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REMARK ON COMPATIBLE AND ORDER-PRESERVING
FUNCTION ON LATTICES

by
E. TAMAS SCHMIDT

1. Introduction

Let k be a positive integer. If L is a lattice then F,(L) denotes the lattice of all
functions f: L*~L. A function f¢ F,(L) is called compatible if for any congruence
relation © of L a4;=b,(0), i=1,2, ...,k imply flay, ..., a)=f(by1, .-., b)(O), [ is
called order-preserving, if a;=b,, i=1, ..., k, implies f(a,, ..., a)=f(b,, ..., b,). The
set of all k-place compatible functions on L denoted by C, (L), the set of all k-place
order-preserving functions on L is OF,(L). In this paper we deal with the following
problem: which modular lattices satisfy C,(L)c OF,(L)?

For distributive lattices this problem was solved by D. DORNINGER and G. EIGEN-
THALER [1}:

THEOREM 1. Let L be a distributive lattice. Then C,(LYE OF, (L) if and only if
L contains a proper interval which is a Boolean lattice.

In [2] we have given a simple modular lattice M with the property that none
of its proper intervals is complemented. In a simple lattice every function f: L—~L
is of course compatible, hence Theorem | cannot be generalized for an arbitrary
modular lattice. In [5] R. WILLE and the author has proved the following statement:

Let L be a modular lattice of finite primitive length. Then C(L)E OF,(L) if
and only if L contains a proper interval which is a Boolean lattice.

In connection to this theorem we prove the following

THEOREM 2. There exists a modular lattice L satisfying the following conditions:
(i) L is the subdirect product of finite lattices;
(ii) there is a I-place compatible function o€ C,(L) on L which is not order-
preserving;
(iii) none of the proper intervals [a, b] of L is complemented.

We give the proof in two steps. Let [a, b] and [c, d] be two isomorphic intervals
of a chain C. The isomorphism f: [a, b]—>[c, d] is called an interval-isomorphism,
fis of course a partial operation on C, and can be extended to a unary operation
£ as follows: f(x)=f(x) for all a=x=b, f(x)=f(a) if x=a and finally f(x)=7(b)
for x=b. We say that f is the operation induced by f. The congruence relations
of the partial algebra (C; f) are exactly the congruence relations of (C, f). f is de-
termined by f, hence we can use the same letter for both.

First we construct an algebra ¥=(R, V, A, f;) icI where R denotes the bounded
chain of rationals, the f~s are special interval-isomorphism. This will be a sub-
direct product of finite algebras and ¥ satisfies (ii), (iii). The second step is the con-
struction of a modular lattice L which contains % as a sublattice and satisfies the
given properties.
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2. The construction of ¥

It is well-known that a bounded countable chain which is dense-in-itself is
determined up to isomorphism. Therefore we can start with the chain R of rational
numbers —é‘;— where —2"=k=2" n=0,1,.... We take every r¢R, r#+1 in two
copies r and r’, i.e., we split the elements. We set 1=1/, —1=(—1)".

Then we define on the set K= {r, "; r€ R} an ordering

(1) ris covered by ' (r=41);

(2) r’=sif and only if r=s in R.

K is a chain and R is a subchain of K. The prime intervals of K are the following:
[r, 7] (r= £1). The function defined by fio(r)=r+1, fio(r)=+1), fio(—1)=0"
maps [~1, 0] onto [0, 1]. f, is an interval-isomorphism. On the same way we get

functions fyy, f3o defined on [—I, —-%-} resp. [{—%) , 0}, fgl(r)=r‘+-§',ﬂn(" =

:(r+—§—], fm(—1)=(~§-—] ; fz(,(r)———r-{—m‘,li—,fzo(r’)z(r-l-—;-). Figure 1 helps to vis-

ualize these functions.
On the same way we can define for n=1, 0=k<2""! the function f,:

I k+1Y k kY k+1
f;!k‘ ...2’,_1 H —2n-1 - -1} A1

2k+1
Ju(r) = S T

If reR. r¢ {0, +1, —1} then we define
& [=r(=n1-[rr1]

Finally, let ¢ be defined by ¢ (1)=—1, ¢ (=1)=1, o(=r)=r', ¢((—r)")=r. The next
step is the description of the congruence relations of (K, V, A, f,, g,)y=JX,. First
we define for each natural number n=1 an equivalence relation @, on K: x=y(0,)

if and only if there exists a k, 0=k~<2"-? such that either (Zni_l—) =x, yé—;;{Tl

or (--(-Zcz-j_i) ] =X, Y= -—-2—521—. In Figure 1 the wavy lines denote the @,-classes.

There are two @,-classes: {x, x=0"} {x; x=0}. It is easy to show that O, is a con-

gruence relation of #;, #;/@, is finite and A ©@,=w. By an easy computation
n=0

— applying the operations f,, — we get that the principal congruence

k k+1
e ((2:1-1) * 2&—1]
is ©,.

Principal congruences of #; are the congruence relations @, and the congruence
relations @(r, r’). All these are compatible with ¢, consequently ¢ is a congruence-
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preserving mapping, and ¢ of course is not order-preserving. .4, satisfies (1). o, con-
tains complemented intervals, these are the prime intervals [r, r’].

For each natural number / we take an isomorphic copy J; of %, such that
i#j implies A;N.A4;=0. We put an 1somorphlc copy of J; into the prime mterval
[r,r’] of A;, ie., we have an isomorphism ¢@l: X —{r, r’}, satisfying ¢l(1)=r",
@L(0)=r, where ()l resp. 1, are the zero resp. unit elements of ] (see Figure 2).

Z
1 ;

g 2

f21 )
. o' / f
fzo o] ~ 10 J{:2 X} 3{9
-~ TN -
r’
1~ 1,

¢

(472 s

\ g J i AL/ 4
Fig. 1 Fig. 2

Using this construction for all prime intervals of £, we get a new chain C,. ¢} isan
isomorphism, hence to the interval-isomorphisms of #; there correspond interval-
isomorphisms of ¢l(H4; )CC(, By this construction, the prime intervals of #; in C,
are isomorphic to 4 i.e., to H#. Continuing this construction we define the iso-
morphisms
oF: Ay - Ay

then (J (@2(A)U@l(A#)UHA,) is a chain C;. On this way we get a sequence of

r,sER

chains C,c C ... . Let & be the chain .U C;, i.c., the direct limit of the Cp-s.

The conditions (ii) and (iii) are obv;ously satisfied. We prove that % is the sub-
direct product of finite algebras. We define special congruences @, on € (=0, 1, ...)

such that /&, is finite and A &¢,=w.
n=0
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By the isomorphism X2 J; the image of the congruence relation @, is denoted
by ©%. Let us take ©f on X for j>n and O on ; for i=n. By the construction
of % the image of these congruences defines a congruence relation @, on 4, @, is
the transitive hull of all @{ and @} (i=n<j). Then it is easy to show that A¢,=w.
On the other hand from /0,22 it follows that %/, is finite.

3. The construction of the medular lattice L

We denote the chain of all non-negative rational numbers by O+ and Q~ is
the chain of all non-positive rationals. We define a sublattice D of Q+X Q™. Let
A={(x,y); 0sx<I1, —1<y=0}CQ0*XQ~, B={(r, —1); r=1} and

C={l,r)yr=-1}
Then (@* X QO YO\{4UBUC} is a sublattice D (see Figure 3).

Fig. 3
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The elements {(1, r); —1<r=0}U{(r, —1); 0=r<1}form a bounded countable
chain which is dense-in-itself, hence we can identify this with the chain €. If ¢ is
the congruence-preserving function which is not order-preserving then we can assume:
({1, r))=(—r, —1). Then we can extend this ¢ to D: o(x, p)=(—y, —x).

Let M, be the five-element non-distributive modular lattice and let R be the
bounded chain of rationals. Then there exists a modular lattice M,[R] having the
following properties:

(a) M,[R] contains a {0, 1}-sublattice {0, a, a,, as, 1} isomorphic to M,;

(b) the interval [0, 4] is isomorphic to R.

This lattice is determined up to isomorphism (see [4]).

An important property of M,[R] is that Con (M,[R)) is isomorphic to Con (R).
The intervals [0, a,] and [0, a5} are projective.

On € we have two different types of operations. Let r=[0, 0’]. Take the opera-
tion of K, @} (K,), 02@i(K,), ... . These are countable many unary operations there-
fore these may be enumerated, as f;, f,, ... . Let us assume that the corresponding
interval isomorphism is

S las, b1 > [—b;, —al
To i we can associate three intervals of D
Iy = [(= b, —2(+1)), (—a;,20)]
Ly = [(2i, =2(i+1)), 2(i+1), —2i)]
Iy = [(2i, ad), (2(i+1), b)]

All these intervals are isomorphic to RXR.

The other type of the operations are the operations of the chains X, j=0.
These may be enumerated as gy, g, .... Let us assume that the corresponding
interval isomorphism is

gt [uy, v] — [w, 2.

Then we can assume that u;, v;, w;, z;=0'€ K, S €. Let g; be defined by
gi: [—v —u] > [—z, —w]

To each g; (resp. g7) we associate the following two intervals
Jo =lz+1, v, (z:+2,w)]
Jo = [(2i4+1, z), Ri+1, w)).

Now, we change each I, J;; to the lattice L= M,[R]. The elements 0=x=a,,
0=y=a, generates a sublattice of M,[R] isomorphic to I, i.e., I; is a sublattice
of L,. This technique was developed in [3]. On this way we get from D a lattice
L(S D) in which the intervals [a;, b, [—b;, —a)SC (resp. [u;, v}, [w;, z]) are
projective, we say that this projectivity realize the functions f;, g;. Then Con (L)=
= Con (%) hence L satisfies the three conditions {(i)—(iii).
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