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Congruence lattices of complemented modular lattices

E. T. ScHMIDT

1. Introduction

The congruence lattice of a finite modular lattice is a Boolean algebra. In
contrast to this, I have proved in [6] that every finite distributive lattice D is
isomorphic to the congruence lattice Con (K) of some modular lattice K. (R.
Freese [1] has shown that there is a finitely generated K.) In this paper we prove
the related result for complemented modular lattices.

THEOREM. For every finite distributive lattice D there exists a complemented
modular lattice K such that the congruence lattice of K is isomorphic to D and K is
a sublattice of the lattice of all subspaces of a countably infinite dimensional vector
space over the two element field.

A modular lattice M will be called a locally finite complemented modular lattice
if for every finite subset X of M there exists a finite complemented sublattice M’
such that X < M’, in other words M is the colimit of its finite complemented
sublattices. In the proof of our theorem we construct such a K. The method of the
proof can be easily extended to infinite distributive algebraic lattices in which
every element is the finite join of join-irreducible elements. My conjecture is that
every distributive algebraic lattice is representable with a complemented modular
lattice. In the last section we present some ideas concerning this conjecture.

First we introduce some notations. If V is a vector space then L(V) denotes
the lattice of all subspaces of V. V' will always denote the countably infinite
dimensional vector space over the two-element field, 2. V,, is the n-dimensional
vector space over 2, i.e. ¥, =2". Further, £=L(V) and £, =L(7,,). The finite
dimensional subspaces of V" form an ideal £/ of £. A subspace X of ¥V is cofinite
dimensional iff ¥/X is finite dimensional. These form a filter £ of £. Obviously,
LN =D, Let £F =L U, then F* is a {0, 1}-sublattice of £ and £* is a
locally finite complemented modular lattice. It is easy to show that Con (£*)=3,
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where 3 denotes the three-element chain. In the construction of the com-
plemented modular lattice K with a given congruence lattice, a number of copies
of £* are “hooked together”.

Let L be a complemented sublattice of £. A prime quotient a/b of L is not
necessarily a prime quotient of £. Consider in the interval [b, a] a {0, 1}-sublattice
M. Then LNM={a, b}. LUM is a partial lattice (relative sublattice of &£). We
would like to determine the sublattice generated by this partial lattice in a special
case. This sublattice will be denoted briefly by L[M] and is called the extension of
L by M (in &). Let us assume that L is a sublattice of &, L =% If a/b is a prime
quotient of L and M is a {0, 1}-sublattice of a/b then it is easy to show that
Con (L[M]y=Con (M)+1. On this way we can easily represent all finite chains.
In this paper we shall generalize this construction to represent all finite distribu-
tive lattices.

2. Normalized frames

To describe the extension L[M] in &£ we need the concept of a normalized
frame, which was introduced by J. von Neumann [4].

The elements a;, dy,...,d, and ¢ (j#k j,k=1,2,...,n) of a modular
lattice K form a normalized frame of order n in K if the following relations hold:

(i) (a;;i=1,2,...) is independent sequence.

(i) {0, a;, a;, ¢, a; v a;} (i#]) is a diamond, ¢; = ¢; and ¢; = (ca V ci) Al@; v ;)

fori, j, k=1,2,...,n, i#j#k#i

We denote this frame by F=(a;, ¢;). The sequence (a;;i=1,2,...,n) is
called the basis of &. Let (a;;i=1,2,...) be a denumerably infinite independent
sequence and c; (i#),i,j=1,2,...) elements of K. If these satisfy (ii) then
F =(a;, c;.) is called a normalized frame of order .

Two elements a; and a; in K are perspective, in symbol a; ~a; if a; and g
have a common complement c¢. In this case {0, a, a, cA(a;va), ava} is a
diamond. Conversely, if {0, a;, a;, ¢/, a; va;} is a diamond with suitable ¢’ then
a; ~ a;. The independent sequence (a;; i=1,2,...) finite or denumerably infinite
is called homogeneous if for every i, j (i#j), a; ~ a; (see [4] Definition 3.1 Part II).
If F =(a;, ¢;) is a frame then the basis (a;, i =1, 2, .. .) is obviously homogeneous.
Conversely, every homogeneous sequence (a;, i =1,2,...) of K can be complete
to a normalized frame, as follows:

LEMMA 1. ((4], Lemma 5.3, Part II). Let (a;; i=1,2,...) be a homogeneous
sequence in a modular lattice K. There exists a normalized frame F = (ai, cit.); the
elements c¢,; (i=1,2,...) may be chosen arbitrarily such that {0, a,, a;, c1;, a1V &;}
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is a diamond and the reaming c; —s are the uniquely determined by ¢ =
(cyvendnlavay).

In the lattice ¥, we consider a maximal independent set of atoms,
{ay, ay, ..., a,} This is obviously a homogeneous sequence. By Lemma 1 there
exists a normalized frame (a;, ¢;) of order n. Then {a;, ¢y;i,j,k=1,2,...,n}isa
generating set for &,. Let (%) be the sublattice of £ generated by a frame . C.
Hermann and A. P. Huhn [2] have proved the following:

LEMMA 2. Let & be a normalized frame of order n or » in £. Then the
sublattice (F) generated by % is isomorphic to ¥, resp. £'. The elements of F are
atoms of (F).

Let F=(a; ¢i;i,J, k=1,2,...,n) be a normalized frame in £, and let b =a,.
We define the following elements:

b'=b, bi=(bvcy)ra, dli=(bva)ncy.

An easy computation shows (see [3]) that {0, b, b’,d", b'vb'} is a diamond.
Consequently (b';i=1,2,...,n}is a homogeneous sequence, and by Lemma 1
there exists a normalized frame %° = (b', d") of order n, where d™* =c; and
bi=a,.

let ¥=(b,d,;r s, t=1,2,...,m) another normalized frame such that b, =a,
forr=1,2,...,m,ie. 9 is contained in the principal ideal (a,]. We will define a
new normalized frame %¥. First we determine the basis: bi=(b,)' = (b, vcy)Aa;
(i=12,....,n;r=1,2,...,m). We write these elements in a matrix

bl .- Bl

bt by

The elements of the first row form a homogeneous independent sequence,
consequently the same holds for all rows. On the other hand, a4, ..., a, iS an
independent sequence, thus by Theorem 1.4.2. of [4] the elements of B form an
independent set. The column b}, b2, ..., b" is the basis of the frame %, conse-
quently is again a homogeneous sequence. Thus we get that the elements of B
form a homogeneous set. We complete this to a normalized frame of order m - n
by defining the elements dii (i=1,2,...,m) having the property that
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{0, b1, bi, dii, b1 v b} is a diamond (see Lemma 1). Let d]} be the element d,, € 4.
In the frame %% we have dii=(b,va;,) Acy;. Let d=d! and finally we define d;;
to be (dilvdi)A(bivbY). The elements of B together with the elements di!
determine the normalized frame % '

By Lemma 2, (%) is isomorphic to %,,,.. First we assume that a, =\/!", b, i.e.
the lattice () generated by ¥ is a {0, 1}-sublattice of the principal ideal (a,].
Then we have the isomorphism ¢(x)=(xvey;)Aaa; from (a,] onto (a;], hence
a; =\/™, b.. Similarly, by inspection we get c¢,; =\/"™, dY, i.e. ¥ is contained in
(F¥). The principal ideal (a,] of (F¥%) contains ($)=%,. But (FH=2Z, ..,
consequently the principal ideal (a,] of (%¥) must be isomorphic to %,,.

Now, we return to the description of L[M] in the case of L=, and M is a
locally finite complemented modular lattice. L is generated by a normalized frame
F =(a;, c;.) or order n, and a,/0 is a prime quotient of L. First assume, that M is a
finite complemented modular {0, 1}-sublattice of (a,] in L. Then M is the direct
product of projective geometries, i.e. M =M, X- - - X M, where each M, is gener-
ated by a normalized frame %; of order m;. Similarly as before we can extend each
%, to a normalized frame %% (i=1,2,...,t) of order n-m;. The %,,..., %,
form an independent set of frames in the sense that the join of the corresponding
bases is independent. Thus we get that F% ..., % is again an independent
sequence of frames, i.e. if (F%, ..., F%) denotes the sublattice generated by
these frames then

LIM]=(F*%, . ., Fo=](F%.

i=1

Consequently the ideal (a,] of L[M] is isomorphic to M and for every congruence
relation 0 of (a;]=M there exists exactly one congruence relation 0 of L[M]
such that for a,be M a=b(0) iff a=b(0) in M.

Now we are ready to prove:

LEMMA 3. Let L be a sublattice of & isomorphic to £ or &, and let a/b be a
prime quotient of L. If M is a locally finite complemented {0, 1}-sublattice of [b, a]
then [b, a]NL[M]= M. For every congruence relation 6 of M there exists exactly
one congruence relation 8 of L[M] such that for a, be M a=0b(0) iff a=b(8) in M.

Proof. L is isomorphic to £f (or £,). M is locally finite, i.e. M is the colimit
of finite complemented modular {0, 1}-sublattices M,, te T. Then L[M] is the
colimit of the lattices L[M,]. Each congruence relation 8 of M is determined by
the system {8 | M,, te T}, i.e. 6 can be extended to L[M] iff the same is satisfied
for all 8| M, in L[M,], which is already proved.
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If we replace in the definition of the independent set resp. normalized frame
the two lattice operations we get the notation of the dually independent set resp.
normalized dual frame.

In the countably infinite dimensional vector space ¥ we choose a basis in
matrix form:

€11€12€13 " " *

€21€22€73 " * *

where this matrix has infinite many rows and columns. Let a; be the subspace
spanned by the i-th row, i.e. @, =[¢;,, €;5,...]. Then (a;;i=1,2,...) is a denum-
erably infinite independent set. Let ¢; be the subspace [e;; +¢;1, €x 1+ €js, . . .] then
it is easy to show that {0, a;, a;, ¢;, a; va;} is a diamond, i.e. F=(a;, ¢;) is a
normalized frame of order « in £.

The principal ideal (a;] of & is again isomorphic to Z. In the following % will
denote always this special frame.

Let a; be subspace of V" spanned by [e¢;.;7=1,2,...,k=1,2,...,j#i]. Then
a; is a complement of g; in the lattice & (a; has many other complements, but if
we fix a basis then g, determines a/ uniquely).

Let cj; defined by ¢; v(ainaj) then F =(aj, cj,) is a dual frame. This &’ is
uniquely determined by % (in the given basis) and is called the complement of %.
The sublattice L =(%) generated by & is isomorphic to &£’ (Lemma 2) and
FUF' generates a sublattice L* isomorphic to £*.

3. The construction of a complemented lattice

Let F=(a,cy) be our given frame in £ and let M be a locally finite
complemented {0, 1}-sublattice of the principal ideal (a;]. Every congruence
relation @ of M is determined by its kernel I, which is a neutral ideal of M. By
Lemma 3 the congruence relation @ € Con (M) has exactly one extension to L[M]
(L denotes (%)), i.e. 8] (a,]=0.

L[M]is a relatively complemented lattice, hence 6 is determined by its kernel
I. Then 6|(a,]=6 yields that IN(a,]=1 We say that I is the extension of I
(€ M) to L[M].

(a,] and I are two ideals of L[M] such that I =(a,]NT is a neutral ideal of
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(a,]. Let S be the sublattice of L[M] generated by (a,] and I. We prove that
every element s of S has a representation s =a v x, where a<a,, xeI, a,As=a.
By assumption M is a locally finite complemented modular lattice, which implies
that we may assume, M is finite. Then I is a principal ideal, say I = (u]. Let v be
the complement of u in M then I is a neutral ideal, hence I is a direct factor, i.e.
M = (u]%(v], and S = Ix(v], i.e. every element s € S has the given representation.

Every congruence relation 6 of S is the join of 8, Con (M) and 6, < Con (I).
By Lemma 3 8, is determined by its restriction to I, i.e. € is determined by its
restriction to I, i.e. 8 is determined by a congruence relation of M. This proves
Con (S)=Con (M).

Let I' be the cokernel of 6 in M, i.e. I'={x; xe M, x=1(6)}. Then I' is a dual
ideal of M. Consider the sublattice I generated by the dual frame %'. The
quotients a;/0 and 1/a; are transposed, hence we can assume that M is a
{0, 1}-sublattice of [a}, 1]. Similarly as before we can extend I’ to a filter I' of
L'[M]. Let S’ be the sublattice generated by [a}) and I, then Con (S’) = Con (M).
Obviously SNS'= &, and K=SUS’ is a locally finite complemented modular
lattice. (Figure 1). This K is a sublattice of L*[ M] where L* is the sublattice of &
generated by FU F'.

Fig. 1.

4. The proof of the Theorem

Let D be a finite distributive lattice. J(D) denotes the poset of all nonzero
join-irreducible elements of D. For an arbitrary poset P, call A < P, hereditary iff
x€ A, y=x imply that ye A. The set #(P) of all hereditary subsets of P is a
distributive lattice. It is well-known that D is isomorphic to #(J(D)), i.e. D is
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determined by J(D). Therefore we have to prove that for every finite poset P
there exists a locally finite complemented modular lattice K(P) such that
Con (K(P)) is isomorphic to #(P). To construct K(P) we induct on the size of P.
If P has only one element, P =1 then K(1) is the two-element lattice, which is
obviously a {0, 1}-sublattice of &£.

Now, suppose |P|=2 and let m be a maximal element of P. Let m covered by
my, ..., m in P. We denote by Q the poset P\{m}. |P|=2 implies that Q is not
empty. By induction, there exists a complemented modular lattice K(Q) and an
isomorphism

@ : ¥ (Q)— Con (K(Q)).

This K(Q) is a {0, 1}-sublattice of £. Let (m,, m,, ..., m) be the hereditary
subset of Q generated by my, m,, ..., me. Then o((m, m,,...,m))=06 is a
congruence relation of K(Q). The lattice K(Q) is complemented, ie. 8 is
determined by its kernel I. This I is an ideal of K(Q). Let I' by the cokernel of 6,
rLe. '={x; xc K(Q), x=1(8)}.

Let M be the lattice K{(Q). We assume that M is a {0, 1}-sublattice of {a,]
where ¥ = (a;, ¢;) is our fixed frame. In the previous section we constructed from
FUF, M and I a lattice K. We define K(P) to be this lattice K. Then we have to
prove that Con (K(P)) = #(P).

K(P} is a complemented lattice, therefore every principal congruence relation
has the form 8(0, u). If u < S then 6(0, u) is the extension of a congruence relation
of M=K(Q). If ueS', then u=a’Ax, for suitable a’=a, xeI' and a’=uvaj.
Thus we get O(unrnal, u)=0(aj,uvay)==0e(as,a’)=0(ay, a), i.e. Ounray, u) is
again the extension of a congruence relation of M. Further, 8(0,u)=
00, unai)vunai, u) implies that 6(0, u) is the join of 6(0,urayi) with a
congruence relation (6(u A aj, u)) which is the extension of a congruence relation
of M. The congruence relation 6(0, uAaj) is equal 6(0, a;) for arbitrary ue§’,
i.e. every join-irreducible congruence relation of K(P) is either the extension of a
join-irreducible congruence relation of M or it is 6(0,a;). It is clear that
6(0,a)=6, where #<Con (M) if and only if 8=<¢((m;)), which proves that
J(Con (K(P)) is isomorphic to P.

5. On the representation of infinite distributive lattices
In the introduction we have mentioned the following

Conjecture. Every distributive algebraic lattice is isomorphic to the congruence
lattice of some complemented modular lattice.
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In this section we make some comments to this conjecture. In [7] I have
proved the following theorem: the ideal lattice of a distributive lattice is the
congruence lattice of a lattice. Later P. Pudlak [5] has given a new proof for this
theorem. His proof reduces the characterization problem to investigation of the
representations of finite distributive lattices. First we present this approach.

The compact congruences of a lattice L form a distributive semilattice
Con°® (L) whose ideal lattice is Con (L). (A semilattice S is called distributive iff
a =<byv b, implies the existence of agy, a,€ S, a; <b, i =0, 1 with a = ayva,). Let
L; be a {O}-sublattice of L, and let A; : L; > L; the identical embedding given by
inclusion. Then A; induces a homomorphism Con (A;) of the semilattice Con® (L;)
into Con® (L;) which maps each 6 € Con® (L;) to the smallest congruence of L; that
contains the image of 6. If S; and S; are semilattices with least elements then
S; © S; means that S; is a {O}-subsemilattice of S;. Let vy;; be the identical embedding
given by inclusion. Let D be a distributive algebraic lattice. The compact elements
of D form a distributive semilattice S. P. Pudldk has proved that "every finite
subset of S is contained in a finite distributive subsemilattice of S, i.e. the
distributive semilattices are locally finite. This implies that the system {S;; i € I} of
all finite subsemilattices of S is a directed system. Let &=
{SuieLv;:S»S,S =S} be the category of all finite distributive {0}-
subsemilattices of S, where v; are the identical embeddings. Then S with the
embeddings v;:S;>>S iel is a colimit of &. Let be noted that every finite
(distributive) semilattice is a lattice.

Suppose that we have a ‘“construction” # which assignes to each S; €& a
lattice L;=#(S;) and an isomorphism ¢ :S; — Con® (L;) such that for each
semilattice-embedding S, »%> S, there is a lattice-embedding L;»%i> L,
which satisfies the following two properties:

() Ay is the identity on L; and Ay oA, =Xy if S;= S, S,.

(ii) ¢oy; =Con (Ay)ey (Fig. 2.)

P. Pudlik has proved that under these assumptions there exist a colimit L of
the system $={L,icl L, = ¥(S,), A :Li>— L;} and Con® (L)=S, i.e. Con (L)=
I(S) = D. If the lattices L; are complemented modular lattices then the same holds

Yij
S;>——"=" 5 §;

Con(A;;,
Con(L;) — Con(L))

Fig. 2.
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for the colimit L. Therefore to solve our conjecture we need to give a “‘construc-
tion” #, which assings to each finite distributive lattice S; a complemented
modular lattice L; satisfying the condition (i} and (ii).

We illustrate the idea of such a construction #. Let K{(S) be the com-
plemented modular lattice which is assigned to S by #. Then Con (K(S))=S. Let
S=2" where 2 denotes the two-element lattice. Con (K(2"))=2" implies that
K(2") is the direct product of a simple complemented modular lattices. We may
suppose that these direct factors are isomorphic. Let C denote this simple lattice.
The three-element chain 3 is a sublattice of 22, thus we get that K(3) is a
{0}-sublattice of K(2%)=C?. Since the congruence lattice of a finite modular
lattice is a boolean lattice, Con (K(3))=3 implies that C is an infinite simple
complemented modular lattice. Such lattices are the continuous geometries, i.e.
the infinite dimensional, continuous, complemented modular lattices.

Consider the following embedding, 3 % 2* (Figure 3).

Let I be a nonprincipal ideal of C and let I' be the “complement” of I, i.e.
I'={y;y=x', where xel}. Then INI'=¢5. We define L to be IUI'. Every
interval of a continuous geometry is again a continuous geometry, consequently a
simple lattice. Thus we get, Con (L)=3. We give an embedding & of L into C* as
follows: if x €I then 8(x)=(x,0)eC? and for yeI' 8(y)=(1, y). It is easy to see
that the condition (ii) is satisfied for K(3)=L, K(2%) = C?. (In the definition of
K(3) we considered only the embedding v, the correct definition of K(3) is more
complicated).
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