COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI

29. UNIVERSAL ALGEBRA, ESZTERGOM (HUNGARY), 1977.

On splitting modular lattices

E. T. Schmidt

1. Introduction

A finite subdirectly irreducible algebra is splitting in a variety if there is a largest subvariety of this variety not containing it. The splitting lattices are those subdirectly irreducible lattices which are the bounded homomorphic images of finitely generated free lattices (R. McKenzie [2]). This result does not supply necessary and sufficient conditions for a splitting lattice in subvarieties of the variety of all lattices. Let $\mathcal M$ be the variety of all modular lattices. The description of splitting lattices in $\mathcal M$, i.e. of splitting modular lattices is an open problem. In this paper we give a necessary condition for a lattice $\mathcal S$ to be splitting modular.

2. Preliminaries, result

We denote the five element modular non-distributive lattice by M_3 ; M_3 with an additional atom is called M_4 , etc. We call an ordered five-tuple (v, x, y, z, u) of elements from a modular lattice a diamond if these elements form a copy of M_3 with v and u as the bottom and the top elements, respectively. Two quotients a/b and c/d of a lattice L are transposes if either $a=b \lor c$ and $d=b \land c$ or $c=a \lor d$ and $b=a \land d$. The quotient a/b is said to be projective to c/d in symbol $a/b \approx c/d$ if there exists a sequence of quotients $a/b=a_0/b_0$, a_1/b_1 , ..., $a_n/b_n=c/d$ such that a_k/b_k and a_{k+1}/b_{k+1} are transposes for every $0 \le k < n$. A sublattice K of L is called an isometric sublattice if a prime quotient in K is a prime quotient in L. An element $a \in L$ is double-irreducible if it is join- and meet-irreducible. If a is double-irreducible then $L_a = L \setminus \{a\}$ is a sublattice of L.

Theorem. Let (v, x, y, z, u) be an isometric diamond of a splitting modular lattice S. If y is double-irreducible then the quotients x/v and z/v are not projective in the sublattice $S_v = S \setminus \{y\}$.

This theorem implies

Corollary 1 (A. Day, C. Herrmann and R. Wille [1]). M_4 is not splitting modular.

Corollary 2. The lattice represented by Fig. 1 is not splitting modular.

Fig. 1.

3. Function lattices

Let L be a lattice and let P be a partially ordered set. L^P denotes the lattice of all order-preserving maps of P to L partially ordered by $f \leq g$ if and only if $f(x) \leq g(x)$ for each $x \in P$. L^P is called function lattice and this concept is a powerful tool by the construction given in this paper. If $a \in L$ then \bar{a} denotes the corresponding constant mapping, i.e. $\bar{a}(x) = a$ for each $x \in P$. If a/b is a prime quotient of L then the corresponding quotient \bar{a}/\bar{b} of L^P is isomorphic to 2^P , where 2 denotes the two element lattice. 2^P is a distributive lattice. Obviously L^P is a subdirect power of L. The constant mappings form a sublattice of L^P which is isomorphic to L; we can identify L with this sublattice.

Consider the chain N of non-negative integers, the corresponding ordinal is denoted by ω . Similarly, ω^* is the ordinal corresponding to the chain of non-positive integers. Then using the well-known ordinal sum we get the ordinals $\omega+1$, $1+\omega^*$, $\omega+2$ where $\omega+2$ corresponds to

$$0 < 1 < 2 < ... < d < \infty$$

 $\omega+1$ corresponds to $0<1<...<\infty$, and $1+\omega^*$ corresponds to 0>-1>-2>...> $...>-\infty$. Trivially $\omega+1\cong 2^{\omega^*}$ and $\omega+2\cong 2^{1+\omega^*}$.

Let D be a filter of $1+\omega^*$ and let L be a finite lattice. If $f \in L^D$ then there exists a $-k \in D$ such that $f(-k) \le f(-n)$ for every $-n \in D$. We define $\bar{f} \in L^{1+\omega^*}$ as follows: $\bar{f}(-n) = f(-n)$ if $-n \in D$ and $\bar{f}(t) = f(-k)$ if $t \in D$. Then $f \to \bar{f}$ is obviously the canonical embedding of L^D into $L^{1+\omega^*}$. If D is the filter ω^* then we get an embedding $L^{\omega^*} \to L^{1+\omega^*}$. The chain $k = \{0, -1, ..., -k\}$ is a filter of $1+\omega^*$ hence we get again an embedding $L^k \to L^{1+\omega^*}$.

Lemma 1. Let L be a finite lattice. The ideal lattice $I(L^{\omega^*})$ is isomorphic to $L^{1+\omega^*}$.

Proof. We have the canonical embedding $f \rightarrow \bar{f}$ of L^{ω^*} into $L^{1+\omega^*}$. Let $g \in L^{1+\omega^*}$ and take all $f \in L^{\omega^*}$ for which $\bar{f} \leq g$. All these f-s form an ideal I_g of L^{ω^*} . It is easy to show that the correspondence $g \rightarrow I_g$ is an isomorphism between $L^{1+\omega^*}$ and $I(L^{\omega^*})$.

4. Gluing of lattices

Let A and B be two lattices with isomorphic sublattices $C \cong C'$ where $C \subseteq A$ and $C' \subseteq B$. We assume that A and B are disjoint. The set-theoretical union $L = A \cup B$ with C and C' identified can be made into a poset by defining $x \leq y$ if and only if one of the following conditions is satisfied:

- (i) $x \le y$ in A or in B;
- (ii) $x \le c$ in A and $c' \le y$ in B for some $c \in A$ where c and c' are corresponding elements under the isomorphism $C \cong C'$;
- (iii) $x \le c'$ in B and $c \le y$ in A where c, c' are corresponding elements. In general, L need not be a lattice. If L is a lattice then L is the lattice obtained by gluing together A and B by $C \cong C'$. In the following we give a special condition for the sublattices C and C' such that L is a lattice.

A subchain C of a lattice L is called an m-subchain if the following conditions are satisfied:

- (1) If $t \le c$ where $t \in L$, $c \in C$ then there exists a least $\bar{t} \in C$ such that $t \le \bar{t} \le c$. Similarly, if $c \le t$ ($c \in C$) then we have a greatest $t \in C$ such that $c \le t \le t$;
 - (2) $a \le b, \ \bar{a} = \bar{b}, \ \underline{a} = \underline{b} \text{ imply } a = b;$
- (3) Let $c_1 > c_2$, c_1 , $c_2 \in C$. If $c_2 || t$ then $c_1 \lor t > c_2 \lor t$ and dually $c_1 || t$ implies $c_1 \land t > c_2 \land t$:
- (4) r>s, $c_1>c_2(c_1, c_2\in C)$, $r||c_i, s||c_i$ imply that either $r\vee c_1>s\vee c_1$ or $r\wedge c_2>s\wedge c_2$;
 - (5) $\bar{r} = \bar{s}, r > s, c || r, s (c \in C)$ imply $c \wedge r > c \wedge s$ and dually.
- A $\{0, 1\}$ -subchain of a bounded lattice L is a subchain containing the 0 and 1 of L.
- **Lemma 2.** Let A and B be two modular lattices with isomorphic subchains $C \cong C'$. Let C be an m-subchain of A and let C' be a $\{0, 1\}$ m-subchain of B. Then the poset $L = A \cup B$ is a modular lattice.

Proof. First we show that L is a lattice. Take two elements $a \in A$, $b \in B$, a, $b \notin C$. Then we have a $\overline{b} \in C$, $\overline{b} \ge b$. If $a \ge \overline{b}$ then $a \lor b = a$. If $a < \overline{b}$ in A then by (1) we have $\overline{a} \in C$ such that $a < \overline{a} \le b$. Take the join $\overline{a} \lor b$ in B then this element is obviously the least upper bound of a and b in C. If $a < \overline{b}$ then $b < \overline{a}$ hence the join $a \lor \overline{b}$ of a and \overline{b} in A is the least upper bound of a and b in C.

Similarly we can prove the existence of the greatest lower bound of a and b, i.e. L is a lattice.

Let us assume that L is not modular, i.e. that L contians a pentagon with the elements o < s < r < i, $o < t \le i$. We distinguish several cases. A and B are modular lattices, hence $r, s, t \in A$ and similarly $r, s, t \in B$ is impossible.

- (a) $r \in A$, $r \notin B$, s, $t \in B$. Then $i = s \lor t$, s, $t \in B$ imply $i \in B$. From (1) we get the existence of the elements \bar{r} , $\underline{r} \in C$ for which $s \le \underline{r} < \bar{r} < i$. By the modularity of B we get $s \lor (\bar{r} \land t) = \bar{r} \land (s \lor t) = \bar{r}$, i.e. $\underline{r} \lor (\bar{r} \land t) = \bar{r}$, and $\underline{r} \| \bar{r} \land t$, a contradiction to (3).
- (b) $r, s \in A, t \in B, r, s, t \notin C$. Then we have the following possibilities:
- (b₁) $o, i \in B$. Using (1) we get $c_1 = \overline{t}$ and $c_2 = \underline{t}$ for which $i > c_1 > t > c_2 > o$. From (4) we conclude that either $r \lor c_1 > s \lor c_1$ or $r \land c_2 > s \land c_2$, which is a contradiction to the assumption that o, r, s, t, i form a pentagon.
- (b₂) $o \in B$, $i \in B$. Then we have $c_1 = \bar{r}$, $c_2 = \bar{o}$ for which $r < c_1 \le i$, $o < c_2 < t$. If $\bar{r} > \bar{s}$ then using the modularity of B we get $\bar{s} \lor (\bar{r} \land t) = \bar{r} \land i = \bar{r}$, $\bar{s} \parallel t$, a contradiction to (3), i.e. $\bar{r} = \bar{s}$. Then $c_2 \parallel r$, s, by (5) $r \land c_2 > s \land c_2$, contradiction.
- (b₃) $o, i \in B$. Let $c_1 = \bar{r}, c_2 = \bar{s}$, then $r < c_1 \le i$ and $s > c_2 \ge o$. From (2) we get that either $\bar{r} > \bar{s}$ or $\underline{r} > \underline{s}$. Let us assume that $\bar{r} > \bar{s}$. Then by the modularity of B we get $\bar{s} \lor (\bar{r} \land t) = \bar{r} \land (\bar{s} \lor t) = \bar{r} \land i = \bar{r}$, hence by (3) $\bar{r} \land t \in C$. But C is a chain thus $\bar{r} = \bar{r} \land t$, i.e. $\bar{r} \le t$, contradiction.

5. Proof of the theorem

Let S be a finite subdirectly irreducible modular lattice with an isometric diamond (v, x, y, z, u) such that y is a double-irreducible element. Let us assume that the quotients x/v and z/v are projective in the sublattice $S_y = S \setminus \{y\}$. We have to prove that S is not splitting modular.

First we take the function lattice $A = S_y^{1+\omega^*}$. Then the quotient u/x is a chain isomorphic to $\omega + 2$, say

$$x = x_0 \prec x_1 \prec x_2 \prec \ldots \prec x_d \prec x_\infty = u.$$

Similarly u/z is the following chain:

$$z = z_0 \prec z_1 \prec z_2 \prec ... \prec z_d \prec z_\infty = u$$
.

Let us take the elements: $w_0 = x_1 \wedge z_0$, $w_1 = x_2 \wedge z_1$, ..., $w_k = x_{k+1} \wedge z_k$, ..., $w_d = x_d \wedge z_d$, $w_{\infty} = u$. These elements form an *m*-subchain C of A.

Let B be a subdirect product of two copies of $\omega+2$, containing all $(a,b) \in (\omega+2) \times (\omega+2)$ for which $a \le b$. Then the elements $w_0' = (0,0), w_1' = (1,1), \ldots, w_k' = (k,k), \ldots, w_d' = (d,d), w_\infty' = (\infty,\infty)$ form a $\{0,1\}$ m-subchain C' of B and C is isomorphic to C'. The lattices A and B are illustrated in Fig. 2.

Fig. 2.

B' will denote the principal ideal (w'_d) of B.

Let \overline{M} be the lattice obtained by gluing together A and B identifying the corresponding elements under the isomorphism $C \cong C'$. By Lemma 2 \overline{M} is a modular lattice. We define some sublattices of \overline{M} .

If we omit all elements (k, ∞) $(k < \infty)$ from \overline{M} we get the sublattice M of \overline{M} . In other words, M is the lattice obtained by gluing together A and B' identifying w_d and w'_d , w'_k and w'_k (k=0, 1, ...).

The next step is to define the finite sublattices M_k (k=0, 1, 2, ...) of \overline{M} .

For a finite cardinal k we define A_k to be S_y^{k+1} . Then by the canonical embedding defined in section 3, A_k is a sublattice of A. The quotient u/x is a k+2 element chain

$$x = x_0 \prec x_1 \prec x_2 \prec \ldots \prec x_k \prec x_\infty = u;$$

hence the elements $w_0, w_1, ..., w_{k-1}$ are contained in A_k . Let B_k be the principal ideal $(w'_{k-1}]$ of B. Then M_k is the lattice obtained by gluing together A_k and B_k identifying the corresponding elements of the subchains $C_k = \{w_0, w_1, ..., w_{k-1}\}$ and $C'_k = \{w'_0, w'_1, ..., w'_{k-1}\}$. The corresponding diagram is given by Fig. 3.

Fig. 3.

Every M_k is a sublattice of M, hence $M^* = \bigcup_{k=0}^{\infty} M_k$ is a sublattice of M. By Lemma 1, the ideal lattice of M^* is the lattice M, i.e. $I(M^*) = M$.

Lemma 3. S is contained in the variety generated by the lattices M_k for $1 \le k < \infty$.

Proof. Let \mathscr{K} be the variety generated by the lattices M_k for $1 \le k < \infty$. Then $M^* = \bigcup_{k=0}^{\infty} M_k$ is in \mathscr{K} . This implies that the ideal lattice of M^* is contained in \mathscr{K} , i.e. $M \in \mathscr{K}$. We will prove that S is an epimorphic image of M. Therefore $S \in \mathscr{K}$.

Let θ be the congruence relation of $\omega+2$ which has exactly two congruence classes, $\{0, 1, 2, ...\}$ and $\{d, \infty\}$. The factor lattice is the two element lattice.

Let a/b be a prime quotient of S_y . Then there exists a natural isomorphism ε_{ab} : $\omega + 2 \rightarrow a/b$, where a/b is the corresponding quotient of S_y . Then $A = S_y^{1+\omega^*}$ has a congruence relation θ_A such that the factor lattice A/θ_A is isomorphic to S_y and the restriction of θ_A to a/b is the congruence relation which corresponds to θ by the isomorphism ε_{ab} .

In the same way we get a congruence relation $\theta_{B'}$ on B' such that $\theta_{B'}$ has the classes $\{w'_d\}$, $\{x; x \in B', x \le w'_i \text{ for some } i < d\}$ and $\{(k,d); k < d\}$. Let us take the chain $\{w_0, w_1, ..., w_d\} \subseteq A$. The restriction of θ_A to this chain has two classes: $\{w_0, w_1, ...\}$ and $\{w_d\}$. The restriction of $\theta_{B'}$ to $\{w'_0, w'_1, ..., w'_d\} \subseteq B'$ has also the classes $\{w'_0, ..., w'_k, ...\}$ and $\{w'_d\}$. Let $\bar{\theta}$ be the transitive extension of θ_A and $\theta_{B'}$ to M. Then by the previous remark $\bar{\theta}|A=\theta|A$ and $\bar{\theta}|_{B'}=\theta|_{B'}$, $A/\theta_A \cong S_y$, $B'/\theta_{B'}\cong 2$. Thus we get that $M/\bar{\theta}$ is isomorphic to S, which proves our Lemma.

Let $\{M_k\}^e$ be the variety generated by M_k . The subdirectly irreducible lattices of a variety generated by a finite lattice F are epimorphic images of sublattices of F. To prove that S is not splitting we need to prove

Lemma 4. S is not contained in the variety generated by M_k .

Proof. Let us take the quotient u/v of S and the corresponding quotient u/v of M_k . It can be easily seen that u/v is not an epimorphic image of a sublattice of u/v, using the assumption that x/v and z/v are projective in S_y . (See [1]). This involves that M_k doesn't contain a sublattice T such that S is an epimorphic image of T.

6. Planar lattices

Let \mathscr{K} be a variety of lattices. A lattice L in \mathscr{K} is called finitely \mathscr{K} -projected if for any surjective $f: A \longrightarrow L$ in \mathscr{K} there is a finite sublattice of A whose image under f is L. In [3] the finitely projected planar modular lattices are characterized. From this characterization we get, using the concept of the diamond circle [4]:

Corollary 3. A subdirectly irreducible planar modular lattice S is splitting modular if and only if S does not contain a diamond circle or a sublattice isomorphic to M_4 .

A planar modular lattice is 2-distributive. If S is 2-distributive then the lattice \overline{M} is again 2-distributive. Hence we have

Corollary 4. A subdirectly irreducible planar modular lattice S is splitting in the variety of all 2-distributive lattices if and only if S does not contain a diamond circle or a sublattice isomorphic to M_4 .

Remark. The same proof gives the following generalization of our Theorem: Let (v, x, y, z, u) be an isometric diamond of a splitting modular lattice S and let $t \in S$ be such that $u \wedge t = v$, y is \vee -irreducible and $y \vee t$ is \wedge -irreducible. Then $S' = \{x \in S; x \in {}^{y \vee t}/y\}$ is a sublattice of S and x/v, z/v are not projective in this sublattice.

References

- [1] A. DAY, C. HERRMANN, R. WILLE, On modular lattices with four generators, *Algebra Universalis* 2 (1972), 317-323.
- [2] R. McKenzie, Equational bases and non-modular lattice varieties, *Trans, Amer. Math. Soc.* 174 (1972), 1-43.
- [3] E. T. SCHMIDT, On finitely projected modular lattices Acta Math. Acad. Sci. Hungar. (to appear).
- [4] A. MITSCHKE, R. WILLE, Über freie modulare Verbände $FM({}^0_{\mathcal{P}}M)$, Preprint Nr. 393, Darmstadt.

Mathematical Institute of the Hungarian Academy of Sciences, H-1053 Budapest, Reáltanoda u. 13-15.

Received February 1, 1978 revised Auguszt 15, 1978