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ON THE VARIETY GENERATED BY ALL MODULAR LATTICES
OF BREADTH TWO
E. T. Schmidt

R. Freese [1] has proved that the variety B, generated by all modular lattices of
breadth less than or equal to 2 is not generated by the finite dimensional members. In
this paper we show that B, is not generated by their member which have a property
implying that no quotient is projective to its proper subquotient.

We say that the quotient c/d is weakly projective into a/b (in symbols c¢/d o
a/b) in a lattice L if there is a unary algebraic function f(x) over L such that f(a) = ¢
and f(b) = d. If f: a/b —> ¢/d is one-one mapping onto c/d then a/b and c/d are called
projective quotients and f is the corresponding projectivity. A f{inite dimensional
modular lattice has obviously the following property:

(1) c/d~y a/bandc>a>b>dimplyc=aandd=b,
i.e. no quotient is weakly projective to a proper subquotient. (It is easy to see that (1)
is equivalent to the condition that no quotient is projective to a proper subquotient).
In this paper we define first an other property, related to (1) which imply (1).

DEFINITION. Let b=x,<x;<..<xp=aand d=y,<..<y,=cbetwo
chains of a lattice L and let jy,j5,....i,; be a permutation of the integers 1,2,...,n such
that for each i= 1,2,...n, yji/yji'l is weakly projective into Xi/xi—l' In this case we say
that ¢/d is weakly subprojective into a/b. Let us define a lattice L to have the
subprojectivity property if whenever a quotient c/d is weakly subprojective into a
subquotient a/b, then a/b = ¢/d.

For n= 1 we get the condition (1). It is easy to give an example for a lattice
which has the property (1) but fails the subprojectivity property.

THEOREM. B, is not generated by the members having the subprojectivity
property. '

The proof is based on [11. To the proof we need some preliminaries.

LEMMA [2]). Ler N be a bounded distributive lattice. Then there exists a
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modular lattice K such that

(i) K has three elements x,y,z such that 0x,y,z,1 form a sublattice of K
isomorphic to M s, and x/0, y/0, and z/0 are isomorphic to N.

(ii) Every congruence on K is determined by its restriction to x/0.

Let K be the lattice obtained from this lemma with N equal to the bounded
rationals. We take this K in five isomorphic examplars K, i= 1,2,...,5 and apply the
Hall-Dilworth construction ({21, [3]) to get a lattice L given with the following
schematic diagram (where v is the least and u; is the greatest element of Ki) (For the

exact description of L we refer to [1] or [3].).

Figure 1

Let g denote a homomorphism from a modular lattice M onto L. R. Freese has
proved that M contains a sublattice diagrammed in Figure 2, such that g(’av) = Xo,
g(b) =z, g(1) = uy, g(c) = vy, 8(X5) = X3, &(y)) = vy, 8(z9) = 25, &(x ) = X etc. and

a/c is projective to b/c. 1
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Some of the quotient may collapse, but the two copies of Mg must be
nondegenerate,

.In the lattice L, x2/23 is (weakly-) projective to the proper subquotient XI/Z3
hence L do not have the subprojectivity property. We prove that the lattice
diagrammed in Figure 2 fails to have the subprojectivity property in a special
subvariety of By.

3/2 and P,/f are projective, hence i‘/‘g and P,/,S are projective. Let p be the
corresponding projectivity: p(R) = Land p(g) =e. Let 9,’ ands' be the images ofg and
eby p,ie. d =p(d), e = ple)

5,1/31 and ;’\‘,2@,2 are projective too, the corresponding projectivity is: g(x) =

(((xvy)A 2 )Vy2) A Xo. Then g(x1) = X3, 8(v1) = V).

We define: 3” = g(il) and g" = (S'VXZ)A Xo. Both are in the quotient X5 /v,. We
shall prove thate” >d”".

Let K be the variety generated by L all breadth two modular lattices having the
subprojectivity property. Then K is a subvariety of By. We shall show that L ¢K. L&
K would imply that L is the homomorphic image of a lattice T which is a sublattice of
a direct product of breadth two modular lattices having the subprojectivity property.
Let g denote the homomorphism T — L. Then T contains the sublattice given by
Figure 2. T is also a sublattice of a direct product. Let 7 denote the projection
homomorphism onto one of these breadth two lattices. As in [1] we can assume that
m(a) and w(b) are incomparable. #(T) is a breadth two lattice hence the quotients
m(a)/m(c) and m(b)/m(c) are chains, ie. W(Q"} and ”(i") are comparable. Hence either
m(e”") > ﬂ(g") or m(e") < ﬂ(g"). We prove first that the second inequalities is
impossible. We distinguish several cases.

(1) I w(e’) = 7(x}) then ‘n'(i::') =1(xy) > m(d").

() If m(e)h) < TT('Z,I)‘ then w(e”) = m(vy). 7(d")> m(e") would imply that
n(g') > m(vy). The quotients ﬂ@')/n(i) and ”(fil)/”(ﬂ) are projective, and ﬂ(g') >
n(y) = 7r(~xl )= “(,Xl) = n(g’). This is a contradiction to the assumption that 7(T) has
the subprojectivity property. We have also 7((3") = n(d").

3y If w(g') < m(y,) then w(g") =7(vy)ie. n(e") > n(d").
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(4) By 1,-3, we can assume that m(xp) > Tr(E:) > m(v}) and ﬂ(g') > (V)
(Figure 3.). If m(e") < w(g”) then we have in the quotient 77(3”)/7"(2,) the chain 1r(3') <
m(x1) < w(yy) < n(g"). Applying g'l(x)= (((xvy))Ayvzi)axy in m(T) we get
g'l(vr(12)) = w(vy) and g'l(n(g”)) = n(g’). Thus we get with the unary algebraic
function p = hp, where h(x) = (xvy)Ad (p is the projectivity between X /v, andg'/s'
i.e., the following holds 5(31 )= Nd' and “13(11): S’). 77(3’) = Py < ﬁw(g'))
<Ppm(x )= n(g'). But by 3, w(g”) < w(g') hence WQ')/W(E') is weakly subprojective
into w(g")/w(g’), i.e. m(T) don’t have the subprojectivity property. We have also that in
all cases 7r(£”) > (,Ej,”)' In [1] it is proved that 77(2") > 1r(~d") imply that g(i(,z) =Xy =

= g(12) in T, which is obviously a contradiction, to the assumption that L €
K. )9

+ m(d")

T me")
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o m(e) Figure 3
PROBLEM 1. Let V be a class of all breadth two modular lattices having the
subprojectivity property. Is V a variety? (i.e. is V homomorphically closed?)
PROBLEM 2. Let K be the variety generated by V in B,. Is this variety

generated by its finite dimensional members?
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