REMARK ON COMPATIBLE AND ORDER-PRESERVING FUNCTION ON LATTICES

by E. TAMÁS SCHMIDT

1. Introduction

Let k be a positive integer. If L is a lattice then $F_k(L)$ denotes the lattice of all functions $f: L^k \to L$. A function $f \in F_k(L)$ is called *compatible* if for any congruence relation Θ of L $a_i \equiv b_i(\Theta)$, i = 1, 2, ..., k imply $f(a_1, ..., a_k) = f(b_1, ..., b_h)(\Theta)$, f is called *order-preserving*, if $a_i \leq b_i$, i = 1, ..., k, implies $f(a_1, ..., a_k) \leq f(b_1, ..., b_k)$. The set of all k-place compatible functions on L denoted by $C_k(L)$, the set of all k-place order-preserving functions on L is $OF_k(L)$. In this paper we deal with the following problem: which modular lattices satisfy $C_k(L) \subset OF_k(L)$?

For distributive lattices this problem was solved by D. Dorninger and G. Eigen-Thaler [1]:

THEOREM 1. Let L be a distributive lattice. Then $C_k(L) \subseteq OF_k(L)$ if and only if L contains a proper interval which is a Boolean lattice.

In [2] we have given a simple modular lattice M with the property that none of its proper intervals is complemented. In a simple lattice every function $f: L \rightarrow L$ is of course compatible, hence Theorem 1 cannot be generalized for an arbitrary modular lattice. In [5] R. WILLE and the author has proved the following statement:

Let L be a modular lattice of finite primitive length. Then $C_k(L) \subseteq OF_k(L)$ if and only if L contains a proper interval which is a Boolean lattice.

In connection to this theorem we prove the following

THEOREM 2. There exists a modular lattice L satisfying the following conditions:

- (i) L is the subdirect product of finite lattices;
- (ii) there is a 1-place compatible function $\varphi \in C_1(L)$ on L which is not order-preserving;
- (iii) none of the proper intervals [a, b] of L is complemented.

We give the proof in two steps. Let [a, b] and [c, d] be two isomorphic intervals of a chain C. The isomorphism $f: [a, b] \rightarrow [c, d]$ is called an interval-isomorphism, f is of course a partial operation on C, and can be extended to a unary operation \overline{f} as follows: $\overline{f}(x)=f(x)$ for all $a \le x \le b$, $\overline{f}(x)=f(a)$ if $x \le a$ and finally $\overline{f}(x)=f(b)$ for $x \ge b$. We say that \overline{f} is the operation induced by f. The congruence relations of the partial algebra $\langle C; f \rangle$ are exactly the congruence relations of $\langle C, \overline{f} \rangle$. f is determined by \overline{f} , hence we can use the same letter for both.

First we construct an algebra $\mathscr{C} = \langle R, \vee, \wedge, f_i \rangle$ $i \in I$ where R denotes the bounded chain of rationals, the f_i -s are special interval-isomorphism. This will be a subdirect product of finite algebras and \mathscr{C} satisfies (ii), (iii). The second step is the construction of a modular lattice L which contains \mathscr{C} as a sublattice and satisfies the given properties.

2. The construction of \mathscr{C}

It is well-known that a bounded countable chain which is dense-in-itself is determined up to isomorphism. Therefore we can start with the chain R of rational numbers $\frac{k}{2^n}$ where $-2^n \le k \le 2^n$, n = 0, 1, ... We take every $r \in R$, $r \ne \pm 1$ in two copies r and r', i.e., we split the elements. We set 1=1', -1=(-1)'.

Then we define on the set $K = \{r, r'; r \in R\}$ an ordering

- (1) r is covered by r' $(r \neq \pm 1)$;
- (2) $r' \le s$ if and only if $r \le s$ in R.

K is a chain and R is a subchain of K. The prime intervals of K are the following: [r, r'] $(r \neq \pm 1)$. The function defined by $f_{10}(r) = r+1$, $f_{10}(r') = (r+1)'$, $f_{10}(-1) = 0'$ maps [-1, 0] onto [0', 1]. f_{10} is an interval-isomorphism. On the same way we get functions f_{21} , f_{20} defined on $\left[-1, -\frac{1}{2}\right]$ resp. $\left[\left(-\frac{1}{2}\right)', 0\right]$, $f_{21}(r) = r + \frac{3}{2}$, $f_{21}(r') = r + \frac{3}{2}$ $=\left(r+\frac{3}{2}\right)', f_{21}(-1)=\left(\frac{1}{2}\right)'; f_{20}(r)=r+\frac{1}{2}, f_{20}(r')=\left(r+\frac{1}{2}\right)'.$ Figure 1 helps to vis-

On the same way we can define for $n \ge 1$, $0 \le k < 2^{n-1}$ the function f_{nk} :

$$f_{nk}: \left[\left(-\frac{k+1}{2^{n-1}} \right)', -\frac{k}{2^{n-1}} \right] \to \left[\left(\frac{k}{2^{n-1}} \right)', \frac{k+1}{2^{n-1}} \right],$$

$$f_{nk}(r) = r + \frac{2k+1}{2^{n-1}}.$$

If $r \in \mathbb{R}$, $r \notin \{0, +1, -1\}$ then we define

$$g_{r}: [-r, (-r)'] \to [r, r']$$

Finally, let φ be defined by $\varphi(1) = -1$, $\varphi(-1) = 1$, $\varphi(-r) = r'$, $\varphi((-r)') = r$. The next step is the description of the congruence relations of $\langle K, \vee, \wedge, f_{nk}, g_r \rangle = \mathcal{X}_0$. First we define for each natural number $n \ge 1$ an equivalence relation Θ_n on K: $x = y(\Theta_n)$ if and only if there exists a k, $0 \le k < 2^{n-1}$ such that either $\left(\frac{k}{2^{n-1}}\right)' \le x$, $y \le \frac{k+1}{2^{n-1}}$ or $\left(-\frac{(k+1)}{2^{n-1}}\right)' \le x$, $y \le -\frac{k}{2^{n-1}}$. In Figure 1 the wavy lines denote the Θ_2 -classes. There are two Θ_1 -classes: $\{x, x \ge 0'\}$ $\{x; x \le 0\}$. It is easy to show that Θ_n is a congruence relation of \mathcal{K}_0 , \mathcal{K}_0/Θ_n is finite and $\bigwedge_{n=0}^{\infty} \Theta_n = \omega$. By an easy computation — applying the operations f_{nk} — we get that the principal congruence

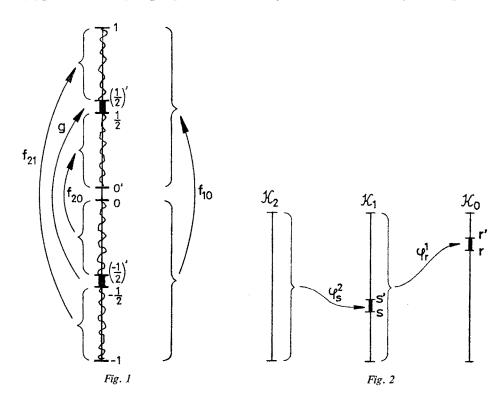
$$\Theta\left(\left(\frac{k}{2^{n-1}}\right)', \frac{k+1}{2^{n-1}}\right)$$

is Θ_n .

Principal congruences of \mathcal{K}_0 are the congruence relations Θ_n and the congruence relations $\Theta(r, r')$. All these are compatible with φ , consequently φ is a congruence-

preserving mapping, and φ of course is not order-preserving. \mathcal{K}_0 satisfies (i). \mathcal{K}_0 contains complemented intervals, these are the prime intervals [r, r'].

For each natural number i we take an isomorphic copy \mathcal{K}_i of \mathcal{K}_0 such that $i \neq j$ implies $\mathcal{K}_i \cap \mathcal{K}_j = \emptyset$. We put an isomorphic copy of \mathcal{K}_1 into the prime interval [r, r'] of \mathcal{K}_0 , i.e., we have an isomorphism $\varphi_r^1 \colon \mathcal{K}_1 \to [r, r']$, satisfying $\varphi_r^1(1_1) = r'$, $\varphi_r^1(0_1) = r$, where 0_1 resp. 1_1 are the zero resp. unit elements of \mathcal{K}_1 (see Figure 2).



Using this construction for all prime intervals of \mathcal{K}_0 we get a new chain C_0 . φ_r^1 is an isomorphism, hence to the interval-isomorphisms of \mathcal{K}_1 there correspond intervalisomorphisms of $\varphi_r^1(\mathscr{K}_1) \subset C_0$. By this construction, the prime intervals of \mathscr{K}_0 in C_0 are isomorphic to \mathcal{X}_1 i.e., to \mathcal{X} . Continuing this construction we define the isomorphisms

$$\varphi_r^2: \mathscr{K}_2 \to \mathscr{K}_1$$

then $\bigcup_{\substack{r,s\in R\\r,s\in R}} (\varphi_s^2(\mathscr{K}_2)\cup \varphi_r^1(\mathscr{K}_1)\cup \mathscr{K}_0)$ is a chain C_1 . On this way we get a sequence of chains $C_0\subset C_1\subset \ldots$. Let \mathscr{C} be the chain $\bigcup_{\substack{i=0\\i\in R}} C_i$, i.e., the direct limit of the C_i -s.

The conditions (ii) and (iii) are obviously satisfied. We prove that \mathscr{C} is the subdirect product of finite algebras. We define special congruences Φ_n on $\mathscr{C}(n=0, 1, ...)$ such that \mathscr{C}/Φ_n is finite and $\bigwedge_{n=0}^{\infty} \Phi_n = \omega$.

Studia Scientiarum Mathematicarum Hungarica 14 (1979)

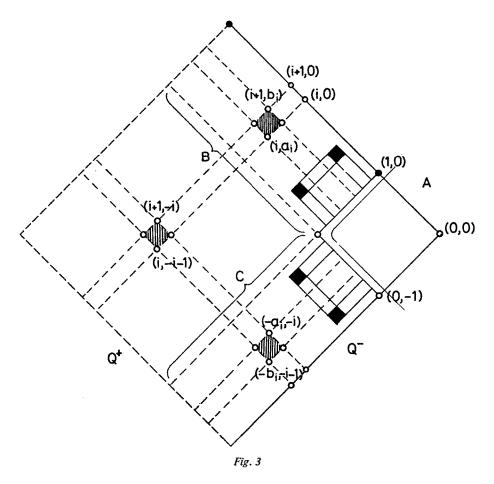
By the isomorphism $\mathscr{K}_0\cong\mathscr{K}_i$ the image of the congruence relation Θ_n is denoted by Θ_n^i . Let us take Θ_1^j on \mathscr{K}_j for $j{>}n$ and Θ_n^i on \mathscr{K}_i for $i{\leq}n$. By the construction of \mathscr{C} the image of these congruences defines a congruence relation Φ_n on \mathscr{C} , Φ_n is the transitive hull of all Θ_1^j and Θ_n^i $(i{\leq}n{<}j)$. Then it is easy to show that $\wedge \Phi_n = \omega$. On the other hand from $\mathscr{K}_0/\Theta_1\cong 2$ it follows that \mathscr{C}/Φ_n is finite.

3. The construction of the modular lattice L

We denote the chain of all non-negative rational numbers by Q^+ and Q^- is the chain of all non-positive rationals. We define a sublattice D of $Q^+ \times Q^-$. Let $A = \{(x, y); 0 \le x < 1, -1 < y \le 0\} \subseteq Q^+ \times Q^-, B = \{(r, -1); r \ge 1\}$ and

$$C = \{(1, r); r \leq -1\}.$$

Then $(Q^+ \times Q^{-1}) \setminus \{A \cup B \cup C\}$ is a sublattice D (see Figure 3).



Studia Scientiarum Mathematicarum Hungarica 14 (1979)

The elements $\{(1, r); -1 < r \le 0\} \cup \{(r, -1); 0 \le r < 1\}$ form a bounded countable chain which is dense-in-itself, hence we can identify this with the chain \mathscr{C} . If φ is the congruence-preserving function which is not order-preserving then we can assume: $\varphi((1, r)) = (-r, -1)$. Then we can extend this φ to D: $\varphi(x, y) = (-y, -x)$.

Let M_3 be the five-element non-distributive modular lattice and let R be the bounded chain of rationals. Then there exists a modular lattice $M_3[R]$ having the following properties:

- (a) $M_3[R]$ contains a $\{0, 1\}$ -sublattice $\{0, a_1, a_2, a_3, 1\}$ isomorphic to M_3 ;
- (b) the interval $[0, a_1]$ is isomorphic to R.

This lattice is determined up to isomorphism (see [4]).

An important property of $M_3[R]$ is that Con $(M_3[R])$ is isomorphic to Con (R). The intervals $[0, a_1]$ and $[0, a_3]$ are projective.

On $\mathscr C$ we have two different types of operations. Let r=[0,0']. Take the operation of K_0 , $\varphi_r^1(K_1)$, $\varphi_r^2\varphi_r^1(K_2)$, These are countable many unary operations therefore these may be enumerated, as f_1, f_2, \ldots . Let us assume that the corresponding interval isomorphism is

$$f_i: [a_i, b_i] \to [-b_i, -a_i].$$

To i we can associate three intervals of D

$$I_{i1} = [(-b_i, -2(i+1)), (-a_i, 2i)]$$

$$I_{i2} = [(2i, -2(i+1)), (2(i+1), -2i)]$$

$$I_{i3} = [(2i, ai), (2(i+1), b_i)].$$

All these intervals are isomorphic to $R \times R$.

The other type of the operations are the operations of the chains K_j , j>0. These may be enumerated as g_1, g_2, \ldots . Let us assume that the corresponding interval isomorphism is

$$g_i : [u_i, v_i] \rightarrow [w_i, z_i].$$

Then we can assume that $u_i, v_i, w_i, z_i \ge 0' \in K_0 \subseteq \mathscr{C}$. Let g_i be defined by

$$g_i': [-v_i, -u_i] \to [-z_i, -w_i].$$

To each g_i (resp. g'_i) we associate the following two intervals

$$J_{i1} = [(z_i+1, v_i), (z_i+2, u_i)]$$

$$J_{i2} = [(2i+1, z_i), (2i+1, w_i)].$$

Now, we change each I_{ik} , J_{ik} to the lattice $L_{ik} \cong M_3[R]$. The elements $0 \le x \le a_1$, $0 \le y \le a_3$ generates a sublattice of $M_3[R]$ isomorphic to I_{ik} , i.e., I_{ik} is a sublattice of L_{ik} . This technique was developed in [3]. On this way we get from D a lattice $L(\subseteq D)$ in which the intervals $[a_i, b_i]$, $[-b_i, -a_i] \subseteq C$ (resp. $[u_i, v_i]$, $[w_i, z_i]$) are projective, we say that this projectivity realize the functions f_i , g_i . Then Con $(L) \cong Con(\mathscr{C})$ hence L satisfies the three conditions (i)—(iii).

Studia Scientiarum Mathematicarum Hungarica 14 (1979)

REFERENCES

- DORNINGER, D. and EIGENTHALER, G.: On compatible and order-preserving functions on lattices, Preprint, 1978.
 SCHMIDT, E. T.: On finitely generated simple modular lattices, Period. Math. Hungar. 6 (1975),
- 213—216.
 [3] SCHMIDT, E. T.: Every finite distributive lattice is the congruence lattice of a modular lattice, Algebra Universalis 4 (1974), 49—57.
 [4] MITSCHKE, A. und WILLE, R.: Freie modulare Verbände FM(M₃), Proc. Univ. Houston, Lat-
- tice Theory Conference, pp. 383—396.
 [5] SCHMIDT, E. T. and WILLE, R.: Note on compatible operations on modular lattices, Algebra
- Universalis (to appear).

(Received January 31, 1980)

MTA MATEMATIKAI KUTATÓ INTÉZETE REÁLTANODA U. 13—15 H—1053 BUDAPEST HUNGARY