., wehave (a) = (b)ulb,a].

Finally we exhibit two easy ways of constructing new affine com-
plete semilattices from given ones.

5. Every principal ideal of an affine complete semilattice is affine
complete. (This is an immediate consequence of Theorem 1.)

6. If S is an affine complete semilattice without identity then S' is
also affine complete (S' is obtained by adjoining an identity to S). In
fact, S' obviously satisfies conditions (i) and (iii), and as for condition
(i1), we only have to show that 1 is a thick element. Take any se S.
Since S has no identity, thereis a f€ S, s < £. Now, if s were a “cutting

“point” for 1 then it would be the same for ¢, which is impossible as
t is thick.

Acknowledgement. Thanks are due to T. Katrifidk for a question
which led to Theorem 4.
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