REMARK ON GENERALIZED FUNCTION LATTICES

By
E. T. SCHMIDT (Budapest)

1. Introduction

G. Birkhoff has introduced the exponentation of partially ordered sets; if X, Y are partially ordered sets then Y^X denote the set of all order-preserving maps of X to Y partially ordered by $f \leq g$ if and only if $f(x) \leq g(x)$ for each $x \in X$. Let L be a lattice and P a partially ordered set; then L^P is a lattice, the so called function lattice. Studying the structure and decomposition of function lattices, D. Duffus and I. Rival [2] have proved the following theorem:

Let L be a finite lattice and P a finite partially ordered set with |P|=n. Then

$$\operatorname{Con}(L^p) \cong (\operatorname{Con}(L))^n$$
.

This theorem asserts that the congruence lattice of L^P is a direct power of Con (L). For infinite P this theorem does not remain valid, e.g. if $L \cong 2$ (where 2 denotes the two element chain) and P is the chain of rationals, then Con (2^P) is not a direct power of 2.

The purpose of this paper is to give a generalization of this theorem for arbitrary partially ordered sets P. For this generalization we need the notion of the extension of a (finite) lattice by a bounded distributive lattice (see [5]) which generalizes the notion of the function lattice.

2. Totally order disconnected spaces

A subset E of a partially ordered set X is increasing if $x \in E$, $y \ge x$ imply $y \in E$. Analogously we get the notion of a decreasing set. Let (X, \mathcal{T}, \le) be an ordered space, i.e. a set X with a topology \mathcal{T} endowed with the relation \le . Each set \mathscr{U} consisting of the increasing sets in \mathscr{T} and the set \mathscr{L} consisting of the decreasing sets in \mathscr{T} defines a topology on X. The triple (X, \mathcal{T}, \le) is called totally order disconnected if given $x, y \in X$, $x \not \equiv y$, there exist disjoint \mathscr{T} -clopen sets $U \in \mathscr{U}$, $L \in \mathscr{L}$ such that $y \in U$, $x \in L$. (See Canfell [1] or Priestley [3].)

Let D be a bounded distributive lattice and X the poset of all ultrafilters of D, i.e. \leq is the set-theoretical inclusion. \mathcal{F} is the product topology induced from Hom (D, 2) which is the set of all homomorphisms of D onto 2 (i.e. \mathcal{F} is the weak topology induced by Hom (D, 2)). Then (X, \mathcal{F}, \leq) is totally order disconnected. The main theorem of [3] assert that D is isomorphic to the dual lattice of (X, \mathcal{F}, \leq) , i.e. to the lattice of all clopen increasing subsets.

Let L be an arbitrary lattice. L[D] is the lattice of all continuous monotone maps of the totally order disconnected space X into the discrete space L. The constant mappings form a sublattice of L[D] isomorphic to L. We identify L with

338 E. T. SCHMIDT

this sublattice. If $a \in L$ then denote the corresponding diagonal element by \bar{a} . The reformulation of Priestley's theorem is the following; for every bounded distributive lattice D, $2[D] \cong D$ holds.

If D is finite, then it is easy to show that L[D] is isomorphic to L^{x} , i.e. $L^{x} \cong L[2^{x}]$.

Let L be finite. If a/b is a prime quotient of L then the corresponding quotient \bar{a}/\bar{b} of L[D] is isomorphic to D.

We call L[D] a generalized function lattice.

3. The congruence lattice of L[D]

The following theorem generalizes the result of Duffus and Rival.

THEOREM. Let L be a finite lattice and D a bounded distributive lattice. Then

$$\operatorname{Con}(L[D]) \cong (\operatorname{Con}(L))[\operatorname{Con}(D)].$$

Using this result, we can prove the theorem of Duffus and Rival as follows. Let L be a finite lattice and D a finite distributive lattice. P denotes the dual of the poset of all join-irreducible elements of D. Then L[D] is the function lattice L^P . On the other hand, Con(D) is a finite Boolean algebra isomorphic to 2^n , where n=|P|. Then $(Con(L))[Con(D)] \cong (Con(L))^n$, hence $Con(L^P) \cong (Con(L))^n$.

PROOF. L[D] is a subdirect power of L having the following two properties:

(i) L[D] contains the constant mappings, i.e. the diagonal elements.

(ii) if a covers b in L then the quotient \bar{a}/\bar{b} of L[D] is isomorphic to D; we have a natural isomorphisms ε_{ab} : $\bar{a}/\bar{b} \to D$ which is the extension of the mappings $a \to 1$, $b \to 0$ $(0, 1 \in 2)$.

We will prove slightly more: if S is an arbitrary subdirect power of L satisfy-

ing (i) and (ii) then $Con(S) \cong (Con L) [Con(D)]$.

Let θ be a congruence relation of S. Then θ_{ab} denotes the restriction of θ to the quotient \bar{a}/\bar{b} , where a > b in L. $\bar{\theta}_{ab}$ denotes the extension of θ_{ab} to S, then $\bar{\theta}_{ab}$ is the smallest congruence relation of S which, restricted to \bar{a}/\bar{b} , is θ_{ab} .

If a/b runs over all prime quotients we get the family $\{\theta_{ab}\}$. We shall show that θ is uniquely determined by this family (i.e. $\theta \neq \Phi$ implies the existence of $a, b \in L$, a > b such that $\theta_{ab} \neq \Phi_{ab}$). Let $u \equiv v(\theta)$, u > v, $u, v \in S$, i.e. u = (u(i)), v = (v(i)) where u(i) resp. v(i) are the i-th components ($i \in X$ and X is the set of all ultrafilters of D). Then $u(i) \geq v(i)$ for all i. If u(i) > v(i) for some i we choose the elements $a, b \in L$ such that $u(i) \geq a > b \geq v(i)$ (L is finite). Then $u \equiv v(\theta)$ implies $(u \wedge \overline{a}) \vee \overline{b} \equiv (v \wedge \overline{a}) \vee \overline{b}(\theta)$, i.e. $(u \wedge \overline{a}) \vee b \equiv (v \wedge \overline{a}) \vee b(\theta_{ab})$. The i-th components of these elements are a and b, hence the join of all $\overline{\theta}_{ab}$ is the congruence relation θ . We have therefore that θ is determined by the family $\{\Theta_{ab}\}$ where each θ_{ab} is a congruence relation on the suitable $\overline{a}/\overline{b} \cong D$.

Conversely, let $\{\theta_{ab}^*\}$ be a family of congruence relations $(\theta_{ab}^* \in \text{Con}(\bar{a}/\bar{b}), a > b)$ such that $\theta(a, b) \leq \theta(c, d)$ (a > b, c > d) implies $\varepsilon_{ab} \theta_{ab}^* \geq \varepsilon_{cd} \theta_{cd}^*$ in Con (D). Then it is easy to see that there exists an "extension" $\theta \in \text{Con}(S)$ such that the restriction of θ to \bar{a}/\bar{b} is θ_{ab}^* .

Con (L) and Con (D) are distributive lattices, hence by a theorem of R. QUACKENBUSH [4] (Con (L)) [Con (D)] is isomorphic to the free product Con (L) * Con (D) in the variety of distributive lattices. The free product is commutative, therefore we get

$$(\operatorname{Con}(L))[\operatorname{Con}(D)] \cong (\operatorname{Con}(D))[\operatorname{Con}(L)].$$

But L is a finite lattice, i.e. Con (L) is a finite distributive lattice. Thus if Y denotes the dual of the partially ordered set of all join irreducible elements of Con (L) then (Con (D))[Con (L)] is nothing else than the function lattice $Con (D)^Y$.

A join-irreducible congruence relation of L has the form $\theta(a, b)$, where a covers b. This implies that we have a one-to-one correspondence between Con (S) and $(Con(D))^{\gamma}$ which proves our theorem.

Let L be a finite simple lattice, i.e. $Con(L) \cong 2$. Then $(Con)(L)[Con(D)] \cong 2[Con(D)] \cong Con(D)$, thus we have

COROLLARY 1. If L is a finite simple lattice then Con(L[D]) is isomorphic to Con(D).

If L is a finite modular lattice then $Con(L) \cong 2^n$. Hence we get

COROLLARY 2. If L is a finite modular lattice then $Con(L[D]) \cong (Con(D))^n$ where n is the number of irreducible congruences of L.

PROBLEM. Does the theorem remain valid for an infinite L?

References

- [1] M. J. CANFELL, Semi-algebras and rings of continuous functions, Thesis, University of Edinburgh, 1968.
- [2] D. DUFFUS and J. RIVAL, Structure and decomposition results for function lattices, Preprint of the University of Calgary.
- [3] H. A. Priestley, Representation of distributive lattices by means of ordered stone spaces, *Bull. London Math. Soc.*, 2 (1970), 186—190.
- [4] R. QUACKENBUSH, Free products of bounded distributive lattices, *Algebra Universalis*, **2** (1972), 393—394.
- [5] E. T. SCHMIDT, Lattices generated by partial lattices, *Colloqia Math. Soc. János Bolyai*. Lattice Theory (1974), 343—353.

(Received February 10, 1978)

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES 1053 BUDAPEST, REÁLTANODA U. 13—15.