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REMARK ON GENERALIZED FUNCTION LATTICES

By
E. T. SCHMIDT (Budapest)

1. Introduction

G. Birkhoff has introduced the exponentation of partially ordered sets; if X, Y
are partially ordered sets then Y* denote the set of all order-preserving maps of
X to Y partially ordered by f=g if and only if f(x)=g(x) for each xcX. Let L
be a lattice and P a partially ordered set; then L? is a lattice, the so called function
lattice. Studying the structure and decomposition of function lattices, D. DUFFus
and I. Rivar [2] have proved the following theorem:

Let L be a finite lattice and P a finite partially ordered set with |P]=n. Then

Con (L?) = (Con (L))"

This theorem asserts that the congruence lattice of L? is a direct power of Con (L).
For infinite P this theorem does not remain valid, e.g. if L=2 (where 2 denotes
the two element chain) and P is the chain of rationals, then Con (2F) is not a
direct power of 2.

The purpose of this paper is to give a generalization of this theorem for
arbitrary partially ordered sets P. For this generalization we need the notion of
the extension of a (finite) lattice by a bounded distributive lattice (see [5]) which
generalizes the notion of the function lattice.

2. Totally order disconnected spaces

A subset E of a partially ordered set X is increasing if x€E, y=x imply y€E.
Analogously we get the notion of a decreasing set. Let (X, 7, =) be an ordered
space, i.e. a set X with a topology 4 endowed with the relation =. Each set #
consisting of the increasing sets in J~ and the set % consisting of the decreasing
sets in  defines a topology on X. The triple (X, 7, =) is called totally order dis-
connected if given x, y€X, xzy, there exist disjoint F-clopen sets Uc#, LEZL
such that yc U, x€ L. (See CANFELL [1} or PrigsTLEY [3].)

Let D be a bounded distributive lattice and X the poset of all uitrafilters of D,
ie. = is the set-theoretical inclusion. J is the product topology induced from
Hom (D, 2) which is the set of all homomorphisms of D onto 2 (i.e. g is the weak
topology induced by Hom (D, 2)). Then (X, 7, =) is totally order disconnected.
The main theorem of [3] assert that D is isomorphic to the dual lattice of (X, 7, =),
i.e. to the lattice of all clopen increasing subsets.

Let L be an arbitrary lattice. L[D] is the lattice of all continuous monotone
maps of the totally order disconnected space X into the discrete space L. The con-
stant mappings form a sublattice of L[D] isomorphic to L. We identify L with
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this sublattice. If a¢ L then denote the corresponding diagonal element by @. The
reformulation of Priestley’s theorem is the following; for every bounded distribut-
ive lattice D, 2[D]=D holds.

If D is finite, then it is easy to show that L[D] is isomorphic to L¥%,
ie. LX= L[2%).

Let L be finite. If a/b is a prime quotient of L then the corresponding quotient
@/b of L[D] is isomorphic to D.

We call L[D] a generalized function lattice.

3. The congruence lattice of L{D]

The following theorem generalizes the result of Duffus and Rival.

THEOREM. Let L be a finite lattice and D a bounded distributive lattice. Then
Con (L[D]) = (Con (L))[Con (D)].

Using this result, we can prove the theorem of Duffus and Rival as follows.
Let L be a finite lattice and D a finite distributive lattice. P denotes the dual of
the poset of all join-irreducible elements of D. Then L[D] is the function lattice L”.
On the other hand, Con (D) is a finite Boolean algebra isomorphic to 27, where
n=|P|. Then (Con (L))[Con (D)]=(Con (L))", hence Con (LF)=:(Con (L))"

Proor. L[D] is a subdirect power of L having the following two properties:

(i) L[D)] contains the constant mappings, i.e. the diagonal elements.

(ii) if a covers b in L then the quotient /b of L[D] is isomorphic to D; we have
a natural isomorphisms e,: @/b—~D which is the extension of the mappings
a~1, b~0 (0, 1€2).

We will prove slightly more: if S is an arbitrary subdirect power of L satisfy-
ing (i) and (ii) then Con (S)==(Con L) [Con (D)].

Let # be a congruence relation of S. Then 8, denotes the restriction of 8 to
the quotient /b, where a>b in L. 8,, denotes the extension of 8,, to S, then
8, is the smallest congruence relation of S which, restricted to a/b, is 0.

If a/b runs over all prime quotients we get the family {0,,}. We shall show that
0 is uniquely determined by this family (i.e. 6@ implies the existence of a, b¢ L,
a>b such that 0, ®,). Let u=v(0), u=v, u,vesS, ie. u=(u()), v=((3)
where u(?) resp. v{i) are the i-th components (i€ X and X is the set of all ultrafilters
of D). Then u()=v() for all i. If u(i)>v(i) for some i we choose the elements
a, b€L such that wu(i)=a>bz=v() (L is finite). Then wu=v(f) implies
@ADVh=(@Aa)Vb(0), i.e. WANAVb=(wAa)Vb(b,,). The i-th components of these
elements are a and b, hence the join of all 8,, is the congruence relation 8. We have
therefore that 0 is determined by the family {©,,} where each §,, is a congruence
relation on the suitable @/b=D.

Conversely, let {0%} be a family of congruence relations (8¢ Con (@/b), a>b)
such that 0(a, b)=0(c, d) (a>b, c>d) implies &,05=¢,0% in Con (D). Then it
is easy to see that there exists an “extension” 8¢ Con (S) such that the restriction
of 0 to @/b is 6%,.

Acta Mathematica Academice Scientiarum Hungaricae 34, 1979



REMARK ON GENERALIZED FUNCTION LATTICES 339

Con (L) and Con (D) are distributive lattices, hence by a theorem of
R. QuackexBusH [4] (Con (L)) [Con (D)] is isomorphic to the free product
Con (L)* Con (D) in the variety of distributive lattices. The free product is com-
mutative, therefore we get

(Con (L))[Con (D)] = (Con (D)) [Con (L)].

But L is a finite lattice, i.e. Con (L) is a finite distributive lattice. Thus if Y
denotes the dual of the partially ordered set of all join irreducible elements of
Con (L) then (Con (D)) [Con (L)] is nothing else than the function lattice Con (D).

A join-irreducible congruence relation of L has the form 6(a, b), where a
covers b. This implies that we have a one-to-one correspondence between Con (S)
and (Con (D))Y which proves our theorem.

Let L be a finite simple lattice, i.e. Con (L)=222. Then (Con) (L) [Con (D)]=
== 2 [Con (D))= Con (D), thus we have

CoRrOLLARY 1. If L is a finite simple lattice then Con (L[D]) is isomorphic
to Con (D).

If L is a finite modular lattice then Con (L)=22". Hence we get

COROLLARY 2. If L is a finite modular lattice then Con (L[D])=(Con (D))"
where n is the number of irreducible congruences of L.

ProBLEM. Does the theorem remain valid for an infinite L?
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