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1. Introduction

A finite subdirectly irreducible algebra is splitting in a variety if there is a largest
subvariety of this variety not containing it. The splitting lattices are those sub-
directly irreducible lattices which are the bounded homomorphic images of finitely
generated free lattices (R. McKenzie [2]). This result does not supply necessary
and sufficient conditions for a splitting lattice in subvarieties of the variety of all
lattices. Let .# be the variety of all modular lattices. The description of splitting
lattices in .#, i.e. of splitting modular lattices is an open problem. In this paper
we give a necessary condition for a lattice S to be splitting modular.

2. Preliminaries, result

We denote the five element modular non-distributive lattice by M,; M, with
an additional atom is called M,, etc. We call an ordered five-tuple (v, x, », z, )
of elements from a modular lattice a diamond if these elements form a copy of
Mg with v and u as the bottom and the top elements, respectively. Two quotients
a/b and c/d of alattice L are transposes if either a=5bV ¢ and d=bAc or c=aVd
and b=a/d. The quotient a/b is said to be projective to ¢/d ~in symbol a/b=~ c/d -
if there exists a sequence of quotients a/b==ay/b,, a/b,, ..., a,/b,=c/d such that
a /b, and a,/b,., are transposes for every O0=k<n. A sublattice X of L is
called an isometric sublattice if a prime quotient in K is a prime quotient in. L.
An element g€L is double-irreducible if it is join- and meet-irreducible. If a is
double-irreducible then L,=L\{a} is a sublattice of L.

Theorem. Let (v, x,y,z,u) be an isometric diamond of a splitting modular
lattice S. If y is double-irreducible then the quotients xjv and z[v are not projective
in the sublattice S,=S\{y}.
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This theorem implies
Corollary 1 (A. Day, C. Herrmann and R. Wille [1]). M, is not splitting modular.

Corollary 2. The lattice represented by Fig. I is not splitting modular.

Fig. 1.

3. Function lattices

Let L be a lattice and let P be a partially ordered set. L” denotes the lattice
-of all order-preserving maps of P to L partially ordered by f=g if and only if
S(x)=g(x) foreach x€P. LF is called function lattice and this concept is a powerful
tool by the construction given in this paper. If a€L then a denotes the correspond-
ing constant mapping, i.e. d(x)=a for each x¢P. If a/b is a prime quotient of
L then the corresponding quotient @/b of L is isomorphic to 27, where 2 de-
notes the two element lattice. 2 is a distributive lattice. Obviously LF is a sub-
direct power of L. The constant mappings form a sublattice of L® which is iso-
morphic to L; we can identify L with this sublattice.

Consider the chain N of non-negative integers, the corresponding ordinal is
denoted by . Similarly, o* is the ordinal corresponding to the chain of non-
positive integers. Then using the well-known ordinal sum we get the ordinals @ +1,
14+w*, w+2 where w+2 corresponds to

O<l<2<..<=d < oo

w+1 correspondsto O<l<...<oo, and 1+w* correspondsto 0> —1>—-2>..>
...>—o0, Trivially @+122°" and w4222,

Let D be a filter of 1+w* and let L be a finite lattice. If f¢L” then there
exists a —k€D such that f(—k)=f(—n) for every —neD. We define feL'**"
as follows: f(—m)=f(—n) if —n€D and f(£)=f(—k) if t¢D. Then f—f is
-obviously the canonical embedding of L? into L'*®". If D is the filter w* then
we get an embedding L®*—~L'*®". The chain k={0, —1, ..., —k} is a filter of
1+w* hence we get again an embedding L*—L'*e",

Lemma 1. Let L be a finite lattice. The ideal lattice I(L®") is isomorphic
to L**o7,
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Proof. We have the canonical embedding f~f of L®* into L'**". Let g€ L}*°*
and take all feL®* for which f=g. All these f-s form an ideal I, of Le*, Ttis
easy to show that the correspondence g--I, is an isomorphism between L''®"
and I(L®").

4. Gluing of lattices

Let A and B be two lattices with isomorphic sublattices C=C’ where
CZA and C’SB. We assume that 4 and B are disjoint. The set-theorctical
union L=AUB with C and C’ identified can be made into a poset by defining
x=y if and only if one of the following conditions is satisfied:

(i) x=y in 4 orin B;

(i) x=c in A and ¢’=y in B for some c¢€A where ¢ and ¢’ are cor-

responding elements under the isomorphism C=C’;

(iif) x=¢’ in B and c¢=y in A where ¢, ¢ are corresponding elements.

In general, L need not be a lattice. If L is a lattice then L is the lattice
obtained by gluing together A and B by C=:C’. In the following we give a special
condition for the sublattices C and C’ such that L is a lattice. _

A subchain C of a lattice L is called an m-subchain if the following conditions
are satisfied:

(1) If t=c where t€L, c€C then there exists a least i¢C such that r=i=c.
Similarly, if ¢=t (¢c€C) then we have a greatest € C such that c=t=¢;

) a=b, a=b, a=0>b imply a=b;

(3) Let ¢;=cy, ¢1, c€C. If ¢t then ¢, Vi=c,Vt and dually ¢t implies
N\t =\t

@) r=s, c;=c3(cy, ,€C), rllc;, slle; imply that either rVey=sVe, or rAcy>
R TAY N

(5) r=5,r=s,c|r,s (ceC) imply cAr=cAs and dually.

A {0, 1}-subchain of a bounded lattice L is a subchain containing the 0 and
1 of L.

Lemma 2. Let A and B be two modular lattices with isomorphic subchains
C=C’. Let C be an m-subchain of A andlet C’ be a {0,1} m-subchain of B.
Then the poset L=AUB is a modular lattice.

Proof. First we show that L is a lattice. Take two elements a€ A4, b¢B, a, b¢ C.
Then we have a beC, b=b. If a=b then aVb=a. If a<b in A4 then by (1)
we have acC such that a<a=b. Take the join daVbh in B then this element
is obviously the least upper bound of ¢ and b in L. If a«b then b<ad hence
the join aVb of a and b in A is the least upper bound of a and & in L.
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Similarly we can prove the existence of the greatest lower bound of a and b, ie.
L is a lattice.

Let us assume that L is not modular, i.e. that L contians a pentagon with
the elements o<s<r<i, o<t=i We distinguish several cases. 4 and B are
modular lattices, hence r, s, t€ A and similarly r, s, t€ B is impossible,

(@) r€A,r¢ B, s, tc B. Then i=35V1,s, t€B imply i€ B. From (1) we get the existence
of the elements 7, réC for which s=r<F=i. By the modularity of B we get
sVFEA)=FAGVH=F, ie. rV(FAt)=F, and r|fAt, a contradiction to (3).

(b) r,s€4, t€B, r,s,t¢§ C. Then we have the following possibilities:

(by) 0, i§¢ B. Using (1) we get ¢;=1 and ¢,=¢t for which i=c¢,>t=>c,>0. From (4)
we conclude that either rVey,>sVe, or rAc,>sAc,, which is a contradiction
to the assumption that o, 7, 5, £, 1 form a pentagon.

(b,) 0¢ B, i¢B. Then we have ¢,=F, c;=0 for which r<q =i o0<eg<t If F>3
then using the modularity of B we get §V(FA1)=FAi=F, §|t, a contradiction
to (3), i.e. F=5. Then cllr,s, by (5) rAcy=>sA¢,, contradiction.

(by) 0, i€B. Let ¢,=F, ¢,=s, then r<c;=i and s>c,=0. From (2) we get that
either F>3§ or r=>s. Let us assume that 7=>35. Then by the modularity of B
we get SV(FAD=FA(SV1)=FAi=F, hence by (3) FAt€C. But C is a
chain thus F=rAt, ie. 7= contradiction.

5. Proof of the theorem

Let § be a finite subdirectly irreducible modular lattice with an isometric
diamond (v, x, y, z, #} such that y is a double-irreducible element. Let us assume
that the quotients x/v and z/v are projective in the sublattice S,=S\{y}. We
have to prove that S is not splitting modular.

First we take the function lattice 4= S;”L“’*. Then the quotient u/x is a chain
isomorphic to w+2, say

x3x°_<x1< XQ‘<...‘<xd‘<x°° = U.
Similarly u/z is the following chain:
Z= 24 < 23 < Zp < o= Zg < Zeo = U

Let us take the elements; wy=x;Azy, Wy=XAZy, ..., We=X3 1A Z, oy Wy=XgA 24,
w_=u. These elements form an m-subchain C of A.

Let B be a subdirect product of two copies of @2, containing all (a, b)€
€(w+2)X(w+2) for which a=b. Then the elements wy=(0, 0), w;=(1, 1), ..., w;=
=(k, k), ..., wy=(d, d), w_=(oo, ) form a {0, 1} m-subchain C’ of B and C
is isomorphic to C’. The lattices 4 and B are illustrated in Fig. 2.
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Fig. 2.

B’ will denote the principal ideal (w]] of B.

Let M be the lattice obtained by gluing together 4 and B identifying the
corresponding elements under the isomorphism C=C’. By Lemma 2 M is a
modular lattice. We define some sublattices of M.

If we omit all elements (k, «) (k<<c) from M we get the sublattice M of M.
In other words, M is the lattice obtained by gluing together 4 and B’ identifying
w, and wj, w, and w (k=0, 1, ...).

The next step is to define the finite sublattices M, (k=0,1,2,...) of M.

For a finite cardinal k& we define A, to be S'y‘“. Then by the canonical embedding
defined in section 3, A, is a sublattice of A. The quotient u/x isa k+2 element
chain

X = Xg < Xg < Xy < ooos X < Xew = U

hence the elements w,, Wy, ..., w,_, are contained in A4,. Let B, be the principal
ideal (w,_,] of B. Then M, is the lattice obtained by gluing together 4, and B,
identifying the corresponding elements of the subchains C,={wq, wy, ..., Wy_1}
and C,={wj, w;, ..., w,_,}. The corresponding diagram is given by Fig. 3.
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Every M, is a sublattice of M, hence M*= U M, is a sublattice of M.
By Lemma 1, the ideal lattice of M™ is the lattice M, ie. IM*)=M.

Lemma 3. S is contained in the variety generated by the lattices M, for 1=k <o,

Proof. Let XA be the variety generated by the lattices M, for I=k=<eoo.
Then M*= U M, isin . This implies that the ideal lattice of M™* is contained

in X, le. MEJi’ We will prove that S is an epimorphic image of M. There-
fore S¢x.

Let 0 be the congruence relation of w-+2 which has exactly two congruence
classes, {0, 1,2, ...} and {d, «}. The factor lattice is the two element lattice.

Let a/b be a prime quotient of S,. Then there exists a natural isomorphism
€yp: W+2—afb, where a/b is the corresponding quotient of S,. Then A=S;* "
has a congruence relation 6, such that the factor lattice A/f, is isomorphic to
S, and the restriction of 6, to a/b is the congruence relation which corresponds
to 0 by the isomorphism ¢, .

In the same way we get a congruence relation 6z on B’ such that 0y has
the classes {w}}, {x;x€B’,x=w! for some i<d} and {(k,d); k<d}. Let us
take the chain {wg, w1, ..., wi} S A. The restriction of 6, to this chain has two
classes: {wy, w;, ...} and {w,}. The restriction of 0p to {wy,wi, ..., w;}=B’
has also the classes {w;, ..., w;, ...} and {w;}. Let 8 be the transitive extension of
04 and 0p to M. Then by the previous remark 6l4=60/4 and 85 =6|5, A/0 =S,
B’[05 =2. Thus we get that M/8 is isomorphic to S, which proves our Lemma.

Let {M,}° be the variety generated by M,. The subdirectly irreducible lattices
of a variety generated by a finite lattice F are epimorphic images of sublattices
of F. To prove that S is not splitting we need to prove

Lemma 4. S is not contained in the variety generated by M,.

Proof. Let us take the quotient u/v of S and the corresponding quotient
ufv of M,. It can be easily seen that u/v is not an epimorphic image of a sub-
lattice of u/v, using the assumption that x/v and z/v are projective in S,. (See [1]).
This involves that M, doesn’t contain a sublattice 7 such that S is an epimorphic
image of T.

6. Planar lattices

Let A" be a variety of lattices. A lattice L in 5 is called finitely J£~projected
if for any surjective f: A—->L in X there is a finite sublattice of 4 whose image
under f is L. In [3] the finitely projected planar modular lattices are characterized.
From this characterization we get, using the concept of the diamond circle [4]:
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Corollary 3. A4 subdirectly irreducible planar modular lattice S is splitting
modular if and only if S does not contain a diamond circle or a sublattice isomorphic
to M,.

A planar modular lattice is 2-distributive. If § is 2-distributive then the lattice
M is again 2-distributive. Hence we have

Corollary 4. A subdirectly irreducible planar modular lattice S is splitting in
the variety of all 2-distributive lattices if and only if S does not contain a diamond
circle or a sublattice isomorphic to M,.

Remark. The same proof gives the following generalization of our Theorem:

Let (v, x, y, z, u) be an isometric diamond of a splitting modular lattice S and
let t€.5 be such that uAt=v, y is V-irreducibleand yvt is A-irreducible. Then
S’={x€8; x¢*""/y} is a sublattice of S and x/uv, z/v are not projective in this
sublattice.
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