ON THE VARIETY GENERATED BY ALL MODULAR LATTICES OF BREADTH TWO

E. T. Schmidt

R. Freese [1] has proved that the variety B_2 generated by all modular lattices of breadth less than or equal to 2 is not generated by the finite dimensional members. In this paper we show that B_2 is not generated by their member which have a property implying that no quotient is projective to its proper subquotient.

We say that the quotient c/d is weakly projective into a/b (in symbols c/d \approx_W a/b) in a lattice L if there is a unary algebraic function f(x) over L such that f(a) = c and f(b) = d. If $f: a/b \rightarrow c/d$ is one-one mapping onto c/d then a/b and c/d are called projective quotients and f is the corresponding projectivity. A finite dimensional modular lattice has obviously the following property:

(1) $c/d \approx_W a/b$ and $c \ge a > b \ge d$ imply c = a and d = b, i.e. no quotient is weakly projective to a proper subquotient. (It is easy to see that (1) is equivalent to the condition that no quotient is projective to a proper subquotient). In this paper we define first an other property, related to (1) which imply (1).

DEFINITION. Let $b = x_0 < x_1 < ... < x_n = a$ and $d = y_0 < ... < y_n = c$ be two chains of a lattice L and let $j_1, j_2, ..., j_n$ be a permutation of the integers 1,2,...,n such that for each i = 1,2,...,n, y_{j_i}/y_{j_i-1} is weakly projective into x_i/x_{i-1} . In this case we say that c/d is weakly subprojective into a/b. Let us define a lattice L to have the subprojectivity property if whenever a quotient c/d is weakly subprojective into a subquotient a/b, then a/b = c/d.

For n = 1 we get the condition (1). It is easy to give an example for a lattice which has the property (1) but fails the subprojectivity property.

THEOREM. B_2 is not generated by the members having the subprojectivity property.

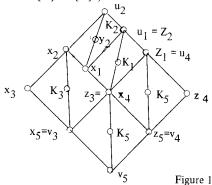
The proof is based on [1]. To the proof we need some preliminaries.

LEMMA [2]. Let N be a bounded distributive lattice. Then there exists a

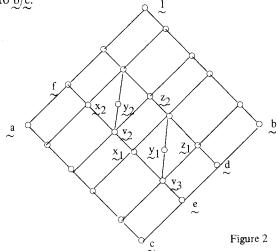
modular lattice K such that

- (i) K has three elements x,y,z such that 0,x,y,z,1 form a sublattice of K isomorphic to M_5 , and x/0, y/0, and z/0 are isomorphic to N.
 - (ii) Every congruence on K is determined by its restriction to x/θ .

Let K be the lattice obtained from this lemma with N equal to the bounded rationals. We take this K in five isomorphic examplars K_i , i=1,2,...,5 and apply the Hall-Dilworth construction ([2], [3]) to get a lattice L given with the following schematic diagram (where v_i is the least and u_i is the greatest element of K_i) (For the exact description of L we refer to [1] or [3].).



Let g denote a homomorphism from a modular lattice M onto L. R. Freese has proved that M contains a sublattice diagrammed in Figure 2, such that $g(\underline{a}) = x_2$, $g(\underline{b}) = z_1$, $g(\underline{1}) = u_2$, $g(\underline{c}) = v_4$, $g(\underline{x}_2) = x_2$, $g(\underline{y}_2) = y_2$, $g(\underline{z}_2) = z_2$, $g(\underline{x}_1) = x_1$ etc. and $\underline{a}/\underline{c}$ is projective to $\underline{b}/\underline{c}$.



Some of the quotient may collapse, but the two copies of M_5 must be nondegenerate.

In the lattice L, x_2/z_3 is (weakly-) projective to the proper subquotient x_1/z_3 hence L do not have the subprojectivity property. We prove that the lattice diagrammed in Figure 2 fails to have the subprojectivity property in a special subvariety of B_2 .

a/c and b/c are projective, hence f/e and b/c are projective. Let p be the corresponding projectivity: p(b) = f and p(c) = e. Let d' and e' be the images of d and e' by p, i.e. d' = p(d), e' = p(e).

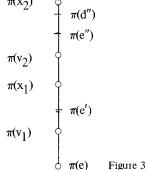
 x_1/v_1 and x_2/v_2 are projective too, the corresponding projectivity is: $g(x) = (((xvy_1) \land z_1)vy_2) \land x_2$. Then $g(x_1) = x_2$, $g(v_1) = v_2$.

We define: e'' = g(e') and $\underline{d}'' = (\underline{d}'vv_2) \wedge x_2$. Both are in the quotient x_2/v_2 . We shall prove that $\underline{e}'' \ge \underline{d}''$.

Let K be the variety generated by L all breadth two modular lattices having the subprojectivity property. Then K is a subvariety of B_2 . We shall show that $L \notin K$. $L \in K$ would imply that L is the homomorphic image of a lattice T which is a sublattice of a direct product of breadth two modular lattices having the subprojectivity property. Let g denote the homomorphism $T \to L$. Then T contains the sublattice given by Figure 2. T is also a sublattice of a direct product. Let π denote the projection homomorphism onto one of these breadth two lattices. As in [1] we can assume that $\pi(a)$ and $\pi(b)$ are incomparable. $\pi(T)$ is a breadth two lattice hence the quotients $\pi(a)/\pi(c)$ and $\pi(b)/\pi(c)$ are chains, i.e. $\pi(d'')$ and $\pi(e'')$ are comparable. Hence either $\pi(e'') \ge \pi(d'')$ or $\pi(e'') < \pi(d'')$. We prove first that the second inequalities is impossible. We distinguish several cases.

- (1) If $\pi(e') \ge \pi(x_1)$ then $\pi(e'') = \pi(x_2) \ge \pi(d'')$.
- (2) If $\pi(e') \leq \pi(v_1)$ then $\pi(e'') = \pi(v_2)$. $\pi(d'') > \pi(e'')$ would imply that $\pi(d') > \pi(v_2)$. The quotients $\pi(d')/\pi(e')$ and $\pi(x_1)/\pi(v_1)$ are projective, and $\pi(d') > \pi(v_2) > \pi(x_1) > \pi(v_1) > \pi(e')$. This is a contradiction to the assumption that $\pi(T)$ has the subprojectivity property. We have also $\pi(e'') > \pi(d'')$.
 - (3) If $\pi(\underline{d}') \le \pi(\underline{v}_2)$ then $\pi(\underline{d}'') = \pi(\underline{v}_2)$ i.e. $\pi(\underline{e}'') \ge \pi(\underline{d}'')$.

(4) By 1,-3, we can assume that $\pi(\mathbf{x}_1) > \pi(\mathbf{e}') > \pi(\mathbf{v}_1)$ and $\pi(\mathbf{d}') \geq \pi(\mathbf{v}_2)$ (Figure 3.). If $\pi(\mathbf{e}'') < \pi(\mathbf{d}'')$ then we have in the quotient $\pi(\mathbf{e}'')/\pi(\mathbf{e}')$ the chain $\pi(\mathbf{e}') < \pi(\mathbf{x}_1) \leq \pi(\mathbf{v}_2) < \pi(\mathbf{e}'')$. Applying $\mathbf{g}^{-1}(\mathbf{x}) = (((\mathbf{x}\mathbf{v}\mathbf{v}_2) \wedge \mathbf{y}_1)\mathbf{v}\mathbf{z}_1) \wedge \mathbf{x}_1$ in $\pi(\mathbf{T})$ we get $\mathbf{g}^{-1}(\pi(\mathbf{v}_2)) = \pi(\mathbf{v}_1)$ and $\mathbf{g}^{-1}(\pi(\mathbf{e}'')) = \pi(\mathbf{e}')$. Thus we get with the unary algebraic function $\overline{\mathbf{p}} = \mathbf{h}\mathbf{p}$, where $\mathbf{h}(\mathbf{x}) = (\mathbf{x}\mathbf{v}\mathbf{y}_1) \wedge \mathbf{d}$ ($\overline{\mathbf{p}}$ is the projectivity between $\mathbf{x}_1/\mathbf{v}_1$ and \mathbf{d}'/\mathbf{e}' i.e., the following holds $\overline{\mathbf{p}}(\mathbf{x}_1) = \mathbf{d}'$ and $\overline{\mathbf{p}}(\mathbf{v}_1) = \mathbf{e}'$). $\pi(\mathbf{e}') = \overline{\mathbf{p}}(\pi(\mathbf{v}_1)) \leq \overline{\mathbf{p}}\pi(\mathbf{e}')$ $\leq \overline{\mathbf{p}}\pi(\mathbf{x}_1) = \pi(\mathbf{d}')$. But by 3, $\pi(\mathbf{d}'') \leq \pi(\mathbf{d}')$ hence $\pi(\mathbf{d}')/\pi(\mathbf{e}')$ is weakly subprojective into $\pi(\mathbf{e}'')/\pi(\mathbf{e}')$, i.e. $\pi(\mathbf{T})$ don't have the subprojectivity property. We have also that in all cases $\pi(\mathbf{e}'') \geq (\mathbf{d}'')$. In [1] it is proved that $\pi(\mathbf{e}'') \geq \pi(\mathbf{d}'')$ imply that $\mathbf{g}(\mathbf{x}_2) = \mathbf{x}_2 = \mathbf{v}_2 = \mathbf{g}(\mathbf{v}_2)$ in T, which is obviously a contradiction, to the assumption that $\mathbf{L} \in \mathbf{K}$.



PROBLEM 1. Let V be a class of all breadth two modular lattices having the subprojectivity property. Is V a variety? (i.e. is V homomorphically closed?)

PROBLEM 2. Let K be the variety generated by V in B_2 . Is this variety generated by its finite dimensional members?

REFERENCES

- 1. R. Freese, Some varieties of modular lattices not generated by their finite dimensional members, Preprint (To appear in the Proceedings of the Universal Algebra Conference Szeged).
- 2. E. T. Schmidt, Every finite distributive lattice is the congruence lattice of some modular lattice, Algebra Universalis, 4(1974), 49-57.
- 3. E. T. Schmidt, On finitely generated simple modular lattices, Periodica Math. Hung., 6(1975), 213-216.

Math Institute, Hungary Academy of Science Budapest, Hungary

Received October 21, 1975